Gallium nitride(GaN)-based devices have significant potential for space applications.However,the mechanisms of radiation damage to the device,particularly from strong ionizing radiation,remains unknown.This study inve...Gallium nitride(GaN)-based devices have significant potential for space applications.However,the mechanisms of radiation damage to the device,particularly from strong ionizing radiation,remains unknown.This study investigates the effects of radiation on p-gate AlGaN/GaN high-electron-mobility transistors(HEMTs).Under a high voltage,the HEMT leakage current increased sharply and was accompanied by a rapid increase in power density that caused"thermal burnout"of the devices.In addition,a burnout signature appeared on the surface of the burned devices,proving that a single-event burnout effect occurred.Additionally,degradation,including an increase in the on-resistance and a decrease in the breakdown voltage,was observed in devices irradiated with high-energy heavy ions and without bias.The latent tracks induced by heavy ions penetrated the heterojunction interface and extended into the GaN layer.Moreover,a new type of N_(2)bubble defect was discovered inside the tracks using Fresnel analysis.The accumulation of N_(2)bubbles in the heterojunction and buffer layers is more likely to cause leakage and failure.This study indicates that electrical stress accelerates the failure rate and that improving heat dissipation is an effective reinforcement method for GaN-based devices.展开更多
The electrical characteristics and microstructures ofβ-Ga_(2)O_(3) Schottky barrier diode(SBD)devices irradiated with swift heavy ions(2096 MeV Ta ions)have been studied.It was found thatβ-Ga_(2)O_(3) SBD devices sh...The electrical characteristics and microstructures ofβ-Ga_(2)O_(3) Schottky barrier diode(SBD)devices irradiated with swift heavy ions(2096 MeV Ta ions)have been studied.It was found thatβ-Ga_(2)O_(3) SBD devices showed the reliability degradation after irradiation,including turn-on voltage Von,on-resistance Ron,ideality factor n,and the reverse leakage current density Jr.In addition,the carrier concentration of the drift layer was decreased significantly and the calculated carrier removal rates were 5×10^(6)-1.3×10^(7)cm^(-1).Latent tracks induced by swift heavy ions were observed visually in the wholeβ-Ga2O3 matrix.Furthermore,crystal structure of tracks was amorphized completely.The latent tracks induced by Ta ions bombardments were found to be the reason for the decrease in carrier mobility and carrier concentration.Eventually,these defects caused the degradation of electrical characteristics of the devices.In terms of the carrier removal rates,theβ-Ga_(2)O_(3) SBD devices were more sensitive to swift heavy ions irradiation than SiC and GaN devices.展开更多
The dynamics of granular material discharging from a cuboid but thin hopper,including the hopper flow and granular jet,are investigated via discrete element method(DEM)simulations.The slot width is varied to study its...The dynamics of granular material discharging from a cuboid but thin hopper,including the hopper flow and granular jet,are investigated via discrete element method(DEM)simulations.The slot width is varied to study its influence on the flow.It is found the flow in the cuboid hopper has similarity with the flow in two-dimensional(2D)hopper.When the slot width is large,the flowrate is higher than the predicted value from Beverloo’s law and the velocity distribution is not Gaussian-like.For granular jet,there is a transition with varying slot width.For large slot width,there is a dense core in the jet and the variations of velocities and density are relatively small.Finally,the availability of continuum model is assessed and the results show that the performance with large slot width is better than that with small slot width.展开更多
AlGaN/GaN high electron mobility transistors(HEMTs)were irradiated with heavy ions at various fluences.After irradiation by 2.1 GeV^(181) Ta^(32+) ions,the electrical characteristics of the devices significantly decre...AlGaN/GaN high electron mobility transistors(HEMTs)were irradiated with heavy ions at various fluences.After irradiation by 2.1 GeV^(181) Ta^(32+) ions,the electrical characteristics of the devices significantly decreased.The threshold voltage shifted positively by approximately 25%and the saturation currents decreased by approximately 14%.Defects were induced in the band gap and the interface between the gate and barrier acted as tunneling sites,which increased the gate current tunneling probability.According to the pulsed output characteristics,the amount of current collapse significantly increased and more surface state traps were introduced after heavy ion irradiation.The time constants of the induced surface traps were mainly less than 10μs.展开更多
Graphene and thin graphite films deposited on SiO2/Si are irradiated by swift heavy ions(209Bi, 9.5 Me V/u) with the fluences in a range of 1011ions/cm2–1012ions/cm2 at room temperature. Both pristine and irradiated ...Graphene and thin graphite films deposited on SiO2/Si are irradiated by swift heavy ions(209Bi, 9.5 Me V/u) with the fluences in a range of 1011ions/cm2–1012ions/cm2 at room temperature. Both pristine and irradiated samples are investigated by Raman spectroscopy. For pristine graphite films, the 'blue shift' of 2D bond and the 'red shift' of G bond with the decrease of thickness are found in the Raman spectra. For both irradiated graphene and thin graphite films, the disorder-induced D peak and D' peak are detected at the fluence above a threshold Φth. The thinner the film, the lower the Φthis. In this work, the graphite films thicker than 60 nm reveal defect free via the absence of a D bond signal under the swift heavy ion irradiation till the fluence of 2.6 × 1012ions/cm2. For graphite films thinner than 6 nm, the area ratios between D peak and G peak increase sharply with reducing film thickness. It concludes that it is much easier to induce defects in thinner films than in thicker ones by swift heavy ions. The intensities of the D peak and D' peak increase with increasing ion fluence, which predicts the continuous impacting of swift heavy ions can lead to the increasing of defects in samples. Different defect types are detected in graphite films of different thickness values. The main defect types are discussed via the various intensity ratios between the D peak and D' peak(HD/HD).展开更多
We investigate the effect of ion irradiation on MgB_(2) thin films with small grains of approximately 122 nm and 140 nm.The flux pinning by grain boundaries is insignificant in the pristine MgB_(2) films due to good i...We investigate the effect of ion irradiation on MgB_(2) thin films with small grains of approximately 122 nm and 140 nm.The flux pinning by grain boundaries is insignificant in the pristine MgB_(2) films due to good inter-grain connectivity,but is significantly improved after 120-keV Mn-ion irradiation.The scaling behavior of the flux pinning force density for the ion-irradiated MgB_(2) thin films with nanoscale grains demonstrates the predominance of pinning by grain boundaries,in contrast to the single-crystalline MgB_(2) films where normal point pinning was dominant after low-energy ion irradiation.These results suggest that irradiation-induced defects can accumulate near the grain boundaries in metallic MgB_(2) superconductors.展开更多
β-Ga_(2)O_(3) has received extensive attention as power electronics and UV optoelectronics because of its ultra-wide band gap, excellent chemical and thermal stability. In this work。
Carbon-based semiconductor is regarded as one of the disruptive technologies in the post-Moore era,which is expected to break through the bottleneck of traditional semiconductor devices and replace traditional silicon...Carbon-based semiconductor is regarded as one of the disruptive technologies in the post-Moore era,which is expected to break through the bottleneck of traditional semiconductor devices and replace traditional silicon integrated circuits in the future.However,carbon-based devices pose new challenges to the investigation of radiation damage e ects of the devices due to new low-dimensional device materials,new device structures,more complex circuits and physical mechanisms^([1-4]).展开更多
The GaN-based power devices were irradiated with swift heavy ions(Xe and Bi)and under several test conditions.Experimental studies on the degradation of device electrical parameters under non-electrical stress and the...The GaN-based power devices were irradiated with swift heavy ions(Xe and Bi)and under several test conditions.Experimental studies on the degradation of device electrical parameters under non-electrical stress and the leakage current and single event burnout effects of the power devices caused by the synergy of electrical stress and irradiation have been carried out,respectively.It was con rmed that the single event burnout related failure mode was excluded.The failure modes were discussed in terms of their failure mechanisms.展开更多
Polycrystalline samples of La2Zr2O7 pyrochlore are irradiated by different energetic heavy ions to investigate the dependence of the vibrational mode variations on the irradiation parameters. The applied electronic en...Polycrystalline samples of La2Zr2O7 pyrochlore are irradiated by different energetic heavy ions to investigate the dependence of the vibrational mode variations on the irradiation parameters. The applied electronic energy loss(d E/dx)e increases from about 5.2 keV/nm to 39.6 keV/nm. The ion fluence ranges from 1× 10^11 ions/cm^2 to 6× 10^15 ions/cm^2.Vibrational modes of irradiated pyrochlore are analyzed by using Raman spectrum. Infrared active modes F1 uat 192, 308,and 651 cm^-1 appear in Raman spectra, and the F2 gband at 265 cm-1 rises up due to the irradiation by 200-MeV Kr ions with(d E/dx)e of 16.0 keV/nm. Differently, for the pyrochlore irradiated by 1750-MeV Bi ions with(d E/dx)e of 39.6 keV/nm, in spite of the appearance of infrared active mode F1 u651 cm^-1, the amorphous structure occurs according to the vibrational mode variations of pyrochlore irradiated at higher ion fluences. Amorphous tracks are observed in the samples, which confirm the occurrence of pyrochlore–amorphous transition in pyrochlore irradiated with(d E/dx)e of 39.6 keV/nm.展开更多
Two-layer monoclinic (2M) muscovite mica sheets with a thickness of 12 μm are irradiated with Sn ions at room temperature with electronic energy loss (dE/dx)e of 14.7 keV/nm. The ion fiuence is varied between 1 &...Two-layer monoclinic (2M) muscovite mica sheets with a thickness of 12 μm are irradiated with Sn ions at room temperature with electronic energy loss (dE/dx)e of 14.7 keV/nm. The ion fiuence is varied between 1 ×10^11 and 1 ×10^13 ions/cm^2. Structural transition in irradiated mica is investigated by x-ray diffraction (XRD). The main diffraction peaks shift to the high angles, and the inter-planar distance decreases due to swift heavy ion (SHI) irradiation. Dehydration takes place in mica during SHI irradiation and mica with one-layer monoclinic (1M) structure is thought to be generated in 2M mica after SHI irradiation. In addition, micro stress and damage cross section in irradiated mica are analyzed according to XRD data. High resolution transmission electron microscopy (HRTEM) is used on the irradiated mica to obtain the detailed information about the latent tracks and structural modifications directly. The latent track in mica presents an amorphous zone surrounded by strain contrast shell, which is associated with the residual stress in irradiated mica.展开更多
The asymptotic normalization coefficients (ANCs) of the virtual decay 16N -- 15N + n are extracted from the 15N(7Li, 6Li)16N reaction populating the ground and first three excited states in 16N. The root-mean-squ...The asymptotic normalization coefficients (ANCs) of the virtual decay 16N -- 15N + n are extracted from the 15N(7Li, 6Li)16N reaction populating the ground and first three excited states in 16N. The root-mean-square (rms) radii of the valence neutron in these four low-lying 16N states are then derived by using the ANCs. The probabilities of the valence neutron staying out of the core potentials are found to be 31%± 8%, 58%± 12%, 3270 ± 8%, and 60% ± 12%. The present results support the conclusion that a one-neutron halo may be formed in the 16N first and third excited states, while the ground and second excited states do not have a one-neutron halo structure. However, the core excitation effect has a strong influence on the one-neutron halo structure of the ground and first excited states in 16N.展开更多
More recently,we reported on the first observation of fine structure of latent tracks in rutile TiO_(2),which changes from cylinder to dumbell-shape and then to sandglass shape as a function of the ion path length(Fig...More recently,we reported on the first observation of fine structure of latent tracks in rutile TiO_(2),which changes from cylinder to dumbell-shape and then to sandglass shape as a function of the ion path length(Fig.1(a))[1].展开更多
The Back-n white neutron source(known as Back-n)is based on back-streaming neutrons from the spallation target at the China Spallation Neutron Source(CSNS).With its excellent beam properties,e.g.,a neutron flux of app...The Back-n white neutron source(known as Back-n)is based on back-streaming neutrons from the spallation target at the China Spallation Neutron Source(CSNS).With its excellent beam properties,e.g.,a neutron flux of approximately 1.8×107 n/cm2/s at 55 m from the spallation target,energy range spanning from 0.5 eV to 200 MeV,and time-of-flight resolution of a few per thousand,along with the equipped physical spectrometers,Back-n is considered to be among the best facilities in the world for carrying out nuclear data measurements.Since its completion and commencement of operation in May 2018,five types of cross-section measurements concerning neutron capture cross-sections,fission cross-sections,total cross-sections,light charged particle emissions,in-beam gamma spectra,and more than forty nuclides have been measured.This article presents an overview of the experimental setup and result analysis on the neutron-induced cross-section measurements and gamma spectroscopy at Back-n in the initial years.展开更多
基金supported by the National Natural Science Foundation of China(Nos.12035019,62234013,12205350,12075290,12175287)the China National Postdoctoral Program for Innovative Talents(BX20200340)+1 种基金the fund of Innovation Center of Radiation Application(No.KFZC2022020601)the Chinese Academy of Sciences(CAS)“Light of West China"Program hosted by Jian Zeng.
文摘Gallium nitride(GaN)-based devices have significant potential for space applications.However,the mechanisms of radiation damage to the device,particularly from strong ionizing radiation,remains unknown.This study investigates the effects of radiation on p-gate AlGaN/GaN high-electron-mobility transistors(HEMTs).Under a high voltage,the HEMT leakage current increased sharply and was accompanied by a rapid increase in power density that caused"thermal burnout"of the devices.In addition,a burnout signature appeared on the surface of the burned devices,proving that a single-event burnout effect occurred.Additionally,degradation,including an increase in the on-resistance and a decrease in the breakdown voltage,was observed in devices irradiated with high-energy heavy ions and without bias.The latent tracks induced by heavy ions penetrated the heterojunction interface and extended into the GaN layer.Moreover,a new type of N_(2)bubble defect was discovered inside the tracks using Fresnel analysis.The accumulation of N_(2)bubbles in the heterojunction and buffer layers is more likely to cause leakage and failure.This study indicates that electrical stress accelerates the failure rate and that improving heat dissipation is an effective reinforcement method for GaN-based devices.
基金the National Natural Science Foundation of China(Grant Nos.12035019,11690041,and 12075290)China National Postdoctoral Program for Innovative Talents(Grant No.BX20200340)+1 种基金China Postdoctoral Science Foundation(Grant No.2020M673539)CAS"Light of West China"Program,and the Youth Innovation Promotion Association of Chinese Academy of Sciences(CAS)(Grant No.2020412).
文摘The electrical characteristics and microstructures ofβ-Ga_(2)O_(3) Schottky barrier diode(SBD)devices irradiated with swift heavy ions(2096 MeV Ta ions)have been studied.It was found thatβ-Ga_(2)O_(3) SBD devices showed the reliability degradation after irradiation,including turn-on voltage Von,on-resistance Ron,ideality factor n,and the reverse leakage current density Jr.In addition,the carrier concentration of the drift layer was decreased significantly and the calculated carrier removal rates were 5×10^(6)-1.3×10^(7)cm^(-1).Latent tracks induced by swift heavy ions were observed visually in the wholeβ-Ga2O3 matrix.Furthermore,crystal structure of tracks was amorphized completely.The latent tracks induced by Ta ions bombardments were found to be the reason for the decrease in carrier mobility and carrier concentration.Eventually,these defects caused the degradation of electrical characteristics of the devices.In terms of the carrier removal rates,theβ-Ga_(2)O_(3) SBD devices were more sensitive to swift heavy ions irradiation than SiC and GaN devices.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11705256 and 11905272)the National Postdoctoral Program for Innovative Talents,China(Grant No.BX201700258)+1 种基金Young Scholar of CAS“Light of West China”Program for Guanghui Yang(Grant No.2018-98)the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDA21010202)。
文摘The dynamics of granular material discharging from a cuboid but thin hopper,including the hopper flow and granular jet,are investigated via discrete element method(DEM)simulations.The slot width is varied to study its influence on the flow.It is found the flow in the cuboid hopper has similarity with the flow in two-dimensional(2D)hopper.When the slot width is large,the flowrate is higher than the predicted value from Beverloo’s law and the velocity distribution is not Gaussian-like.For granular jet,there is a transition with varying slot width.For large slot width,there is a dense core in the jet and the variations of velocities and density are relatively small.Finally,the availability of continuum model is assessed and the results show that the performance with large slot width is better than that with small slot width.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.12035019 and 11690042)Science Challenge Projects(Grant No.TZ2018004)。
文摘AlGaN/GaN high electron mobility transistors(HEMTs)were irradiated with heavy ions at various fluences.After irradiation by 2.1 GeV^(181) Ta^(32+) ions,the electrical characteristics of the devices significantly decreased.The threshold voltage shifted positively by approximately 25%and the saturation currents decreased by approximately 14%.Defects were induced in the band gap and the interface between the gate and barrier acted as tunneling sites,which increased the gate current tunneling probability.According to the pulsed output characteristics,the amount of current collapse significantly increased and more surface state traps were introduced after heavy ion irradiation.The time constants of the induced surface traps were mainly less than 10μs.
基金supported by the National Natural Science Foundation of China(Grant Nos.11179003,10975164,10805062,11005134,and 11275237)
文摘Graphene and thin graphite films deposited on SiO2/Si are irradiated by swift heavy ions(209Bi, 9.5 Me V/u) with the fluences in a range of 1011ions/cm2–1012ions/cm2 at room temperature. Both pristine and irradiated samples are investigated by Raman spectroscopy. For pristine graphite films, the 'blue shift' of 2D bond and the 'red shift' of G bond with the decrease of thickness are found in the Raman spectra. For both irradiated graphene and thin graphite films, the disorder-induced D peak and D' peak are detected at the fluence above a threshold Φth. The thinner the film, the lower the Φthis. In this work, the graphite films thicker than 60 nm reveal defect free via the absence of a D bond signal under the swift heavy ion irradiation till the fluence of 2.6 × 1012ions/cm2. For graphite films thinner than 6 nm, the area ratios between D peak and G peak increase sharply with reducing film thickness. It concludes that it is much easier to induce defects in thinner films than in thicker ones by swift heavy ions. The intensities of the D peak and D' peak increase with increasing ion fluence, which predicts the continuous impacting of swift heavy ions can lead to the increasing of defects in samples. Different defect types are detected in graphite films of different thickness values. The main defect types are discussed via the various intensity ratios between the D peak and D' peak(HD/HD).
基金the support of the accelerator group and operators of KOMAC (KAERI (C.K.,J.S.))Project supported by the National Research Foundation (NRF)of Korea through a grant funded by the Korean Ministry of Science and ICT (Grant No.2021R1A2C2010925 (T.P.,Y.H.,J.S.))+2 种基金the Basic Science Research Program through the NRF of Korea funded by the Ministry of Education (Grant Nos.NRF-2019R1F1A1055284 (J.M.L.,W.N.K.)and NRF2021R1I1A1A01043885 (S.G.J.,Y.H.))the National Natural Science Foundation of China (Grant Nos.12035019 (J.L.))the Chinese Scholarship Council (CSC)for fellowship support。
文摘We investigate the effect of ion irradiation on MgB_(2) thin films with small grains of approximately 122 nm and 140 nm.The flux pinning by grain boundaries is insignificant in the pristine MgB_(2) films due to good inter-grain connectivity,but is significantly improved after 120-keV Mn-ion irradiation.The scaling behavior of the flux pinning force density for the ion-irradiated MgB_(2) thin films with nanoscale grains demonstrates the predominance of pinning by grain boundaries,in contrast to the single-crystalline MgB_(2) films where normal point pinning was dominant after low-energy ion irradiation.These results suggest that irradiation-induced defects can accumulate near the grain boundaries in metallic MgB_(2) superconductors.
文摘β-Ga_(2)O_(3) has received extensive attention as power electronics and UV optoelectronics because of its ultra-wide band gap, excellent chemical and thermal stability. In this work。
基金West Light Foundation of Chinese Academy of Sciences,User Training Program of HIRFL(HIR20PY008)National Natural Science Foundation of China(12035019,11690041)。
文摘Carbon-based semiconductor is regarded as one of the disruptive technologies in the post-Moore era,which is expected to break through the bottleneck of traditional semiconductor devices and replace traditional silicon integrated circuits in the future.However,carbon-based devices pose new challenges to the investigation of radiation damage e ects of the devices due to new low-dimensional device materials,new device structures,more complex circuits and physical mechanisms^([1-4]).
文摘The GaN-based power devices were irradiated with swift heavy ions(Xe and Bi)and under several test conditions.Experimental studies on the degradation of device electrical parameters under non-electrical stress and the leakage current and single event burnout effects of the power devices caused by the synergy of electrical stress and irradiation have been carried out,respectively.It was con rmed that the single event burnout related failure mode was excluded.The failure modes were discussed in terms of their failure mechanisms.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11705246,11675233,and 11690041)the Natural Science Foundation of Gansu Province,China(Grant No.17JR5RA316)
文摘Polycrystalline samples of La2Zr2O7 pyrochlore are irradiated by different energetic heavy ions to investigate the dependence of the vibrational mode variations on the irradiation parameters. The applied electronic energy loss(d E/dx)e increases from about 5.2 keV/nm to 39.6 keV/nm. The ion fluence ranges from 1× 10^11 ions/cm^2 to 6× 10^15 ions/cm^2.Vibrational modes of irradiated pyrochlore are analyzed by using Raman spectrum. Infrared active modes F1 uat 192, 308,and 651 cm^-1 appear in Raman spectra, and the F2 gband at 265 cm-1 rises up due to the irradiation by 200-MeV Kr ions with(d E/dx)e of 16.0 keV/nm. Differently, for the pyrochlore irradiated by 1750-MeV Bi ions with(d E/dx)e of 39.6 keV/nm, in spite of the appearance of infrared active mode F1 u651 cm^-1, the amorphous structure occurs according to the vibrational mode variations of pyrochlore irradiated at higher ion fluences. Amorphous tracks are observed in the samples, which confirm the occurrence of pyrochlore–amorphous transition in pyrochlore irradiated with(d E/dx)e of 39.6 keV/nm.
基金supported by the National Natural Science Foundation of China(Grant Nos.11675233 and 11505243)
文摘Two-layer monoclinic (2M) muscovite mica sheets with a thickness of 12 μm are irradiated with Sn ions at room temperature with electronic energy loss (dE/dx)e of 14.7 keV/nm. The ion fiuence is varied between 1 ×10^11 and 1 ×10^13 ions/cm^2. Structural transition in irradiated mica is investigated by x-ray diffraction (XRD). The main diffraction peaks shift to the high angles, and the inter-planar distance decreases due to swift heavy ion (SHI) irradiation. Dehydration takes place in mica during SHI irradiation and mica with one-layer monoclinic (1M) structure is thought to be generated in 2M mica after SHI irradiation. In addition, micro stress and damage cross section in irradiated mica are analyzed according to XRD data. High resolution transmission electron microscopy (HRTEM) is used on the irradiated mica to obtain the detailed information about the latent tracks and structural modifications directly. The latent track in mica presents an amorphous zone surrounded by strain contrast shell, which is associated with the residual stress in irradiated mica.
基金Supported by National Natural Science Foundation of China(11505117,11490560,11475264,11321064,11375269)Natural Science Foundation of Guangdong Province(2015A030310012)+1 种基金973 program of China(2013CB834406)National key Research and Development Province(2016YFA0400502)
文摘The asymptotic normalization coefficients (ANCs) of the virtual decay 16N -- 15N + n are extracted from the 15N(7Li, 6Li)16N reaction populating the ground and first three excited states in 16N. The root-mean-square (rms) radii of the valence neutron in these four low-lying 16N states are then derived by using the ANCs. The probabilities of the valence neutron staying out of the core potentials are found to be 31%± 8%, 58%± 12%, 3270 ± 8%, and 60% ± 12%. The present results support the conclusion that a one-neutron halo may be formed in the 16N first and third excited states, while the ground and second excited states do not have a one-neutron halo structure. However, the core excitation effect has a strong influence on the one-neutron halo structure of the ground and first excited states in 16N.
文摘More recently,we reported on the first observation of fine structure of latent tracks in rutile TiO_(2),which changes from cylinder to dumbell-shape and then to sandglass shape as a function of the ion path length(Fig.1(a))[1].
基金Supported by the National Key Research and Development Plan(2016YFA0401600)the National Natural Science Foundation of China(11675155,11790321)。
文摘The Back-n white neutron source(known as Back-n)is based on back-streaming neutrons from the spallation target at the China Spallation Neutron Source(CSNS).With its excellent beam properties,e.g.,a neutron flux of approximately 1.8×107 n/cm2/s at 55 m from the spallation target,energy range spanning from 0.5 eV to 200 MeV,and time-of-flight resolution of a few per thousand,along with the equipped physical spectrometers,Back-n is considered to be among the best facilities in the world for carrying out nuclear data measurements.Since its completion and commencement of operation in May 2018,five types of cross-section measurements concerning neutron capture cross-sections,fission cross-sections,total cross-sections,light charged particle emissions,in-beam gamma spectra,and more than forty nuclides have been measured.This article presents an overview of the experimental setup and result analysis on the neutron-induced cross-section measurements and gamma spectroscopy at Back-n in the initial years.