Hydriding properties of uranium alloys have been studied to search for new hydrogen storage materials to be applied to hydrogen energy systems. Application of uranium-base hydrogen storage materials can be expected to...Hydriding properties of uranium alloys have been studied to search for new hydrogen storage materials to be applied to hydrogen energy systems. Application of uranium-base hydrogen storage materials can be expected to alleviate the risk, as well as to reduce the cost incurred by globally-stored large amounts of depleted uranium left after uranium enrichment. Various uranium alloys have been examined in terms of hydrogen absorptiondesorption properties, among which UNi Al intermetallic compound showed promising characteristics, such as lower absorption-desorption temperatures and better anti-powdering strength. First principle calculation has been carried out on UNi Al hydride to predict the change of crystal structure and the lattice constant with increasing hydrogen content, which showed this calculation to be promising in predicting candidates for good hydrogen absorbers.展开更多
The thermal stability and the kinetics of glass transition and crystallization for Zr75-xNi25Alx (x = 8-15) metallic glasses were investigated using differential scanning calorimetry (DSC) under continuous heating...The thermal stability and the kinetics of glass transition and crystallization for Zr75-xNi25Alx (x = 8-15) metallic glasses were investigated using differential scanning calorimetry (DSC) under continuous heating conditions. The apparent activation energy of glass transition rises monotonously with the A1 content increasing; the activation energy of crystallization increases with A1 changing from 8at% to 15at%, and then decreases with A1 further up to 24at%, which exhibits a good correlation to the thermal stability and the glass-forming ability (GFA). The Zr60Ni25A115 metallic glass with the largest supercooled liquid region and GFA possesses the highest activation energy of crystallization. The relation between the thermal stability, GFA and activation energy of crystallization was discussed in terms of the primary precipitated phases.展开更多
In this paper, an improved incompressible multi-relaxation-time lattice Boltzmann-front tracking approach is proposed to simulate two-phase flow with a sharp interface, where the surface tension is implemented. The la...In this paper, an improved incompressible multi-relaxation-time lattice Boltzmann-front tracking approach is proposed to simulate two-phase flow with a sharp interface, where the surface tension is implemented. The lattice Boltzmann method is used to simulate the incompressible flow with a stationary Eulerian grid, an additional moving Lagrangian grid is adopted to track explicitly the motion of the interface, and an indicator function is introduced to update the fluid properties accurately. The interface is represented by using a four-order Lagrange polynomial through fitting a set of discrete marker points, and then the surface tension is directly computed by using the normal vector and curvature of the interface. Two benchmark problems, including Laplace's law for a stationary bubble and the dispersion relation of the capillary wave between two fluids are conducted for validation. Excellent agreement is obtained between the numerical simulations and the theoretical results in the two cases.展开更多
The ex-situ incorporation of the secondary SiC reinforcement,along with the in-situ incorporation of the tertiary and quaternary Mg_(3)N_(2) and Si_(3)N_(4) phases,in the primary matrix of Mg_(2)Si is employed in orde...The ex-situ incorporation of the secondary SiC reinforcement,along with the in-situ incorporation of the tertiary and quaternary Mg_(3)N_(2) and Si_(3)N_(4) phases,in the primary matrix of Mg_(2)Si is employed in order to provide ultimate wear resistance based on the laser-irradiation-induced inclusion of N_(2) gas during laser powder bed fusion.This is substantialized based on both the thermal diffusion-and chemical reactionbased metallurgy of the Mg_(2)Si–SiC/nitride hybrid composite.This study also proposes a functional platform for systematically modulating a functionally graded structure and modeling build-direction-dependent architectonics during additive manufacturing.This strategy enables the development of a compositional gradient from the center to the edge of each melt pool of the Mg_(2)Si–SiC/nitride hybrid composite.Consequently,the coefficient of friction of the hybrid composite exhibits a 309.3%decrease to–1.67 compared to–0.54 for the conventional nonreinforced Mg_(2)Si structure,while the tensile strength exhibits a 171.3%increase to 831.5 MPa compared to 485.3 MPa for the conventional structure.This outstanding mechanical behavior is due to the(1)the complementary and synergistic reinforcement effects of the SiC and nitride compounds,each of which possesses an intrinsically high hardness,and(2)the strong adhesion of these compounds to the Mg_(2)Si matrix despite their small sizes and low concentrations.展开更多
To investigate the effects of Al-Ti-B-RE grain refiner on microstructure and mechanical properties of Al-7.0Si-0.55Mg (A357) alloy, some novel Al-7.0Si-0.55Mg alloys added with different amount of Al-STi-1B-RE grain...To investigate the effects of Al-Ti-B-RE grain refiner on microstructure and mechanical properties of Al-7.0Si-0.55Mg (A357) alloy, some novel Al-7.0Si-0.55Mg alloys added with different amount of Al-STi-1B-RE grain refiner with different RE composition were prepared by vacuum-melting. The microstructure and fracture behavior of the AI-7.0Si-0.55Mg alloys with the grain refiners were observed by X-ray diffraction (XRD), optical microscopy (OM), scanning electron microscopy (SEM), and the mechanical properties of the alloys were tested in mechanical testing machine at room temperature. The observation of AI-Ti-B-RE morphology and internal structure of the particles reveals that it exhibits a TiAl3/Ti2Al20RE core-shell structure via heterogeneous TiB2 nuclei. The tensile strength of Al-7.0Si-0.55Mg alloys with Al-5Ti-1B-3.0RE grain refiner reaches the peak value at the same addition (0.2%) of grain refiner.展开更多
Al-1.0%Sc-1.0%Zr (mass fraction) master alloy was prepared at different cooling rates. The morphology and thermodynamics data of the primary particles of the master alloy were investigated by X-ray diffraction (XRD...Al-1.0%Sc-1.0%Zr (mass fraction) master alloy was prepared at different cooling rates. The morphology and thermodynamics data of the primary particles of the master alloy were investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM) and differential scanning calorimetry (DSC). It shows that the primary particles are dendrite-shaped particles comprised of several attached small cubic, cusped-cubic or crucifer shape particles at slow cooling rate. However, the primary particles are separated with crucifer shape at intermediate cooling rate, and they are cubic with cusped-cubic shape at high cooling rate. Meanwhile, the separated and attached particles present AlaSc/AlaZr1-xScx core-shell structure. The formation mechanism of the structure was systematically investigated by a mathematical model.展开更多
Solute atoms and precipitates significantly influence the mechanical properties of Mg alloys.Previous studies have mainly focused on the segregation behaviors of Mg alloys after annealing.In this study,we investigated...Solute atoms and precipitates significantly influence the mechanical properties of Mg alloys.Previous studies have mainly focused on the segregation behaviors of Mg alloys after annealing.In this study,we investigated the segregation behaviors of an Mg-RE alloy under deformation.We found that the enrichment of solute atoms occurred in{101^(-)1}compressive twin boundaries under compression at 298 K without any annealing in an Mg-RE alloy by scanning transmission electron microscopy and energy-dispersive X-ray analysis.The segregated solutes and precipitates impeded the twin growth,partially contributing to the formation of small-sized{101^(-)1}compressive twins.This research indicates the twin boundaries can be strengthened by segregated solutes and precipitates formed under deformation at room temperature.展开更多
Metallic glasses represent an interesting group of materials as they possess outstanding physical, chemical and mechanical properties compared to their crystalline counterparts.Currently, with well designed compositio...Metallic glasses represent an interesting group of materials as they possess outstanding physical, chemical and mechanical properties compared to their crystalline counterparts.Currently, with well designed compositions it is possible to cast liquid alloys into the glassy state at low critical cooling rates from 100 K·s-1 to 1 K·s-1 and in large critical sample sizes up to several centimeters, which significantly enhances the promise for possible applications as advanced engineering materials.This paper reviews the development of (ZrCu)-based bulk metallic glasses with large sizes by copper mold casting and their unique properties.Additionally, the ex-situ and in-situ second phases reinforced BMG composites with large plasticity are also presented.展开更多
The unusual glass-forming ability(GFA) of the Zr48Cu36Ag8Al8 alloy and the high ductility of the Zr48Cu36Ag8Al8 metallic glass-matrix composites containing Ta powder were reported.The bulk metallic glass rod with a ...The unusual glass-forming ability(GFA) of the Zr48Cu36Ag8Al8 alloy and the high ductility of the Zr48Cu36Ag8Al8 metallic glass-matrix composites containing Ta powder were reported.The bulk metallic glass rod with a diameter of 25 mm was successfully synthesized using copper mold casting for the Zr48Cu36Ag8Al8 alloy.High GFA of this alloy was found to be related to a large supercooled liquid region and a quaternary eutectic point with low melting temperature.The bulk metallic glass matrix composites were prepared by introducing extra Ta particles into the Zr48Cu36Ag8Al8 melt.The composites consist of Ta particles homogenously distributed in the Zr48Cu36Ag8Al8 metallic glass matrix.The optimum content of Ta powder is 10at%for the composite with the highest plasticity,which shows a plastic strain of 31%.展开更多
Twinning-detwinning(TDT)behavior in a strongly basal-textured Mg-Li alloy during two-step compression(RD)-compression(ND)process was investigated using quasi-in-situ EBSD.TDT behavior and TDT variants selection were s...Twinning-detwinning(TDT)behavior in a strongly basal-textured Mg-Li alloy during two-step compression(RD)-compression(ND)process was investigated using quasi-in-situ EBSD.TDT behavior and TDT variants selection were statistically discussed with the loading path for the first time.Non-Schmid twinning behavior was observed in the first step compression,owing to the local stress fluctuations by neighboring twins;in contrast,Schmid’s law well predicted the detwinning variants selection.This asymmetrical TDT behavior was first investigated to date related with the strong basal texture and loading path.Besides,with the progress of compression,Schmid factors for twinning demonstrated a decreasing tendency;however,those for detwinning during the second step displayed an abnormally increasing trend,fundamentally stemming from prior twinning behavior.展开更多
The decomposition and precipitation behaviors of a quenched Cu-15wt%Sn alloy as a function of aging temperature were investigated using transmission electron microscopy (TEM). Focused ion beam (FIB) was employed t...The decomposition and precipitation behaviors of a quenched Cu-15wt%Sn alloy as a function of aging temperature were investigated using transmission electron microscopy (TEM). Focused ion beam (FIB) was employed to assist TEM specimen preparation. At 300 ℃, the decomposition of the supersaturated phase occurred at grain boundaries, displaying a cellular morphology. The lamellae were found with and phases, rather than with the equilibrium e and phases. The and phases exhibit a welldefined orientation relationship (OR) as On the other hand, at 320 ℃, only incipient lamellar structures of several micron meters were observed, which were composed of the 6 and phases. At the same time, abundant intragranular precipitation of the e phase in the form of platelets was observed, and OR as (lil)J/ (001), [110] J/[100] exists between e phase and the ct phase. These contrasting precipitation behaviors are discussed from the viewpoint of crystallographic coherency of these phases.展开更多
We utilized electron backscatter diffraction to investigate the microstructure evolutions of a newly developed magnesium-rare earth alloy(Mg–9.80 Gd–3.78 Y–1.12 Sm–0.48 Zr)during instantaneous hot indirect extrusi...We utilized electron backscatter diffraction to investigate the microstructure evolutions of a newly developed magnesium-rare earth alloy(Mg–9.80 Gd–3.78 Y–1.12 Sm–0.48 Zr)during instantaneous hot indirect extrusion.An equiaxed fine-grained(average grain size of 3.4±0.2μm)microstructure with a weak texture was obtained.The grain refinement was mainly attributed to the discontinuous dynamic recrystallization(DDRX)and continuous DRX(CDRX)processes during the hot indirect extrusion process.The twin boundaries formed during the initial deformation stage effectively increased the number of high angle grain boundaries(HAGBs),which provided sites for new grain nuclei,and hence,resulted in an improved DDRX process.Along with DDRX,CDRX processes characterized by low angle grain boundary(LAGB)networks were also observed in the grain interior due to effective dynamic recovery(DRV)at a relatively high temperature of 773 K and high strain rates.Thereafter,LAGB networks were transformed into HAGB networks by the progressive rotation of subgrains during the CDRX process.展开更多
We report the lithium ionic conductivities of closo –type complex hydrides synthesized from various molar ratios of lithium borohydride(LiBH4) and decaborane(B10H14) as starting materials. The prepared closo –type c...We report the lithium ionic conductivities of closo –type complex hydrides synthesized from various molar ratios of lithium borohydride(LiBH4) and decaborane(B10H14) as starting materials. The prepared closo –type complex hydrides comprised [B12H12]^2-, [B11H11]^2-, and [B10H10]^2- complex anions. In addition, increasing the LiBH4 content in the starting materials increased the amounts of [B11H11]^2- and [B10H10]^2-, leading to an improved ion conductivity of the prepared sample. The present study offers useful insights into strategies for controlling the complex anion composition in emerging solid electrolytes of closo-type complex hydrides at the molecular level, and improving their ionic conductivities.展开更多
Recently, the worldwide supply of rare earth element (REE) resources will be severely restricted. On the other hand, coal fly ash particles emitted from coal-fired electric power plants contain relatively high concent...Recently, the worldwide supply of rare earth element (REE) resources will be severely restricted. On the other hand, coal fly ash particles emitted from coal-fired electric power plants contain relatively high concentrations of REEs. The contents of REEs in coal fly ash are regularly several hundreds of ppmw. In order to extract and recover REEs from coal fly ash particles, as a first step, we have investigated their dissolution behavior in a dilute H2SO4 solvent. The REE content of coal fly ash specimens has been precisely determined, and their presence in the ash component of the original coal and their enrichment in coal fly ash particles during coal combustion have been suggested. REEs in coal fly ash dissolve gradually in H2SO4 over time, and this implies two types of occurrences of the REEs in coal fly ash particles. By applying the unreacted core model to the dissolution behavior of REEs in a H2SO4 solvent, we can explain both types of occurrences.展开更多
The inconsistencies regarding the fundamental correlation between Gd content and slip(twinning)activities of Mg alloys appeal further investigations.However,the traditional slip dislocations analysis by TEM is time-co...The inconsistencies regarding the fundamental correlation between Gd content and slip(twinning)activities of Mg alloys appeal further investigations.However,the traditional slip dislocations analysis by TEM is time-consuming,and that by SEM/EBSD cannot recognize the partial slip modes.These urge a more efficient and comprehensive approach to easily distinguish all potential slip modes occurred concurrently in alloy matrix.Here we report a modified lattice rotation analysis that can distinguish all slip systems and provide statistical results for slip activities in Mg alloy matrix.Using this method,the high ductility of Mg-Gd alloy ascribed to the enhanced non-basal slips,cross-slip,and postponed twinning activities by Gd addition is quantitatively clarified.展开更多
Yttria-stabilized zirconia and-alumina films were prepared by laser chemical vapor deposition at deposition rates of several hundred micrometers per hour.Moreover,the structural oxide coatings by laser chemical vapor ...Yttria-stabilized zirconia and-alumina films were prepared by laser chemical vapor deposition at deposition rates of several hundred micrometers per hour.Moreover,the structural oxide coatings by laser chemical vapor deposition are reviewed.The laser can significantly accelerate the chemical reaction and grain growth in CVD,yielding high deposition rates.The films contain large amounts of nanopores that act as thermal insulation and are thus promising as coating materials for gas turbine blades of Ni-based superalloys and WC-Co cutting tools.展开更多
基金Supported by Grants-in-Aid for Scientific Research(No.25420903)from the Ministry of Education,Culture,Sports,Science and Technology of Japan and Japan Industrial Location Center
文摘Hydriding properties of uranium alloys have been studied to search for new hydrogen storage materials to be applied to hydrogen energy systems. Application of uranium-base hydrogen storage materials can be expected to alleviate the risk, as well as to reduce the cost incurred by globally-stored large amounts of depleted uranium left after uranium enrichment. Various uranium alloys have been examined in terms of hydrogen absorptiondesorption properties, among which UNi Al intermetallic compound showed promising characteristics, such as lower absorption-desorption temperatures and better anti-powdering strength. First principle calculation has been carried out on UNi Al hydride to predict the change of crystal structure and the lattice constant with increasing hydrogen content, which showed this calculation to be promising in predicting candidates for good hydrogen absorbers.
基金supported by the Fundamental Research Funds for the Central Universities(Nos.DUT11RC(3)70 and DUT11RC(3)29)the National Natural Science Foundation of China(No.51171034)the China Postdoctoral Science Foundation Funded Project(No.2012M510802)
文摘The thermal stability and the kinetics of glass transition and crystallization for Zr75-xNi25Alx (x = 8-15) metallic glasses were investigated using differential scanning calorimetry (DSC) under continuous heating conditions. The apparent activation energy of glass transition rises monotonously with the A1 content increasing; the activation energy of crystallization increases with A1 changing from 8at% to 15at%, and then decreases with A1 further up to 24at%, which exhibits a good correlation to the thermal stability and the glass-forming ability (GFA). The Zr60Ni25A115 metallic glass with the largest supercooled liquid region and GFA possesses the highest activation energy of crystallization. The relation between the thermal stability, GFA and activation energy of crystallization was discussed in terms of the primary precipitated phases.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.10872222 and 50921063)the Specialized Research Fund for the Doctoral Program of Higher Education of China(Grant No.20110191110037)the Fundamental Research Funds for the Central Universities,China(Grant Nos.CDJXS11240011 and CDJXS10241103)
文摘In this paper, an improved incompressible multi-relaxation-time lattice Boltzmann-front tracking approach is proposed to simulate two-phase flow with a sharp interface, where the surface tension is implemented. The lattice Boltzmann method is used to simulate the incompressible flow with a stationary Eulerian grid, an additional moving Lagrangian grid is adopted to track explicitly the motion of the interface, and an indicator function is introduced to update the fluid properties accurately. The interface is represented by using a four-order Lagrange polynomial through fitting a set of discrete marker points, and then the surface tension is directly computed by using the normal vector and curvature of the interface. Two benchmark problems, including Laplace's law for a stationary bubble and the dispersion relation of the capillary wave between two fluids are conducted for validation. Excellent agreement is obtained between the numerical simulations and the theoretical results in the two cases.
基金Natural Science Foundation of China(No.51871244)Hunan Provincial Innovation Foundation for Postgraduate,China(No.CX20200172)Fundamental Research Funds for the Central Universities of Central South University,China(No.1053320190103)。
基金supported by the Learning & Academic Research Institution for Master’s and Ph.D. Students and Postdocs (LAMP) Program of the National Research Foundation of Korea (NRF) grant funded by the Ministry of Education (No. RS-2023-00285353)supported by the National Research Foundation of Korea (NRF) grant funded by the Korean government (MSIP) (NRF-2021R1A2C3006662, NRF-2022R1A5A1030054, and 2021R1A2C1091301)+3 种基金the support from Natural Sciences and Engineering Research Council of Canada (NSERC)Canada Foundation for Innovation (CFI)Atlantic Canada Opportunities Agency (ACOA)the New Brunswick Innovation Foundation (NBIF)
文摘The ex-situ incorporation of the secondary SiC reinforcement,along with the in-situ incorporation of the tertiary and quaternary Mg_(3)N_(2) and Si_(3)N_(4) phases,in the primary matrix of Mg_(2)Si is employed in order to provide ultimate wear resistance based on the laser-irradiation-induced inclusion of N_(2) gas during laser powder bed fusion.This is substantialized based on both the thermal diffusion-and chemical reactionbased metallurgy of the Mg_(2)Si–SiC/nitride hybrid composite.This study also proposes a functional platform for systematically modulating a functionally graded structure and modeling build-direction-dependent architectonics during additive manufacturing.This strategy enables the development of a compositional gradient from the center to the edge of each melt pool of the Mg_(2)Si–SiC/nitride hybrid composite.Consequently,the coefficient of friction of the hybrid composite exhibits a 309.3%decrease to–1.67 compared to–0.54 for the conventional nonreinforced Mg_(2)Si structure,while the tensile strength exhibits a 171.3%increase to 831.5 MPa compared to 485.3 MPa for the conventional structure.This outstanding mechanical behavior is due to the(1)the complementary and synergistic reinforcement effects of the SiC and nitride compounds,each of which possesses an intrinsically high hardness,and(2)the strong adhesion of these compounds to the Mg_(2)Si matrix despite their small sizes and low concentrations.
基金Project(2012CB619503)supported by the Natioanl Basic Research Program of ChinaProject(2013AA031001)supported by the National High-tech Research and Development Program of ChinaProject(2012DFA50630)supported by the International Science&Technology Cooperation Program of China
文摘To investigate the effects of Al-Ti-B-RE grain refiner on microstructure and mechanical properties of Al-7.0Si-0.55Mg (A357) alloy, some novel Al-7.0Si-0.55Mg alloys added with different amount of Al-STi-1B-RE grain refiner with different RE composition were prepared by vacuum-melting. The microstructure and fracture behavior of the AI-7.0Si-0.55Mg alloys with the grain refiners were observed by X-ray diffraction (XRD), optical microscopy (OM), scanning electron microscopy (SEM), and the mechanical properties of the alloys were tested in mechanical testing machine at room temperature. The observation of AI-Ti-B-RE morphology and internal structure of the particles reveals that it exhibits a TiAl3/Ti2Al20RE core-shell structure via heterogeneous TiB2 nuclei. The tensile strength of Al-7.0Si-0.55Mg alloys with Al-5Ti-1B-3.0RE grain refiner reaches the peak value at the same addition (0.2%) of grain refiner.
基金Project(2012CB619503)supported by the National Basic Research Program of ChinaProject(2013AA031001)supported by the National High-tech Research and Development Program of ChinaProject(2012DFA50630)supported by the International Science and Technology Cooperation Program of China
文摘Al-1.0%Sc-1.0%Zr (mass fraction) master alloy was prepared at different cooling rates. The morphology and thermodynamics data of the primary particles of the master alloy were investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM) and differential scanning calorimetry (DSC). It shows that the primary particles are dendrite-shaped particles comprised of several attached small cubic, cusped-cubic or crucifer shape particles at slow cooling rate. However, the primary particles are separated with crucifer shape at intermediate cooling rate, and they are cubic with cusped-cubic shape at high cooling rate. Meanwhile, the separated and attached particles present AlaSc/AlaZr1-xScx core-shell structure. The formation mechanism of the structure was systematically investigated by a mathematical model.
基金support from Interdisciplinary Research Project for Young Teachers of USTB Fundamental Research Funds for the Central Universities(Grant no.FRF-IDRY-23-030).
文摘Solute atoms and precipitates significantly influence the mechanical properties of Mg alloys.Previous studies have mainly focused on the segregation behaviors of Mg alloys after annealing.In this study,we investigated the segregation behaviors of an Mg-RE alloy under deformation.We found that the enrichment of solute atoms occurred in{101^(-)1}compressive twin boundaries under compression at 298 K without any annealing in an Mg-RE alloy by scanning transmission electron microscopy and energy-dispersive X-ray analysis.The segregated solutes and precipitates impeded the twin growth,partially contributing to the formation of small-sized{101^(-)1}compressive twins.This research indicates the twin boundaries can be strengthened by segregated solutes and precipitates formed under deformation at room temperature.
文摘Metallic glasses represent an interesting group of materials as they possess outstanding physical, chemical and mechanical properties compared to their crystalline counterparts.Currently, with well designed compositions it is possible to cast liquid alloys into the glassy state at low critical cooling rates from 100 K·s-1 to 1 K·s-1 and in large critical sample sizes up to several centimeters, which significantly enhances the promise for possible applications as advanced engineering materials.This paper reviews the development of (ZrCu)-based bulk metallic glasses with large sizes by copper mold casting and their unique properties.Additionally, the ex-situ and in-situ second phases reinforced BMG composites with large plasticity are also presented.
基金supported by Grant-In-Aid for Scientific Research(C)(No.19560689)
文摘The unusual glass-forming ability(GFA) of the Zr48Cu36Ag8Al8 alloy and the high ductility of the Zr48Cu36Ag8Al8 metallic glass-matrix composites containing Ta powder were reported.The bulk metallic glass rod with a diameter of 25 mm was successfully synthesized using copper mold casting for the Zr48Cu36Ag8Al8 alloy.High GFA of this alloy was found to be related to a large supercooled liquid region and a quaternary eutectic point with low melting temperature.The bulk metallic glass matrix composites were prepared by introducing extra Ta particles into the Zr48Cu36Ag8Al8 melt.The composites consist of Ta particles homogenously distributed in the Zr48Cu36Ag8Al8 metallic glass matrix.The optimum content of Ta powder is 10at%for the composite with the highest plasticity,which shows a plastic strain of 31%.
基金supported by the grant from the Natural Science Foundation of China(51871244)the Hunan Provincial Innovation Foundation for Postgraduate(CX20200172)the Fundamental Research Funds for the Central Universities of Central South University(1053320190103)。
文摘Twinning-detwinning(TDT)behavior in a strongly basal-textured Mg-Li alloy during two-step compression(RD)-compression(ND)process was investigated using quasi-in-situ EBSD.TDT behavior and TDT variants selection were statistically discussed with the loading path for the first time.Non-Schmid twinning behavior was observed in the first step compression,owing to the local stress fluctuations by neighboring twins;in contrast,Schmid’s law well predicted the detwinning variants selection.This asymmetrical TDT behavior was first investigated to date related with the strong basal texture and loading path.Besides,with the progress of compression,Schmid factors for twinning demonstrated a decreasing tendency;however,those for detwinning during the second step displayed an abnormally increasing trend,fundamentally stemming from prior twinning behavior.
基金supported by the China Scholarship Council(No.2010602038)the Ministry of Science and Technology of China(No.2010DFA51650)
文摘The decomposition and precipitation behaviors of a quenched Cu-15wt%Sn alloy as a function of aging temperature were investigated using transmission electron microscopy (TEM). Focused ion beam (FIB) was employed to assist TEM specimen preparation. At 300 ℃, the decomposition of the supersaturated phase occurred at grain boundaries, displaying a cellular morphology. The lamellae were found with and phases, rather than with the equilibrium e and phases. The and phases exhibit a welldefined orientation relationship (OR) as On the other hand, at 320 ℃, only incipient lamellar structures of several micron meters were observed, which were composed of the 6 and phases. At the same time, abundant intragranular precipitation of the e phase in the form of platelets was observed, and OR as (lil)J/ (001), [110] J/[100] exists between e phase and the ct phase. These contrasting precipitation behaviors are discussed from the viewpoint of crystallographic coherency of these phases.
基金financial support from the National Natural Science Foundation of China(Grant no.51571084)financial support from the Grant-in-Aid for Early-Career Scientists(Grant no.18K14024)financial support from the China Scholarship Council(Grant No.201908410208)
文摘We utilized electron backscatter diffraction to investigate the microstructure evolutions of a newly developed magnesium-rare earth alloy(Mg–9.80 Gd–3.78 Y–1.12 Sm–0.48 Zr)during instantaneous hot indirect extrusion.An equiaxed fine-grained(average grain size of 3.4±0.2μm)microstructure with a weak texture was obtained.The grain refinement was mainly attributed to the discontinuous dynamic recrystallization(DDRX)and continuous DRX(CDRX)processes during the hot indirect extrusion process.The twin boundaries formed during the initial deformation stage effectively increased the number of high angle grain boundaries(HAGBs),which provided sites for new grain nuclei,and hence,resulted in an improved DDRX process.Along with DDRX,CDRX processes characterized by low angle grain boundary(LAGB)networks were also observed in the grain interior due to effective dynamic recovery(DRV)at a relatively high temperature of 773 K and high strain rates.Thereafter,LAGB networks were transformed into HAGB networks by the progressive rotation of subgrains during the CDRX process.
基金supported by METX,JSPS KAKENHI (Grant numbers, 16K0 676 6, 17H0 6519, 17K18972, 18H01727, and JP18H05513)Collaborative Research Center on Energy Materials in IMR (E-IMR)Target Project 4 of WPI-AIMR, Tohoku University
文摘We report the lithium ionic conductivities of closo –type complex hydrides synthesized from various molar ratios of lithium borohydride(LiBH4) and decaborane(B10H14) as starting materials. The prepared closo –type complex hydrides comprised [B12H12]^2-, [B11H11]^2-, and [B10H10]^2- complex anions. In addition, increasing the LiBH4 content in the starting materials increased the amounts of [B11H11]^2- and [B10H10]^2-, leading to an improved ion conductivity of the prepared sample. The present study offers useful insights into strategies for controlling the complex anion composition in emerging solid electrolytes of closo-type complex hydrides at the molecular level, and improving their ionic conductivities.
文摘Recently, the worldwide supply of rare earth element (REE) resources will be severely restricted. On the other hand, coal fly ash particles emitted from coal-fired electric power plants contain relatively high concentrations of REEs. The contents of REEs in coal fly ash are regularly several hundreds of ppmw. In order to extract and recover REEs from coal fly ash particles, as a first step, we have investigated their dissolution behavior in a dilute H2SO4 solvent. The REE content of coal fly ash specimens has been precisely determined, and their presence in the ash component of the original coal and their enrichment in coal fly ash particles during coal combustion have been suggested. REEs in coal fly ash dissolve gradually in H2SO4 over time, and this implies two types of occurrences of the REEs in coal fly ash particles. By applying the unreacted core model to the dissolution behavior of REEs in a H2SO4 solvent, we can explain both types of occurrences.
基金supported by the grant from the Natural Science Foundation of China(51871244)the Hunan Provincial Innovation Foundation for Postgraduate(CX20200172)the Fundamental Research Funds for the Central Universities of Central South University(1053320190103)
文摘The inconsistencies regarding the fundamental correlation between Gd content and slip(twinning)activities of Mg alloys appeal further investigations.However,the traditional slip dislocations analysis by TEM is time-consuming,and that by SEM/EBSD cannot recognize the partial slip modes.These urge a more efficient and comprehensive approach to easily distinguish all potential slip modes occurred concurrently in alloy matrix.Here we report a modified lattice rotation analysis that can distinguish all slip systems and provide statistical results for slip activities in Mg alloy matrix.Using this method,the high ductility of Mg-Gd alloy ascribed to the enhanced non-basal slips,cross-slip,and postponed twinning activities by Gd addition is quantitatively clarified.
文摘Yttria-stabilized zirconia and-alumina films were prepared by laser chemical vapor deposition at deposition rates of several hundred micrometers per hour.Moreover,the structural oxide coatings by laser chemical vapor deposition are reviewed.The laser can significantly accelerate the chemical reaction and grain growth in CVD,yielding high deposition rates.The films contain large amounts of nanopores that act as thermal insulation and are thus promising as coating materials for gas turbine blades of Ni-based superalloys and WC-Co cutting tools.