Twenty-eight sweet sorghum (Sorghum bicolor (L.) Moench) genotypes of the different ecological and geographic origins: Kazakhstan, Russia, India, Uzbekistan, and China were tested in the high latitude rainfed con...Twenty-eight sweet sorghum (Sorghum bicolor (L.) Moench) genotypes of the different ecological and geographic origins: Kazakhstan, Russia, India, Uzbekistan, and China were tested in the high latitude rainfed conditions of northern Kazakhstan. The genotypes demonstrated high biomass production (up to 100 t'ha1 and more). The genotypes ripening to full reproductive seeds were selected for seed production and introduction in the northern Kazakhstan. Lactic acid bacteria Lactobacillus plantarum S-1, Streptococcus thermophilus F-1 and Lactococcus lactis F-4 essentially enhance the fermentation process, suppressing undesirable microbiological processes, reducing the loss of nutrient compounds, accelerating in 2 times maturation ensilage process and providing higher quality of the feed product.展开更多
Drought is considered one of the leading abiotic constraints to agricultural crop production globally.Present study was conducted to assess the effects of different drought treatments(viz.Control,10%PEG,and 20%PEG)on ...Drought is considered one of the leading abiotic constraints to agricultural crop production globally.Present study was conducted to assess the effects of different drought treatments(viz.Control,10%PEG,and 20%PEG)on seed germination,germination indices,seedling traits,and drought tolerance indices of sesame.Our results showed that maximum reduction in the studied parameters was observed at higher PEG concentration(i.e.,20%PEG).As compared to control,the drought treatments viz.10%and 20%PEG decreased the values for germination indices,such as germination percentage,coefficient of variation of germination time,germination index,and seedling vigor index.Similarly,for seedling traits,the values were decreased for root length,shoot length,root shoot ratio,root fresh weight,shoot fresh weight,root dry weight and shoot dry weight under 10%and 20%PEG treatments significantly in comparison with control.Furthermore,relative to control,the values for drought tolerance indices,such as germination drought tolerance index,root length drought tolerance index,shoot length drought tolerance index,total seedling length drought tolerance index,root fresh weight drought tolerance index,shoot fresh weight drought tolerance index,total fresh weight drought tolerance index,root dry weight drought tolerance index,shoot dry weight drought tolerance index and total dry weight drought tolerance index were also reduced under 10%and 20%PEG treatments,respectively.Our results confirms that drought impact on seed germination and seedling traits could be quantified by using different indices which can further help to design drought adaptation and mitigation strategies.Based on these results it can be concluded that germination indices,seedling traits,and drought tolerance indices have great potential to simulate drought stress impacts on different crop traits thus they should be used in all kinds of stress related studies.展开更多
Late Embryogenesis Abundant (LEA) proteins, a group of hydrophilic proteins, have been linked to survival in plants and animals in periods of stress, putatively through safeguarding enzymatic function and prevention o...Late Embryogenesis Abundant (LEA) proteins, a group of hydrophilic proteins, have been linked to survival in plants and animals in periods of stress, putatively through safeguarding enzymatic function and prevention of aggregation in times of dehydration/heat. Yet despite decades of effort, the molecular-level mechanisms defining this protective function remain unknown. In this paper, we summarize and review research discoveries of the classification of the LEA protein groups based on their amino acid sequence similarity and on the presence of distinctive conserved motifs. Moreover, we focus on high correlation between their accumulation and water deficit, reinforcing their functional relevance under abiotic stresses. We also discuss the biochemical properties of LEA proteins arising from their hydrophilic nature and by amino acid composition. Although significant similarities have not been found between the members of the different groups, a unifying and outstanding feature of most of them is their high hydrophilicity and high content of glycine. Therefore, we have highlighted the biotechnological applications of LEA genes, and the effects of over-expressing LEA genes from all LEA groups from different species of origin into different plant hosts. Apart from agronomical purposes, LEA proteins could be useful for other biotechnological applications in relation to their capacity to prevent aggregation of proteins.展开更多
Sustainable food production in the changing climate and dwindling water resources in the Global Dry Land Alliance(GDLA)member countries is a real challenge,especially when considering marginal lands in dryland systems...Sustainable food production in the changing climate and dwindling water resources in the Global Dry Land Alliance(GDLA)member countries is a real challenge,especially when considering marginal lands in dryland systems.The definition of marginal land is very vague and defined from different perspectives(pragmatism about marginal lands).Dryland itself indicates"marginality"due to water stress.In general,the abandoned agriculture land where food production is not economical,and has low inherent productivity potential is considered marginal;however,a land may be marginal for agriculture but vital for grazing.In this paper attempts have been made to give review of literature(water stress,extent of marginal saline lands,marginality).Policy matters(development of soil,water and agriculture strategies)that GDLA and member countries should consider for future sustainable food production in their countries,including but not limited to,assessment of land resources for agriculture potential,defining,mapping and characterizing marginal lands,and use of innovative technologies(conservation agriculture,climate smart agriculture,integrated soil reclamation program and capacity building)for food production,are discussed.The international perception(FAO,UNEP,CGIAR)on marginal lands is also described.An innovative approach of using national biocapacity and ecological footprint is used to assess marginality of GDLA member countries.Ecological overshoot(using 1.5 earth planets)and biocapacity debtor and creditor countries are highlighted.Challenges and best management practices for food production in marginal lands are included.Other important issues,like leasing land abroad,GDLA strategic food reserves and best management practices,innovative ideas for food production are shared.Finally recommendations are drafted for actions by GDLA,its member countries and the partners.展开更多
文摘Twenty-eight sweet sorghum (Sorghum bicolor (L.) Moench) genotypes of the different ecological and geographic origins: Kazakhstan, Russia, India, Uzbekistan, and China were tested in the high latitude rainfed conditions of northern Kazakhstan. The genotypes demonstrated high biomass production (up to 100 t'ha1 and more). The genotypes ripening to full reproductive seeds were selected for seed production and introduction in the northern Kazakhstan. Lactic acid bacteria Lactobacillus plantarum S-1, Streptococcus thermophilus F-1 and Lactococcus lactis F-4 essentially enhance the fermentation process, suppressing undesirable microbiological processes, reducing the loss of nutrient compounds, accelerating in 2 times maturation ensilage process and providing higher quality of the feed product.
文摘Drought is considered one of the leading abiotic constraints to agricultural crop production globally.Present study was conducted to assess the effects of different drought treatments(viz.Control,10%PEG,and 20%PEG)on seed germination,germination indices,seedling traits,and drought tolerance indices of sesame.Our results showed that maximum reduction in the studied parameters was observed at higher PEG concentration(i.e.,20%PEG).As compared to control,the drought treatments viz.10%and 20%PEG decreased the values for germination indices,such as germination percentage,coefficient of variation of germination time,germination index,and seedling vigor index.Similarly,for seedling traits,the values were decreased for root length,shoot length,root shoot ratio,root fresh weight,shoot fresh weight,root dry weight and shoot dry weight under 10%and 20%PEG treatments significantly in comparison with control.Furthermore,relative to control,the values for drought tolerance indices,such as germination drought tolerance index,root length drought tolerance index,shoot length drought tolerance index,total seedling length drought tolerance index,root fresh weight drought tolerance index,shoot fresh weight drought tolerance index,total fresh weight drought tolerance index,root dry weight drought tolerance index,shoot dry weight drought tolerance index and total dry weight drought tolerance index were also reduced under 10%and 20%PEG treatments,respectively.Our results confirms that drought impact on seed germination and seedling traits could be quantified by using different indices which can further help to design drought adaptation and mitigation strategies.Based on these results it can be concluded that germination indices,seedling traits,and drought tolerance indices have great potential to simulate drought stress impacts on different crop traits thus they should be used in all kinds of stress related studies.
基金supported jointly by grants from the Ministry of Higher Education and Scientific Research,Tunisia and the Agence Espagnole de cooperation Internationale(AECI)Officina Tecnica de Cooperacion,Spain
文摘Late Embryogenesis Abundant (LEA) proteins, a group of hydrophilic proteins, have been linked to survival in plants and animals in periods of stress, putatively through safeguarding enzymatic function and prevention of aggregation in times of dehydration/heat. Yet despite decades of effort, the molecular-level mechanisms defining this protective function remain unknown. In this paper, we summarize and review research discoveries of the classification of the LEA protein groups based on their amino acid sequence similarity and on the presence of distinctive conserved motifs. Moreover, we focus on high correlation between their accumulation and water deficit, reinforcing their functional relevance under abiotic stresses. We also discuss the biochemical properties of LEA proteins arising from their hydrophilic nature and by amino acid composition. Although significant similarities have not been found between the members of the different groups, a unifying and outstanding feature of most of them is their high hydrophilicity and high content of glycine. Therefore, we have highlighted the biotechnological applications of LEA genes, and the effects of over-expressing LEA genes from all LEA groups from different species of origin into different plant hosts. Apart from agronomical purposes, LEA proteins could be useful for other biotechnological applications in relation to their capacity to prevent aggregation of proteins.
文摘Sustainable food production in the changing climate and dwindling water resources in the Global Dry Land Alliance(GDLA)member countries is a real challenge,especially when considering marginal lands in dryland systems.The definition of marginal land is very vague and defined from different perspectives(pragmatism about marginal lands).Dryland itself indicates"marginality"due to water stress.In general,the abandoned agriculture land where food production is not economical,and has low inherent productivity potential is considered marginal;however,a land may be marginal for agriculture but vital for grazing.In this paper attempts have been made to give review of literature(water stress,extent of marginal saline lands,marginality).Policy matters(development of soil,water and agriculture strategies)that GDLA and member countries should consider for future sustainable food production in their countries,including but not limited to,assessment of land resources for agriculture potential,defining,mapping and characterizing marginal lands,and use of innovative technologies(conservation agriculture,climate smart agriculture,integrated soil reclamation program and capacity building)for food production,are discussed.The international perception(FAO,UNEP,CGIAR)on marginal lands is also described.An innovative approach of using national biocapacity and ecological footprint is used to assess marginality of GDLA member countries.Ecological overshoot(using 1.5 earth planets)and biocapacity debtor and creditor countries are highlighted.Challenges and best management practices for food production in marginal lands are included.Other important issues,like leasing land abroad,GDLA strategic food reserves and best management practices,innovative ideas for food production are shared.Finally recommendations are drafted for actions by GDLA,its member countries and the partners.