Rheumatoid arthritis(RA)is an autoimmune disease.Early studies hold an opinion that gut microbiota is environmentally acquired and associated with RA susceptibility.However,accumulating evidence demonstrates that gene...Rheumatoid arthritis(RA)is an autoimmune disease.Early studies hold an opinion that gut microbiota is environmentally acquired and associated with RA susceptibility.However,accumulating evidence demonstrates that genetics also shape the gut microbiota.It is known that some strains of inbred laboratory mice are highly susceptible to collagen-induced arthritis(CIA),while the others are resistant to CIA.Here,we show that transplantation of fecal microbiota of CIA-resistant C57BL/6J mice to CIA-susceptible DBA/1J mice confer CIA resistance in DBA/1J mice.C57BL/6J mice and healthy human individuals have enriched B.fragilis than DBA/1J mice and RA patients.Transplantation of B.fragilis prevents CIA in DBA/1J mice.We identify that B.fragilis mainly produces propionate and C57BL/6J mice and healthy human individuals have higher level of propionate.Fibroblast-like synoviocytes(FLSs)in RA are activated to undergo tumor-like transformation.Propionate disrupts HDAC3-FOXK1 interaction to increase acetylation of FOXK1,resulting in reduced FOXK1 stability,blocked interferon signaling and deactivation of RA-FLSs.We treat CIA mice with propionate and show that propionate attenuates CIA.Moreover,a combination of propionate with anti-TNF etanercept synergistically relieves CIA.These results suggest that B.fragilis or propionate could be an alternative or complementary approach to the current therapies.展开更多
Sclerostin, a protein secreted from osteocytes, negatively regulates the WNT signaling pathway by binding to the LRP5/6 co-receptors and further inhibits bone formation and promotes bone resorption. Sclerostin contrib...Sclerostin, a protein secreted from osteocytes, negatively regulates the WNT signaling pathway by binding to the LRP5/6 co-receptors and further inhibits bone formation and promotes bone resorption. Sclerostin contributes to musculoskeletal system-related diseases, making it a promising therapeutic target for the treatment of WNT-related bone diseases. Additionally, emerging evidence indicates that sclerostin contributes to the development of cancers, obesity, and diabetes, suggesting that it may be a promising therapeutic target for these diseases. Notably, cardiovascular diseases are related to the protective role of sclerostin. In this review, we summarize three distinct types of inhibitors targeting sclerostin, monoclonal antibodies, aptamers, and small-molecule inhibitors, from which monoclonal antibodies have been developed. As the first-in-class sclerostin inhibitor approved by the U.S. FDA,the monoclonal antibody romosozumab has demonstrated excellent effectiveness in the treatment of postmenopausal osteoporosis;however, it conferred high cardiovascular risk in clinical trials. Furthermore,romosozumab could only be administered by injection, which may cause compliance issues for patients who prefer oral therapy. Considering these above safety and compliance concerns, we therefore present relevant discussion and offer perspectives on the development of next-generation sclerostin inhibitors by following several ways, such as concomitant medication, artificial intelligence-based strategy, druggable modification, and bispecific inhibitors strategy.展开更多
Ulcerative colitis(UC)is a chronic inflammatory bowel disease caused by many factors including colonic inflammation and microbiota dysbiosis.Previous studies have indicated that celastrol(CSR)has strong anti-inflammat...Ulcerative colitis(UC)is a chronic inflammatory bowel disease caused by many factors including colonic inflammation and microbiota dysbiosis.Previous studies have indicated that celastrol(CSR)has strong anti-inflammatory and immune-inhibitory effects.Here,we investigated the effects of CSR on colonic inflammation and mucosal immunity in an experimental colitis model,and addressed the mechanism by which CSR exerts the protective effects.We characterized the therapeutic effects and the potential mechanism of CSR on treating UC using histological staining,intestinal permeability assay,cytokine assay,flow cytometry,fecal microbiota transplantation(FMT),16S rRNA sequencing,untargeted metabolomics,and cell differentiation.CSR administration significantly ameliorated the dextran sodium sulfate(DSS)-induced colitis in mice,which was evidenced by the recovered body weight and colon length as well as the decreased disease activity index(DAI)score and intestinal permeability.Meanwhile,CSR down-regulated the production of pro-inflammatory cytokines and up-regulated the amount of anti-inflammatory mediators at both mRNA and protein levels,and improved the balances of Treg/Th1 and Treg/Th17 to maintain the colonic immune homeostasis.Notably,all the therapeutic effects were exerted in a gut microbiota-dependent manner.Furthermore,CSR treatment increased the gut microbiota diversity and changed the compositions of the gut microbiota and metabolites,which is probably associated with the gut microbiota-mediated protective effects.In conclusion,this study provides the strong evidence that CSR may be a promising therapeutic drug for UC.展开更多
Targeted protein degradation(TPD)is emerging as a strategy to overcome the limitations of traditional small-molecule inhibitors.Proteolysis-targeting chimera(PROTAC)technology can be used to target proteins by hijacki...Targeted protein degradation(TPD)is emerging as a strategy to overcome the limitations of traditional small-molecule inhibitors.Proteolysis-targeting chimera(PROTAC)technology can be used to target proteins by hijacking the ubiquitin-proteasome system.Conceptually,PROTAC aims to target the“undruggable”majority of proteins in the human proteome.Through constant exploration and optimization of PROTACs and the exploitation of other TPD strategies over two decades,TPD has expanded from theoretical studies to clinical strategies,with practical applications in oncological,immunological,and other diseases.In this review,we introduce the mechanisms,features,and molecular targets of orthodox PROTACs and summarize the PROTAC drugs under study as cancer therapeutics in clinical trials.We also discuss PROTAC derivatives and other TPD strategies,such as lysosome-targeting chimeras,autophagy-targeting chimeras,and molecular glue strategies.Collectively,the studies summarized herein support the full potential of TPD in the biomedical industry.展开更多
Myocardial ischemia–reperfusion injury(MIRI)is a major hindrance to the success of cardiac reperfusion therapy.Although increased neutrophil infiltration is a hallmark of MIRI,the subtypes and alterations of neutroph...Myocardial ischemia–reperfusion injury(MIRI)is a major hindrance to the success of cardiac reperfusion therapy.Although increased neutrophil infiltration is a hallmark of MIRI,the subtypes and alterations of neutrophils in this process remain unclear.Here,we performed single-cell sequencing of cardiac CD45^(+)cells isolated from the murine myocardium subjected to MIRI at six-time points.We identified diverse types of infiltrating immune cells and their dynamic changes during MIRI.Cardiac neutrophils showed the most immediate response and largest changes and featured with functionally heterogeneous subpopulations,including Ccl3^(hi)Neu and Ym-1^(hi)Neu,which were increased at 6 h and 1 d after reperfusion,respectively.Ym-1^(hi)Neu selectively expressed genes with protective effects and was,therefore,identified as a novel specific type of cardiac cell in the injured heart.Further analysis indicated that neutrophils and their subtypes orchestrated subsequent immune responses in the cardiac tissues,especially instructing the response of macrophages.The abundance of Ym-1^(hi)Neu was closely correlated with the therapeutic efficacy of MIRI when neutrophils were specifically targeted by anti-Lymphocyte antigen 6 complex locus G6D(Ly6G)or anti-Intercellular cell adhesion molecule-1(ICAM-1)neutralizing antibodies.In addition,a neutrophil subtype with the same phenotype as Ym-1^(hi)Neu was detected in clinical samples and correlated with prognosis.Ym-1 inhibition exacerbated myocardial injury,whereas Ym-1 supplementation significantly ameliorated injury in MIRI mice,which was attributed to the tilt of Ym-1 on the polarization of macrophages toward the repair phenotype in myocardial tissue.Overall,our findings reveal the antiinflammatory phenotype of Ym-1^(hi)Neu and highlight its critical role in myocardial protection during the early stages of MIRI.展开更多
基金supported by the National Natural Science Foundation Council of China(82172386 and 81922081 to C.L.,82100943 to X.F.,82104216 to J.L.,and 82230081,82250710175 and 8226116039 to G.X.)the Department of Education of Guangdong Province(2021KTSCX104 to C.L.)+5 种基金the 2020 Guangdong Provincial Science and Technology Innovation Strategy Special Fund(Guangdong-Hong Kong-Macao Joint Lab)(2020B1212030006 to A.L.)the Guangdong Provincial Science and Technology Innovation Council Grant(2017B030301018 to G.X.)the Guangdong Basic and Applied Basic Research Foundation(2022A1515012164 to C.L.,and 2023A1515012000 to X.F.)the Science,Technology and Innovation Commission of Shenzhen(JCYJ20210324104201005 to C.L.,JCYJ20220530115006014 to X.F.,JCYJ20230807095118035 to J.L.,and JCYJ20220818100617036 to G.X.)the Hong Kong General Research Fund(12102722 to A.L.)the Hong Kong RGC Themebased Research Scheme(T12-201/20-R to A.L.).
文摘Rheumatoid arthritis(RA)is an autoimmune disease.Early studies hold an opinion that gut microbiota is environmentally acquired and associated with RA susceptibility.However,accumulating evidence demonstrates that genetics also shape the gut microbiota.It is known that some strains of inbred laboratory mice are highly susceptible to collagen-induced arthritis(CIA),while the others are resistant to CIA.Here,we show that transplantation of fecal microbiota of CIA-resistant C57BL/6J mice to CIA-susceptible DBA/1J mice confer CIA resistance in DBA/1J mice.C57BL/6J mice and healthy human individuals have enriched B.fragilis than DBA/1J mice and RA patients.Transplantation of B.fragilis prevents CIA in DBA/1J mice.We identify that B.fragilis mainly produces propionate and C57BL/6J mice and healthy human individuals have higher level of propionate.Fibroblast-like synoviocytes(FLSs)in RA are activated to undergo tumor-like transformation.Propionate disrupts HDAC3-FOXK1 interaction to increase acetylation of FOXK1,resulting in reduced FOXK1 stability,blocked interferon signaling and deactivation of RA-FLSs.We treat CIA mice with propionate and show that propionate attenuates CIA.Moreover,a combination of propionate with anti-TNF etanercept synergistically relieves CIA.These results suggest that B.fragilis or propionate could be an alternative or complementary approach to the current therapies.
基金supported by the National Key R&D Program of China (2018YFA0800802)Hong Kong General Research Fund (HKBU 12114416,HKBU 12101117,HKBU 12100918,HKBU 12101018,HKBU 12103519,HKBU 14100218,CUHK 14108816,CUHK 14100218,CUHK 14103420,China)+3 种基金Direct Grant of The Chinese University of Hong Kong (2018.094,China)Interdisciplinary Research Clusters Matching Scheme of Hong Kong Baptist University (RC-IRCs/17-18/02,China)Guangdong Basic and Applied Basic Research Foundation (2019B1515120089,China)Science and Technology Innovation Commission of Shenzhen Municipality Funds (JCYJ20160229210357960,China)。
文摘Sclerostin, a protein secreted from osteocytes, negatively regulates the WNT signaling pathway by binding to the LRP5/6 co-receptors and further inhibits bone formation and promotes bone resorption. Sclerostin contributes to musculoskeletal system-related diseases, making it a promising therapeutic target for the treatment of WNT-related bone diseases. Additionally, emerging evidence indicates that sclerostin contributes to the development of cancers, obesity, and diabetes, suggesting that it may be a promising therapeutic target for these diseases. Notably, cardiovascular diseases are related to the protective role of sclerostin. In this review, we summarize three distinct types of inhibitors targeting sclerostin, monoclonal antibodies, aptamers, and small-molecule inhibitors, from which monoclonal antibodies have been developed. As the first-in-class sclerostin inhibitor approved by the U.S. FDA,the monoclonal antibody romosozumab has demonstrated excellent effectiveness in the treatment of postmenopausal osteoporosis;however, it conferred high cardiovascular risk in clinical trials. Furthermore,romosozumab could only be administered by injection, which may cause compliance issues for patients who prefer oral therapy. Considering these above safety and compliance concerns, we therefore present relevant discussion and offer perspectives on the development of next-generation sclerostin inhibitors by following several ways, such as concomitant medication, artificial intelligence-based strategy, druggable modification, and bispecific inhibitors strategy.
基金funded by the grants from the National Key R&D Program of China(Grant No.2019YFC1316204)the National Natural Science Foundation of China(Grant Nos.81974249,31770983,82070136,and 82104488)the Hubei Provincial Natural Science Foundation of China(Grant No.2020BHB016).
文摘Ulcerative colitis(UC)is a chronic inflammatory bowel disease caused by many factors including colonic inflammation and microbiota dysbiosis.Previous studies have indicated that celastrol(CSR)has strong anti-inflammatory and immune-inhibitory effects.Here,we investigated the effects of CSR on colonic inflammation and mucosal immunity in an experimental colitis model,and addressed the mechanism by which CSR exerts the protective effects.We characterized the therapeutic effects and the potential mechanism of CSR on treating UC using histological staining,intestinal permeability assay,cytokine assay,flow cytometry,fecal microbiota transplantation(FMT),16S rRNA sequencing,untargeted metabolomics,and cell differentiation.CSR administration significantly ameliorated the dextran sodium sulfate(DSS)-induced colitis in mice,which was evidenced by the recovered body weight and colon length as well as the decreased disease activity index(DAI)score and intestinal permeability.Meanwhile,CSR down-regulated the production of pro-inflammatory cytokines and up-regulated the amount of anti-inflammatory mediators at both mRNA and protein levels,and improved the balances of Treg/Th1 and Treg/Th17 to maintain the colonic immune homeostasis.Notably,all the therapeutic effects were exerted in a gut microbiota-dependent manner.Furthermore,CSR treatment increased the gut microbiota diversity and changed the compositions of the gut microbiota and metabolites,which is probably associated with the gut microbiota-mediated protective effects.In conclusion,this study provides the strong evidence that CSR may be a promising therapeutic drug for UC.
基金supported by the National Natural Science Foundation of China(82172386 and 81922081 to C.L.)the Department of Education of Guangdong Province(2021KTSCX104 to C.L.)+2 种基金the 2020 Guangdong Provincial Science and Technology Innovation Strategy Special Fund(Guangdong-Hong Kong-Macao Joint Lab)(2020B1212030006 to A.L.)the Guangdong Basic and Applied Basic Research Foundation(2022A1515012164 to C.L.)the Science,Technology and Innovation Commission of Shenzhen(JCYJ20210324104201005 to C.L.).
文摘Targeted protein degradation(TPD)is emerging as a strategy to overcome the limitations of traditional small-molecule inhibitors.Proteolysis-targeting chimera(PROTAC)technology can be used to target proteins by hijacking the ubiquitin-proteasome system.Conceptually,PROTAC aims to target the“undruggable”majority of proteins in the human proteome.Through constant exploration and optimization of PROTACs and the exploitation of other TPD strategies over two decades,TPD has expanded from theoretical studies to clinical strategies,with practical applications in oncological,immunological,and other diseases.In this review,we introduce the mechanisms,features,and molecular targets of orthodox PROTACs and summarize the PROTAC drugs under study as cancer therapeutics in clinical trials.We also discuss PROTAC derivatives and other TPD strategies,such as lysosome-targeting chimeras,autophagy-targeting chimeras,and molecular glue strategies.Collectively,the studies summarized herein support the full potential of TPD in the biomedical industry.
基金supported by the National Natural Science Foundation of China(82022076,81974249,82070136,82104488,and 82305194)the Postdoctoral Science Foundation of China(2023M731222,and 2020T130040ZX)the Foundation of Hubei Key Laboratory of Biological Targeted Therapy(2023swbx021)。
文摘Myocardial ischemia–reperfusion injury(MIRI)is a major hindrance to the success of cardiac reperfusion therapy.Although increased neutrophil infiltration is a hallmark of MIRI,the subtypes and alterations of neutrophils in this process remain unclear.Here,we performed single-cell sequencing of cardiac CD45^(+)cells isolated from the murine myocardium subjected to MIRI at six-time points.We identified diverse types of infiltrating immune cells and their dynamic changes during MIRI.Cardiac neutrophils showed the most immediate response and largest changes and featured with functionally heterogeneous subpopulations,including Ccl3^(hi)Neu and Ym-1^(hi)Neu,which were increased at 6 h and 1 d after reperfusion,respectively.Ym-1^(hi)Neu selectively expressed genes with protective effects and was,therefore,identified as a novel specific type of cardiac cell in the injured heart.Further analysis indicated that neutrophils and their subtypes orchestrated subsequent immune responses in the cardiac tissues,especially instructing the response of macrophages.The abundance of Ym-1^(hi)Neu was closely correlated with the therapeutic efficacy of MIRI when neutrophils were specifically targeted by anti-Lymphocyte antigen 6 complex locus G6D(Ly6G)or anti-Intercellular cell adhesion molecule-1(ICAM-1)neutralizing antibodies.In addition,a neutrophil subtype with the same phenotype as Ym-1^(hi)Neu was detected in clinical samples and correlated with prognosis.Ym-1 inhibition exacerbated myocardial injury,whereas Ym-1 supplementation significantly ameliorated injury in MIRI mice,which was attributed to the tilt of Ym-1 on the polarization of macrophages toward the repair phenotype in myocardial tissue.Overall,our findings reveal the antiinflammatory phenotype of Ym-1^(hi)Neu and highlight its critical role in myocardial protection during the early stages of MIRI.