Water resources are precious in arid and semi-arid areas such as the Wadis of Iran. To sustainably manage these limited water resources, the residents of the Iranian Wadis have been traditionally using several water u...Water resources are precious in arid and semi-arid areas such as the Wadis of Iran. To sustainably manage these limited water resources, the residents of the Iranian Wadis have been traditionally using several water use systems(WUSs) which affect natural hydrological processes. In this study, WUSs and soil and water conservation measures(SWCMs) were integrated in a hydrological model of the Halilrood Basin in Iran. The Soil and Water Assessment Tool(SWAT) model was used to simulate the hydrological processes between 1993 and 2009 at daily time scale. To assess the importance of WUSs and SWCMs, we compared a model setup without WUSs and SWCMs(Default model) with a model setup with WUSs and SWCMs(WUS-SWCM model). When compared to the observed daily stream flow, the number of acceptable calibration runs as defined by the performance thresholds(Nash-Sutcliffe efficiency(NSE)≥0.68, –25%≤percent bias(PBIAS)≤25% and ratio of standard deviation(RSR)≤0.56) is 177 for the Default model and 1945 for the WUS-SWCM model. Also, the average Kling–Gupta efficiency(KGE) of acceptable calibration runs for the WUS-SWCM model is higher in both calibration and validation periods. When WUSs and SWCMs are implemented, surface runoff(between 30% and 99%) and water yield(between 0 and 18%) decreased in all sub-basins. Moreover, SWCMs lead to a higher contribution of groundwater flow to the channel and compensate for the extracted water by WUSs from the shallow aquifer. In summary, implementing WUSs and SWCMs in the SWAT model enhances model plausibility significantly.展开更多
According to the contemporary ecosystem approach, the linkages of human actions with their environment have to be assessed in an integrative manner. The Driver-Pressure-State-Impact-Response (DPSIR) model is applied...According to the contemporary ecosystem approach, the linkages of human actions with their environment have to be assessed in an integrative manner. The Driver-Pressure-State-Impact-Response (DPSIR) model is applied to identify and describe processes and interactions in human-environmental systems. An example application from a research project dealing with the development of sustainable management strategies for the agriculture in Jiangsu, China, illustrates the potentials and limitations of its sustainable development. The concept and indicators of ecological integrity are used to assess the indicators in the dimensions of DPSIR between 2003 and 2006. The main drivers included population growth which caused increasing demand for food, growing environmental demands, and rapidly decreasing of land and other natural resources. The main environmental problem was water pollution. The results show that in the dimension of driver, total grain output and agricultural land productivity both increased. Labor intensive agriculture has been promoted to increase agricultural land productivity. In the dimension of pressure, on the positive side, infrastructure got greatly improved, the input level such as total power of machinery, and level of fertilizer use increased, and level of pesticides use decreased, but on the negative side, cultivated land per capita and irrigation rate decreased, natural resources keep decreased. Environmental pollution indicators such as industrial wastewater discharge and acid rain rate increased in Jiangsu Province. In the aspect of state, ecosystem state was improved, plant coverage index increased, biological abundance index increased, fertilizer productivity increased, eco-environmental quality index increased, but land degradation index also increased. In the aspect of impact, output level increased, output efficiency enhanced, farmer's social economic benefit improved. In the aspect of response, social support was greatly improved, input for environmental governance increased. To assess the effects of environmental governance, Jiangsu government was successful to increase compliance rate of sulfur dioxide emissions, but not so efficient in compliance rate of industrial wastewater discharge.展开更多
Land use patterns arise from interactive processes between the physical environment and anthropogenic activities. While land use patterns and the associated explanatory variables have often been analyzed on the large ...Land use patterns arise from interactive processes between the physical environment and anthropogenic activities. While land use patterns and the associated explanatory variables have often been analyzed on the large scale, this study aims to determine the most important variables for explaining land use patterns in the 50 km<sup>2</sup> catchment of the Kielstau, Germany, which is dominated by agricultural land use. A set of spatially distributed variables including topography, soil properties, socioeconomic variables, and landscape indices are exploited to set up logistic regression models for the land use map of 2017 with detailed agricultural classes. Spatial validation indicates a reasonable performance as the relative operating characteristic (ROC) ranges between 0.73 and 0.97 for all land use classes except for corn (ROC = 0.68). The robustness of the models in time is confirmed by the temporal validation for which the ROC values are on the same level (maximum deviation 0.1). Non-agricultural land use is generally better explained than agricultural land use. The most important variables are the share of drained area, distance to protected areas, population density, and patch fractal dimension. These variables can either be linked to agriculture or the river course of the Kielstau.展开更多
基金The German Academic Exchange Service (DAAD) provided funding for the first authorThe German Federal Ministry of Education and Research (BMBF) provided funding for the second author through the “GLANCE” project (Global Change Effects on River Ecosystems, 01LN1320A)。
文摘Water resources are precious in arid and semi-arid areas such as the Wadis of Iran. To sustainably manage these limited water resources, the residents of the Iranian Wadis have been traditionally using several water use systems(WUSs) which affect natural hydrological processes. In this study, WUSs and soil and water conservation measures(SWCMs) were integrated in a hydrological model of the Halilrood Basin in Iran. The Soil and Water Assessment Tool(SWAT) model was used to simulate the hydrological processes between 1993 and 2009 at daily time scale. To assess the importance of WUSs and SWCMs, we compared a model setup without WUSs and SWCMs(Default model) with a model setup with WUSs and SWCMs(WUS-SWCM model). When compared to the observed daily stream flow, the number of acceptable calibration runs as defined by the performance thresholds(Nash-Sutcliffe efficiency(NSE)≥0.68, –25%≤percent bias(PBIAS)≤25% and ratio of standard deviation(RSR)≤0.56) is 177 for the Default model and 1945 for the WUS-SWCM model. Also, the average Kling–Gupta efficiency(KGE) of acceptable calibration runs for the WUS-SWCM model is higher in both calibration and validation periods. When WUSs and SWCMs are implemented, surface runoff(between 30% and 99%) and water yield(between 0 and 18%) decreased in all sub-basins. Moreover, SWCMs lead to a higher contribution of groundwater flow to the channel and compensate for the extracted water by WUSs from the shallow aquifer. In summary, implementing WUSs and SWCMs in the SWAT model enhances model plausibility significantly.
基金supported by the Key Projects of National Philosophy and Social Science Foundation of China(11&ZD046)The Key Projects of National Natural Science Foundation of China (70833001)+2 种基金China Agricultural Research System (CARS-14-10B)Doctoral Fund of Ministry of Education of China (20120097110034)the Fundamental Research Funds for the Central Universities of China(6J0546)
文摘According to the contemporary ecosystem approach, the linkages of human actions with their environment have to be assessed in an integrative manner. The Driver-Pressure-State-Impact-Response (DPSIR) model is applied to identify and describe processes and interactions in human-environmental systems. An example application from a research project dealing with the development of sustainable management strategies for the agriculture in Jiangsu, China, illustrates the potentials and limitations of its sustainable development. The concept and indicators of ecological integrity are used to assess the indicators in the dimensions of DPSIR between 2003 and 2006. The main drivers included population growth which caused increasing demand for food, growing environmental demands, and rapidly decreasing of land and other natural resources. The main environmental problem was water pollution. The results show that in the dimension of driver, total grain output and agricultural land productivity both increased. Labor intensive agriculture has been promoted to increase agricultural land productivity. In the dimension of pressure, on the positive side, infrastructure got greatly improved, the input level such as total power of machinery, and level of fertilizer use increased, and level of pesticides use decreased, but on the negative side, cultivated land per capita and irrigation rate decreased, natural resources keep decreased. Environmental pollution indicators such as industrial wastewater discharge and acid rain rate increased in Jiangsu Province. In the aspect of state, ecosystem state was improved, plant coverage index increased, biological abundance index increased, fertilizer productivity increased, eco-environmental quality index increased, but land degradation index also increased. In the aspect of impact, output level increased, output efficiency enhanced, farmer's social economic benefit improved. In the aspect of response, social support was greatly improved, input for environmental governance increased. To assess the effects of environmental governance, Jiangsu government was successful to increase compliance rate of sulfur dioxide emissions, but not so efficient in compliance rate of industrial wastewater discharge.
基金the financial support from the China Scholarship Council(CSC)through a scholarship for the first author
文摘Land use patterns arise from interactive processes between the physical environment and anthropogenic activities. While land use patterns and the associated explanatory variables have often been analyzed on the large scale, this study aims to determine the most important variables for explaining land use patterns in the 50 km<sup>2</sup> catchment of the Kielstau, Germany, which is dominated by agricultural land use. A set of spatially distributed variables including topography, soil properties, socioeconomic variables, and landscape indices are exploited to set up logistic regression models for the land use map of 2017 with detailed agricultural classes. Spatial validation indicates a reasonable performance as the relative operating characteristic (ROC) ranges between 0.73 and 0.97 for all land use classes except for corn (ROC = 0.68). The robustness of the models in time is confirmed by the temporal validation for which the ROC values are on the same level (maximum deviation 0.1). Non-agricultural land use is generally better explained than agricultural land use. The most important variables are the share of drained area, distance to protected areas, population density, and patch fractal dimension. These variables can either be linked to agriculture or the river course of the Kielstau.