The paper is devoted to a spherically symmetric problem of General Relativity (GR) for a fluid sphere. The problem is solved within the framework of a special geometry of the Riemannian space induced by gravitation. A...The paper is devoted to a spherically symmetric problem of General Relativity (GR) for a fluid sphere. The problem is solved within the framework of a special geometry of the Riemannian space induced by gravitation. According to this geometry, the four-dimensional Riemannian space is assumed to be Euclidean with respect to the space coordinates and Riemannian with respect to the time coordinate. Such interpretation of the Riemannian space allows us to obtain complete set of GR equations for the external empty space and the internal spaces for incompressible and compressible perfect fluids. The obtained analytical solution for an incompressible fluid is compared with the Schwarzchild solution. For a sphere consisting of compressible fluid or gas, a numerical solution is presented and discussed.展开更多
The paper is devoted to the study of the gravitational collapse within the framework of the spherically symmetric problem in the Newton theory and general relativity on the basis of the pressure-free model of the cont...The paper is devoted to the study of the gravitational collapse within the framework of the spherically symmetric problem in the Newton theory and general relativity on the basis of the pressure-free model of the continuum. In application to the Newton gravitation theory, the analysis consists of three stages. First, we assume that the gravitational force is determined by the initial sphere radius and constant density and does not change in the process of the sphere collapse. The obtained analytical solution allows us to find the collapse time in the first approximation. Second, we construct the step-by-step process in which the gravitational force at a given time moment depends on the current sphere radius and density. The obtained numerical solution specifies the collapse time depending on the number of steps. Third, we find the exact value of the collapse time which is the limit of the step-by-step solutions and study the collapse and the expansion processes in the Newton theory. In application to general relativity, we use the space model corresponding to the special four-dimensional space which is Euclidean with respect to space coordinates and Riemannian with respect to the time coordinate only. The obtained solution specifies two possible scenarios. First, sphere contraction results in the infinitely high density with the finite collapse time, which does not coincide with the conventional result corresponding to the Schwarzschild geometry. Second, sphere expansion with the velocity which increases with a distance from the sphere center and decreases with time.展开更多
文摘The paper is devoted to a spherically symmetric problem of General Relativity (GR) for a fluid sphere. The problem is solved within the framework of a special geometry of the Riemannian space induced by gravitation. According to this geometry, the four-dimensional Riemannian space is assumed to be Euclidean with respect to the space coordinates and Riemannian with respect to the time coordinate. Such interpretation of the Riemannian space allows us to obtain complete set of GR equations for the external empty space and the internal spaces for incompressible and compressible perfect fluids. The obtained analytical solution for an incompressible fluid is compared with the Schwarzchild solution. For a sphere consisting of compressible fluid or gas, a numerical solution is presented and discussed.
文摘The paper is devoted to the study of the gravitational collapse within the framework of the spherically symmetric problem in the Newton theory and general relativity on the basis of the pressure-free model of the continuum. In application to the Newton gravitation theory, the analysis consists of three stages. First, we assume that the gravitational force is determined by the initial sphere radius and constant density and does not change in the process of the sphere collapse. The obtained analytical solution allows us to find the collapse time in the first approximation. Second, we construct the step-by-step process in which the gravitational force at a given time moment depends on the current sphere radius and density. The obtained numerical solution specifies the collapse time depending on the number of steps. Third, we find the exact value of the collapse time which is the limit of the step-by-step solutions and study the collapse and the expansion processes in the Newton theory. In application to general relativity, we use the space model corresponding to the special four-dimensional space which is Euclidean with respect to space coordinates and Riemannian with respect to the time coordinate only. The obtained solution specifies two possible scenarios. First, sphere contraction results in the infinitely high density with the finite collapse time, which does not coincide with the conventional result corresponding to the Schwarzschild geometry. Second, sphere expansion with the velocity which increases with a distance from the sphere center and decreases with time.