期刊文献+
共找到53篇文章
< 1 2 3 >
每页显示 20 50 100
Impact of Startup Strategy and Buffer Tank Volume on the Compressor Inlet State for a 3-MW sCO_(2)Brayton Cycle
1
作者 ZHAO Decai WANG Bo 《Journal of Thermal Science》 2025年第1期159-175,共17页
The supercritical carbon dioxide(sCO_(2))Brayton cycle system has become an emerging and highly promising method of thermal power conversion due to its efficiency advantage,system compactness,and excellent adaptabilit... The supercritical carbon dioxide(sCO_(2))Brayton cycle system has become an emerging and highly promising method of thermal power conversion due to its efficiency advantage,system compactness,and excellent adaptability of the heat sources.For the low carbon sCO_(2)Brayton cycle testbed with cycle output power approaching 3 MW,a relatively detailed dynamic simulation model of the entire system is constructed to explore the dynamic response characteristics of the system with different startup strategies and different buffer tank volumes during the startup process.The simulation results indicate that the smaller the volume of the buffer tank,the more rapid and obvious the parameter fluctuation in the buffer tank during the startup.Assuming the allowable relative deviation limit of density is 5%,then the ratio of the buffer tank volume to the volume of the entire closed loop should not be lower than 36.80%.The strategy of simultaneous temperature and speed increase during turbine bypass start can effectively reduce the fluctuation of compressor inlet parameters and reach the steady-state more quickly.This paper provides the recommended matching table for the opening of the turbine bypass valve(TBV)and the main regulating valve(MGV)to reduce the parameter fluctuation during the bypass switching.The effectiveness of the proposed turbine bypass and bypass switching startup strategy is verified by simulation,which may be used as a reference for test bench's future debugging and operation. 展开更多
关键词 sCO_(2)Brayton cycle dynamic model buffer tank startup strategy dynamic characteristic
原文传递
Dynamic Visualization Approach of the Multiphase Flow Using Electrical Capacitance Tomography 被引量:1
2
作者 王泽璞 陈琪 +2 位作者 王雪瑶 李志宏 韩振兴 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2012年第2期380-388,共9页
Identifying the flow patterns is vital for understanding the complicated physical mechanisms in multiphase flows.For this purpose,electrical capacitance tomography(ECT) technique is considered as a promising visualiza... Identifying the flow patterns is vital for understanding the complicated physical mechanisms in multiphase flows.For this purpose,electrical capacitance tomography(ECT) technique is considered as a promising visualization method for the flow pattern identification,in which image reconstruction algorithms play an important role.In this paper,a generalized dynamic reconstruction model,which integrates ECT measurement information and physical evolution information of the objects of interest,was presented.A generalized objective functional that simultaneously considers the spatial constraints,temporal constraints and dynamic evolution information of the objects of interest was proposed.Numerical simulations and experiments were implemented to evaluate the feasibility and efficiency of the proposed algorithm.For the cases considered in this paper,the proposed algorithm can well reconstruct the flow patterns,and the quality of the reconstructed images is improved,which indicates that the proposed algorithm is competent to reconstruct the flow patterns in the visualization of multiphase flows. 展开更多
关键词 electrical capacitance tomography VISUALIZATION flow pattern identification dynamic reconstruction algorithm
在线阅读 下载PDF
Measurement of unsteady force on rotor blade surfaces in axial flow compressor
3
作者 Jingyuan LIU Jichao LI +2 位作者 Feng PENG Yang LIU Hongwu ZHANG 《Chinese Journal of Aeronautics》 2025年第2期31-45,共15页
To assess the aerodynamic performance and vibration characteristics of rotor blades during rotation,a study of unsteady blade surface forces is conducted in a low-speed axial flow compressor under a rotating coordinat... To assess the aerodynamic performance and vibration characteristics of rotor blades during rotation,a study of unsteady blade surface forces is conducted in a low-speed axial flow compressor under a rotating coordinate system.The capture,modulation,and acquisition of unsteady blade surface forces are achieved by using pressure sensors and strain gauges attached to the rotor blades,in conjunction with a wireless telemetry system.Based on the measurement reliability verification,this approach allows for the determination of the static pressure distribution on rotor blade surfaces,enabling the quantitative description of loadability at different spanwise positions along the blade chord.Effects caused by the factors such as Tip Leakage Flow(TLF)and flow separation can be perceived and reflected in the trends of static pressure on the blade surfaces.Simultaneously,the dynamic characteristics of unsteady pressure and stress on the blade surfaces are analyzed.The results indicate that only the pressure signals measured at the mid-chord of the blade tip can distinctly detect the unsteady frequency of TLF due to the oscillation of the low-pressure spot on the pressure surface.Subsequently,with the help of one-dimensional continuous wavelet analysis method,it can be inferred that as the compressor enters stall,the sensors are capable of capturing stall cell frequency under a rotating coordinate system.Furthermore,the stress at the blade root is higher than that at the blade tip,and the frequency band of the vibration can also be measured by the pressure sensors fixed on the casing wall in a stationary frame.While the compressor stalls,the stress at the blade root can be higher,which can provide valuable guidance for monitoring the lifecycle of compressor blades. 展开更多
关键词 Axial flow compressor Unsteady blade surface force Wireless telemetry Tip leakage flow Vibration characteristic Unsteady flow
原文传递
Design and Optimization of a Single Stage Centrifugal Compressor for a Solar Dish-Brayton System 被引量:5
4
作者 Yongsheng Wang Kai Wang +3 位作者 Zhiting Tong Feng Lin Chaoqun Nie Abraham Engeda 《Journal of Thermal Science》 SCIE EI CAS CSCD 2013年第5期404-412,共9页
According to the requirements of a solar dish-Brayton system,a centrifugal compressor stage with a minimum total pressure ratio of 5,an adiabatic efficiency above 75% and a surge margin more than 12% needs to be desig... According to the requirements of a solar dish-Brayton system,a centrifugal compressor stage with a minimum total pressure ratio of 5,an adiabatic efficiency above 75% and a surge margin more than 12% needs to be designed.A single stage,which consists of impeller,radial vaned diffuser,90° crossover and two rows of axial stators,was chosen to satisfy this system.To achieve the stage performance,an impeller with a 6:1 total pressure ratio and an adiabatic efficiency of 90% was designed and its preliminary geometry came from an in-house one-dimensional program.Radial vaned diffuser was applied downstream of the impeller.Two rows of axial stators after 90° crossover were added to guide the flow into axial direction.Since jet-wake flow,shockwave and boundary layer separation coexisted in the impeller-diffuser region,optimization on the radius ratio of radial diffuser vane inlet to impeller exit,diffuser vane inlet blade angle and number of diffuser vanes was carried out at design point.Finally,an optimized centrifugal compressor stage fulfilled the high expectations and presented proper performance.Numerical simulation showed that at design point the stage adiabatic efficiency was 79.93% and the total pressure ratio was 5.6.The surge margin was 15%.The performance map including 80%,90% and 100% design speed was also presented. 展开更多
关键词 Single Stage Centrifugal Compressor Design OPTIMIZATION
原文传递
Investigations on the Improving Aerodynamic Performances of Last Stage Steam Turbine and Exhaust Hood under Design and Off Design Conditions 被引量:4
5
作者 FU Jing-Lun LIU Jian-Jun 《Journal of Thermal Science》 SCIE EI CAS CSCD 2015年第5期468-477,共10页
The purpose of this paper is to improve the aerodynamic performances of the last stage turbine and the exhaust hood of a 600MW steam turbine under design and off design conditions. During operation, strong flow intera... The purpose of this paper is to improve the aerodynamic performances of the last stage turbine and the exhaust hood of a 600MW steam turbine under design and off design conditions. During operation, strong flow interactions between the turbine and the exhaust hood impose influences on the flow behavior in the hood and lead to the unsatisfactory aerodynamic performance of the turbine and exhaust hood. So the exhaust hood has the potential to be improved in terms of aerodynamic efficiency. Considering the flow interactions between the turbine and the exhaust hood, the profiles of the diffuser end-wall were optimized. The coupled model turbine and model exhaust hood calculations and experiments were carried out to validate the effects of the optimization. Model experiments show that the design modifications resulted in a substantial increase in the overall pressure recovery coefficient. The flow and aerodynamic performances of the full-scale last stage turbine and full-scale exhaust hood were simulated to explore the flow physics alterations to the modification of diffuser geometry. The wet steam was selected as the flow medium. The actual flow fields trader different operation conditions were analyzed. 展开更多
关键词 steam turbine exhaust hood full scale coupling flow
原文传递
Performance analysis and improvement of a high flow coefficient centrifugal compressor 被引量:4
6
作者 WANG YongSheng WANG Kai +2 位作者 LIN Feng NIE ChaoQun ENGEDA Abraham 《Science China(Technological Sciences)》 SCIE EI CAS 2014年第8期1647-1657,共11页
Very high flow coefficient centrifugal compressor stages are mostly performance of this type of stages is critical to the entire centrifugal applied as the first stages of multistage compressors. The compressors, but ... Very high flow coefficient centrifugal compressor stages are mostly performance of this type of stages is critical to the entire centrifugal applied as the first stages of multistage compressors. The compressors, but surprisingly little related information is available in the open literature. A centrifugal compressor with high inlet flow coefficient of 0.2, presenting a narrow operating range and unstable running situation even at design speed during the test, is investigated here. To reveal flow details in this centrifugal compressor, numerical simulations have been carried out and indicate that excessive impeller flow diffusion results in the poor performance of this centrifugal compressor. With the same inlet flow coefficient, six redesign cases coming from an in-house one-dimensional analysis program are proposed together with impeller trimming and equal flow area design method for corresponding vaneless diffuser. Performance comparison among these redesign centrifugal compressors is presented and the most suitable one is recommended for test in the future. In addition, three redesign cases with lower inlet flow coefficient developed by means of flow trimming are shown in the end to satisfy potential application areas. Finally, the results in this study can provide valuable reference information for multistage centrifugal compressor design. 展开更多
关键词 centrifugal compressor very high flow coefficient IMPROVEMENT impeller trimming
原文传递
Off-Design Performance of 9F Gas Turbine Based on gPROMs and BP Neural Network Model 被引量:4
7
作者 HAO Xuedi SUN Lei +1 位作者 CHI Jinling ZHANG Shijie 《Journal of Thermal Science》 SCIE EI CAS CSCD 2022年第1期261-272,共12页
Gas turbines are increasingly and widely used,whose research and production reflect a country’s industrial capacity and level.Due to the changeable working environment,gas turbines usually work under the condition of... Gas turbines are increasingly and widely used,whose research and production reflect a country’s industrial capacity and level.Due to the changeable working environment,gas turbines usually work under the condition of simultaneous changes of ambient temperature,load and fuel.However,the current researches mainly focus on the change in single condition,and do not fully consider the simultaneous change in different conditions.On the basis of single condition,this paper further studies the dual off-design performance of gas turbines under three conditions:temperature-load,fuel-load and fuel-temperature.Firstly,the whole machine model of a gas turbine is established,in which the compressor model has the greatest impact on the performance of gas turbines.Therefore,this paper obtains a more accurate compressor model by combining the engineering modeling advantages of gPROMs and the powerful mathematical calculation ability of MATLAB neural network.Then,according to the established gas turbine model,the dual off-design performance is studied,which is mainly based on the parameter of output and efficiency.The result shows that the efficiency and power output of gas turbines will decrease with the increase of ambient temperature.With the decrease of fuel calorific value,power output and efficiency will increase.As the load decreases,the efficiency of the gas turbines will decrease,and these changes are consistent with the single off-design performance.However,when the fuel and temperature change simultaneously,only adjusting the IGV angle cannot avoid the surge when the temperature is above 30°C.At this time,it is necessary to adjust the extraction rate in order to ensure the safe and stable operation of gas turbines.Therefore,the research on dual off-design performance of gas turbines has an important significance for the peak shaving operation of gas turbines. 展开更多
关键词 off-design performance gas turbine gPROMs MATLAB neural network peak shaving operation
原文传递
Thermodynamic Performance Assessment of IGCC Power Plants with Various Syngas Cleanup Processes 被引量:3
8
作者 Yunhan Xiao Zhen Li +2 位作者 Bo Wang Lifeng Zhao Jinling Chi 《Journal of Thermal Science》 SCIE EI CAS CSCD 2012年第5期391-403,共13页
The present work explores how much IGCC can benefit from warm gas clean-up(WGCU)in comparison with conventional cold gas clean-up(CGCU) and what are the respective contributions of dry particulates removal and war... The present work explores how much IGCC can benefit from warm gas clean-up(WGCU)in comparison with conventional cold gas clean-up(CGCU) and what are the respective contributions of dry particulates removal and warm gas desulfurization (WGD) in a plant-wide point of view. Influences of key parameters of WGD on ther- modynamic performance of IGCC plant including desulfurization temperature, oxygen concentration in the re- generation stream, and H2S removal efficiency are discussed. It is obtained that the net efficiency of IGCC with full WGCU experiences an improvement of 1.77 percentage points compared with IGCC with full CGCU. Of which, dry particulates removal without water scrubber contributes about 1 percentage point. The influence of desulfurization temperature on thermodynamic performance of IGCC with WGD is weak especially when it is higher than about 350~C, which indicates that more focus should be put on investment cost, technical feasibility and sorbent stability for the selection of optimal operation temperature. Generally, 2%-3% of oxygen concentra- tion in the regeneration stream might be reasonable in a thermodynamic performance point of view. In addition, the improvement of 0.31 percentage points can be obtained by removal of H2S in the syngas from 27 ppm to 3 ppm. 展开更多
关键词 IGCC Syngas clean-up DESULFURIZATION ZnO sorbent Thermodynamic performance assessment
原文传递
Numerical simulation and experimental validation of gas–solid flow in the riser of a dense fluidized bed reactor 被引量:3
9
作者 Xueyao Wang Fan Jiang xiang xu Shengdian Wang Xuezhi Wu Baoguo Fan Liangliang Liao Jiachang Wang Yunhan Xiao 《Particuology》 SCIE EI CAS CSCD 2009年第4期278-282,共5页
Gas-solid flow in the riser of a dense fluidized bed using Geldart B particles (sand), at high gas velocity (7.6-15.5 m/s)s) and with comparatively high solid flux (140-333.8 kg]m^2 s), was investigated experim... Gas-solid flow in the riser of a dense fluidized bed using Geldart B particles (sand), at high gas velocity (7.6-15.5 m/s)s) and with comparatively high solid flux (140-333.8 kg]m^2 s), was investigated experimentally and simulated by computational fluid dynamics (CFD), both two- and three-dimensional and using the Gidaspow, O'Brien-Syamlal, Koch-Hill-Ladd and EMMS drag models, The results predicted by EMMS drag model showed the best agreement with experimental results. Calculated axial solids hold-up profiles, in particular, are well consistent with experimental data. The flow structure in the riser was well represented by the CFD results, which also indicated the cause of cluster formation. Complex hydrody-namical behaviors of particle cluster were observed. The relative motion between gas and solid phases and axial heterogeneity in the three subzones of the riser were also investigated, and were found to be consistent with predicted flow structure. The model could well depict the difference between the two exit configurations used, viz., semi-bend smooth exit and T-shaped abrupt exit. The numerical results indicate that the proposed EMMS method gives better agreement with the experimental results as compared with the Gidaspow, O'Brien-Syamlal, Koch-Hill-Ladd models. As a result, the proposed drag force model can be used as an efficient aporoach for the dense zas-solid two-ohase flow. 展开更多
关键词 Gas-solid flow Drag model EMMS Exit configuration
原文传递
A Similitude Method and the Corresponding Blade Design of a Low-Speed Large-Scale Axial Compressor Rotor 被引量:3
10
作者 YU Chenghai MA Ning +3 位作者 WANG Kai DU Juan Van den Braembussche R.A. LIN Feng 《Journal of Thermal Science》 SCIE EI CAS CSCD 2014年第2期145-152,共8页
A similitude method to model the tip clearance flow in a high-speed compressor with a low-speed model is presented in this paper.The first step of this method is the derivation of similarity criteria for tip clearance... A similitude method to model the tip clearance flow in a high-speed compressor with a low-speed model is presented in this paper.The first step of this method is the derivation of similarity criteria for tip clearance flow,on the basis of an inviscid model of tip clearance flow.The aerodynamic parameters needed for the model design are then obtained from a numerical simulation of the target high-speed compressor rotor.According to the aerodynamic and geometric parameters of the target compressor rotor,a large-scale low-speed rotor blade is designed with an inverse blade design program.In order to validate the similitude method,the features of tip clearance flow in the low-speed model compressor are compared with the ones in the high-speed compressor at both design and small flow rate points.It is found that not only the trajectory of the tip leakage vortex but also the interface between the tip leakage flow and the incoming main flow in the high-speed compressor match well with that of its low speed model.These results validate the effectiveness of the similitude method for the tip clearance flow proposed in this paper. 展开更多
关键词 Similitude method Low-speed model Tip clearance flow TLF/MF interface
原文传递
Impact of Dual-Volume Helmholtz Dampers on Longitudinal and Azimuthal Thermo-Acoustic Instabilities in an Annular Combustor 被引量:2
11
作者 YU Zhijian YANG Yang 《Journal of Thermal Science》 SCIE EI CAS CSCD 2022年第6期2225-2243,共19页
Dual-volume Helmholtz dampers with two resonant frequencies are proposed to simultaneously attenuate longitudinal and azimuthal thermo-acoustic instabilities in annular combustors. Thermo-acoustic instabilities in a s... Dual-volume Helmholtz dampers with two resonant frequencies are proposed to simultaneously attenuate longitudinal and azimuthal thermo-acoustic instabilities in annular combustors. Thermo-acoustic instabilities in a swirled annular combustor equipped with dual-volume dampers are numerically investigated by the Helmholtz method, combined with a measured flame transfer function and the established damper impedance model. Furthermore, the influences of the damper number and circumferential configurations on oscillation attenuations and mode structures are explored. The established dual-volume damper model is well validated by the impedance tube tests. Numerical results indicate velocity fluctuation levels of the longitudinal and azimuthal modes decline after installing Helmholtz dampers, whereas those of the azimuthal modes further decrease by around 16% after using four retuned dual-volume dampers. The eigenfrequencies of the first longitudinal and azimuthal modes decrease and increase after installing dampers, respectively. After installing dual-volume dampers, the difference between the pressure fluctuation in the plenum and combustion chamber is reduced, and pressure waveforms of the azimuthal modes along the circumferential direction shifts. The pressure distribution of azimuthal modes becomes more uniform after using more dual-volume dampers. The specific absorption frequency band for azimuthal modes introduced by the dual-volume damper may lead to decreased oscillations and mode evolutions. The maximal absorbing ability can be approached by installing dampers with the same angle between adjacent dampers. When dampers are unevenly distributed, the symmetry between two azimuthal modes is broken and standing modes will emerge. 展开更多
关键词 thermo-acoustic instability annular combustor passive control dual-volume damper Helmholtz method azimuthal mode structure
原文传递
Experimental and Numerical Study of the Effect of Fuel/Air Mixing Modes on NO_(x) and CO Emissions of MILD Combustion in a Boiler Burner 被引量:2
12
作者 ZHU Ziru XIONG Yan +3 位作者 ZHENG Xianglong CHEN Weijie REN Baohe XIAO Yunhan 《Journal of Thermal Science》 SCIE EI CAS CSCD 2021年第2期656-667,共12页
The Moderate or Intense Low-oxygen Dilution (MILD) combustion is characterized by low emissions,stable combustion and low noise for various kinds of fuel,which has great potential in the industry.The aim of this study... The Moderate or Intense Low-oxygen Dilution (MILD) combustion is characterized by low emissions,stable combustion and low noise for various kinds of fuel,which has great potential in the industry.The aim of this study is to investigate the effect of fuel/air mixing modes on NO_(x) and CO emissions of MILD combustion in a boiler burner by experiments and numerical simulations.Three types of fuel/air mixing modes (premixing mode,diffusion mode and hybrid mode) have been considered in this study.The realizable k-ε turbulent model and the Eddy Dissipation Concept (EDC) combustion model were used in numerical simulations.In addition to the temperature near the burner head,the calculation results match very well with the axial temperature distribution at the furnace center.The flow pattern under different mixing modes is similar,while the hybrid mode has a higher OH concentration near the diffusive fuel nozzle than the premixing mode,and the corresponding position of the peak OH concentration is closer to the rear half of the furnace.The distribution of temperature is extremely uniform for the premixing mode in the main reactive zone,which is typical for MILD combustion.There is a distinct area where the reaction temperature is higher than 1600 K for the hybrid mode.Moreover,in the main reactive zone,the gas recirculation ratio is high enough to ensure flue gas recirculation,which is beneficial to achieve MILD combustion at local areas.At the location where the axial distance is greater than 0.2 m,the gas recirculation ratio of the premixing mode is larger than that of the hybrid mode,which strengthens the entrainment of hot flue gas into the recirculated gas.The experimental results show that when the thermal intensity is less than 1.67 MW·m^(-3),the NO_(x) emissions are less than 15× 10^(-6)@3.5%O_(2) in near stoichiometric ratio in the premixing mode,and the CO emissions are less than 10× 10^(-6)@3.5%O2 under the same conditions.In the diffusion mode,the NO_(x) emissions are less than 30×10^(-6)@3.5%O_(2).In order to keep NO_(x) and CO emissions low,the hybrid modes with optimized fuel distribution ratio are found under different thermal intensities. 展开更多
关键词 MILD combustion boiler burner fuel/air mixing NO_(x) emissions CFD
原文传递
CFD simulation of smooth and T-abrupt exits in circulating fluidized bed risers 被引量:9
13
作者 Xuezhi Wu Fan Jiang +1 位作者 Xiang Xu Yunhan Xiao 《Particuology》 SCIE EI CAS CSCD 2010年第4期343-350,共8页
Gas-solid flow in circulating fluidized bed (CFB) risers depends not only on operating conditions but also on exit configurations. Few studies investigated the effects of exit configurations on flow structure using ... Gas-solid flow in circulating fluidized bed (CFB) risers depends not only on operating conditions but also on exit configurations. Few studies investigated the effects of exit configurations on flow structure using computational fluid dynamics (CFD). This paper provides a 2D two-fluid model to simulate a cold bench-scale square cross-section riser with smooth and T-abrupt exits. The drag force between the gas and solid phases plays an important role in CFD. Since the drag force model based on homogeneous two- phase flow, such as the Wen-Yu correlation, could not capture the heterogeneous structures in gas-solid flow, the structure-dependent energy-minimization multi-scale (EMMS) drag force model (Wang, Ge, & Li, 2008), applicable for Geldart B particles (sand), was integrated into the two-fluid model. The calculated axial solids hold-up profiles were respectively exponential curve for smooth exit and C-shaped curve for T-abrupt exit, both consistent with experimental data. This study once again proves the key role of drag force in CFD simulation and also shows the validity of CFD simulation (two-fluid model) to describe exit effects on ~as-solid flow in CFB risers. 展开更多
关键词 T-abrupt exit Smooth exit Gas-solid flow CFBEMMS drag force model
原文传递
Aerodynamic Performance Improvement of a Highly Loaded Compressor Airfoil with Coanda Jet Flap 被引量:2
14
作者 ZHANG Jian DU Juan +3 位作者 ZHANG Min CHEN Ze ZHANG Hongwu NIE Chaoqun 《Journal of Thermal Science》 SCIE EI CAS CSCD 2022年第1期151-162,共12页
Coanda jet flap is an effective flow control technique,which offers pressurized high streamwise velocity to eliminate the boundary layer flow separation and increase the aerodynamic loading of compressor blades.Tradit... Coanda jet flap is an effective flow control technique,which offers pressurized high streamwise velocity to eliminate the boundary layer flow separation and increase the aerodynamic loading of compressor blades.Traditionally,there is only single-jet flap on the blade suction side.A novel Coanda double-jet flap configuration combining the front-jet slot near the blade leading edge and the rear-jet slot near the blade trailing edge is proposed and investigated in this paper.The reference highly loaded compressor profile is the Zierke&Deutsch double-circular-arc airfoil with the diffusion factor of 0.66.Firstly,three types of Coanda jet flap configurations including front-jet,rear-jet and the novel double-jet flaps are designed based on the 2D flow fields in the highly loaded compressor blade passage.The Back Propagation Neural Network(BPNN)combined with the genetic algorithm(GA)is adopted to obtain the optimal geometry for each type of Coanda jet flap configuration.Numerical simulations are then performed to understand the effects of the three optimal Coanda jet flaps on the compressor airfoil performance.Results indicate all the three types of Coanda jet flaps effectively improve the aerodynamic performance of the highly loaded airfoil,and the Coanda double-jet flap behaves best in controlling the boundary layer flow separation.At the inlet flow condition with incidence angle of 5°,the total pressure loss coefficient is reduced by 52.5%and the static pressure rise coefficient is increased by 25.7%with Coanda double-jet flap when the normalized jet mass flow ratio of the front jet and the rear jet is equal to 1.5%and 0.5%,respectively.The impacts of geometric parameters and jet mass flow ratios on the airfoil aerodynamic performance are further analyzed.It is observed that the geometric design parameters of Coanda double-jet flap determine airfoil thickness and jet slot position,which plays the key role in supressing flow separation on the airfoil suction side.Furthermore,there exists an optimal combination of front-jet and rear-jet mass flow ratios to achieve the minimum flow loss at each incidence angle of incoming flow.These results indicate that Coanda double-jet flap combining the adjust of jet mass flow rate varying with the incidence angle of incoming flow would be a promising adaptive flow control technique. 展开更多
关键词 Coanda jet flap high loaded compressor active flow control aerodynamic performance
原文传递
Experimental and Theoretical Study of an Internally Cooled Liquid Desiccant Dehumidifier 被引量:1
15
作者 ZHENG Xin LU Yuan +2 位作者 WANG Bo ZHAO Lifeng XIAO Yunhan 《Journal of Thermal Science》 SCIE EI CAS CSCD 2023年第4期1684-1696,共13页
Liquid desiccant dehumidifiers are useful for simultaneously recovering heat and water from flue gas.Internally cooled dehumidifiers are generally superior to adiabatic dehumidifiers in terms of the consumption of the... Liquid desiccant dehumidifiers are useful for simultaneously recovering heat and water from flue gas.Internally cooled dehumidifiers are generally superior to adiabatic dehumidifiers in terms of the consumption of the desiccant and the size of the equipment required.This study examines the performance of a counter-flow dehumidifier through experiments and simulations under different operating conditions,and analyzes the moisture effectiveness and enthalpy effectiveness as performance indices.By applying correlations from the literature,the theoretical model can predict the performance of the dehumidifier within an acceptable range of accuracy.According to the experimental results,droplets were visible at a low desiccant flow rate when the velocity of the gas was above 4.88 m/s.Moreover,a higher cooling ratio and a higher temperature of the solution enhanced the effectiveness of the dehumidification.A temperature cross occurred between the gas and the solution when the mass transfer was sufficiently high,which reflects better heat transfer performance than the conventional convective heat exchanger. 展开更多
关键词 flue gas RECOVERY WATER HEAT internal cooling calcium chloride
原文传递
Optimal Design of Distributed Energy Resource Systems under Uncertainties Based on Two-Stage Robust Optimization 被引量:1
16
作者 LI Da ZHANG Shijie 《Journal of Thermal Science》 SCIE EI CAS CSCD 2021年第1期51-63,共13页
Distributed energy resource(DER)systems are widely used owing to their excellent economic and environmental performance.However,uncertainties in the system generate difficulties in the optimal design of DER systems.In... Distributed energy resource(DER)systems are widely used owing to their excellent economic and environmental performance.However,uncertainties in the system generate difficulties in the optimal design of DER systems.In practice,the distribution of uncertain parameters is generally unknown.In this work,a two-stage robust optimization(RO)model was proposed for the optimal design of DER systems considering uncertainties in renewable energy intensity,energy prices,and load demands.Three uncertainty sets(i.e.,the box,ellipsoid,and convex-hull uncertainty sets)were adopted to describe the distribution of uncertain parameters,and the proposed two-stage RO problem was solved using affine decision rules.A typical hospital in Lianyungang,Jiangsu Province,China,was selected as the case study object,and the effectiveness of the model was verified.The case study results showed that uncertainties in energy prices and load demands have a significant impact on system configuration and economic performance,and mainly affect the installed capacities of gas boilers,absorption chillers,and storages.Uncertainty set will affect the optimization results and an appropriate uncertainty set should be adopted to describe uncertainties precisely and increase accuracy of results. 展开更多
关键词 distributed energy resource optimal design two-stage robust optimization UNCERTAINTY uncertainty set
原文传递
Design Optimization and Analysis of Exit Rotor with Diffuser Passage based on Neural Network Surrogate Model and Entropy Generation Method 被引量:1
17
作者 JIN Yun GENG Shaojuan +2 位作者 LIU Shuaipeng NI Ming ZHANG Hongwu 《Journal of Thermal Science》 SCIE EI CAS CSCD 2023年第2期739-752,共14页
In this paper,a diffuser passage compressor design is introduced via optimization to improve the aerodynamic performance of the exit rotor in a multistage axial compressor.An in-house design optimization platform,base... In this paper,a diffuser passage compressor design is introduced via optimization to improve the aerodynamic performance of the exit rotor in a multistage axial compressor.An in-house design optimization platform,based on genetic algorithm and back propagation neural network surrogate model,is constructed to perform the optimization.The optimization parameters include diffusion angle of meridian passage,diffusion length of meridian passage,change of blade camber angle and blade number.The impacts of these design parameters on efficiency and stability improvement are analyzed based on the optimization database.Two optimized diffuser passage compressor designs are selected from the optimization solution set by comprehensively considering efficiency and stability of the rotor,and the influencing mechanisms on efficiency and stability are further studied.The simulation results show that the application of diffuser passage compressor design can improve the load coefficient by 12.1%and efficiency by 1.28%at the design mass flow rate condition,and the stall margin can be improved by 12.5%.According to the local entropy generation model analysis,despite the upper and lower endwall loss of the diffuser passage rotor are increased,the profile loss is reduced compared with the original rotor.The efficiency of the diffuser passage rotor can be influenced by both loss and load.At the near stall condition,decreasing flow blockage at blade root region can improve the stall margin of the diffuser passage rotor. 展开更多
关键词 exit rotor diffuser passage neural network surrogate model entropy generation rate flow blockage
原文传递
A Review on Theoretical and Numerical Research of Axial Compressor Surge 被引量:1
18
作者 ZHAO Hongliang DU Juan +2 位作者 ZHANG Wenqiang ZHANG Hongwu NIE Chaoqun 《Journal of Thermal Science》 SCIE EI CAS CSCD 2023年第1期254-263,共10页
Surge is an unstable operating condition of the aero-engine that can move the engine into a destabilized state and cause devastating damage.One of the most popular topics in the academic and industrial communities is ... Surge is an unstable operating condition of the aero-engine that can move the engine into a destabilized state and cause devastating damage.One of the most popular topics in the academic and industrial communities is to figure out the mechanism of the surge and withdraw from the surge safely.Based on rig test results and practical data from engine operation,various theories of surge mechanisms have been proposed by researchers,and some classical analytical models have been developed for modelling and prediction.In recent years,with the rapid development of numerical simulation and the improvement of computational capability,computational fluid dynamics(CFD)has been widely applied to the investigation of axial compressor surge events.In this review,the principles and general characteristics of the surge phenomenon are first introduced.Subsequently,the main theoretical models and CFD simulations are presented,and their advantages and disadvantages are discussed.In conclusion,we have proposed potential improvements and future technical routes for the surge phenomenon.The purpose of this paper is to provide a valuable reference for surge studies on axial compressors. 展开更多
关键词 axial compressor SURGE THEORETICAL NUMERICAL CFD
原文传递
3D full-loop simulation and experimental verification of gas-solid flow hydrodynamics in a dense circulating fluidized bed 被引量:2
19
作者 Xueyao Wang Xuezhi Wu +2 位作者 Fulin Lei Jing Lei Yunhan Xiao 《Particuology》 SCIE EI CAS CSCD 2014年第5期218-226,共9页
Because of their advantages of high efficiency and low cost, numerical research methods for large-scale circulating fluidized bed (CFB) apparatus are gaining ever more importance. This article presents a numer- ical... Because of their advantages of high efficiency and low cost, numerical research methods for large-scale circulating fluidized bed (CFB) apparatus are gaining ever more importance. This article presents a numer- ical study of gas-solid flow dynamics using the Eulerian granular multiphase model with a drag coefficient correction based on the energy-minimization multi-scale (EMMS) model. A three-dimensional, full-loop, time-dependent simulation of the hydrodynamics of a dense CFB apparatus is performed. The process parameters (e.g., operating and initial conditions) are provided in accordance with the real experiment to enhance the accuracy of the simulation. The axial profiles of the averaged solid volume fractions and the solids flux at the outlet of the cyclone are in reasonable agreement with experimental data, thereby verifying the applicability of the mathematical and physical models. As a result, the streamline in the riser and standpipe as well as the solids distribution contours at the cross sections is analyzed. Computational fluid dynamics (CFD) serves as a basis for CFB modeling to help resolve certain issues long in dispute but difficult to address experimentally. The results of this study provide the basis of a general approach to describing dynamic simulations of gas-solid flows. 展开更多
关键词 Gas-solid flow Circulating fluidized bed EMMS method 3D full-loop simulation
原文传递
Synergistic Effect of Alkali Metals in Coal and Introduced CaO during Steam Gasification
20
作者 LIU Yang YANG Xinfang +1 位作者 LEI Fulin XIAO Yunhan 《Journal of Thermal Science》 SCIE EI CAS CSCD 2020年第6期1627-1637,共11页
The steam gasification kinetics of Zhundong raw coal and the washed coal by deionized water or hydrochloric acid with/without addition of CaO were tested by thermogravimetric analyzer(TGA)at medium temperatures(650℃ ... The steam gasification kinetics of Zhundong raw coal and the washed coal by deionized water or hydrochloric acid with/without addition of CaO were tested by thermogravimetric analyzer(TGA)at medium temperatures(650℃ to 800℃).The cation contents of potassium and sodium in samples were determined by Inductively Coupled Plasma Optical Emission Spectrometer(ICP-OES).The Brunauer-Emmett-Teller(BET)surface area of the samples was tested by N2 adsorption,and the morphologies of the samples were characterized by scanning electron microscopy(SEM).Experimental results showed that the organic sodium was the main catalyst for the gasification of the pyrolysis char,and the gasification rate of the char could be enhanced further with the introduction of CaO.The inherent alkali metals in coal and the introduced CaO showed a synergistic effect that occurred obviously above 735℃.The char conversion curves with or without CaO were fitted by the modified volumetric model(MVM).The calculated results indicated that the addition of CaO increased the pre-exponential factor obviously,but made little changes on the activation energy.It was proposed that the synergistic effect was resulted from the co-melting of the sodium and CaO,which facilitated the migration of the catalyst ions and the generation of C(O)intermediates for the gasification. 展开更多
关键词 Zhundong coal alkali metals CAO synergistic effect steam gasification
原文传递
上一页 1 2 3 下一页 到第
使用帮助 返回顶部