The crown root system is the most important root component in maize at both the vegetative and reproductive stages. However, the genetic basis of maize crown root traits(CRT) is still unclear, and the relationship bet...The crown root system is the most important root component in maize at both the vegetative and reproductive stages. However, the genetic basis of maize crown root traits(CRT) is still unclear, and the relationship between CRT and aboveground agronomic traits in maize is poorly understood. In this study, an association panel including 531 elite maize inbred lines was planted to phenotype the CRT and aboveground agronomic traits in different field environments. We found that root traits were significantly and positively correlated with most aboveground agronomic traits, including flowering time, plant architecture and grain yield. Using a genome-wide association study(GWAS)coupled with resequencing, a total of 115 associated loci and 22 high-confidence candidate genes were identified for CRT. Approximately one-third of the genetic variation in crown root was co-located with 46 QTLs derived from flowering and plant architecture. Furthermore, 103 (89.6%) of 115 crown root loci were located within known domestication-and/or improvement-selective sweeps, suggesting that crown roots might experience indirect selection in maize during domestication and improvement. Furthermore, the expression of Zm00001d036901, a high-confidence candidate gene, may contribute to the phenotypic variation in maize crown roots, and Zm00001d036901 was selected during the domestication and improvement of maize. This study promotes our understanding of the genetic basis of root architecture and provides resources for genomics-enabled improvements in maize root architecture.展开更多
Taking Cucurbita maxima and Cucurbita moschata as root stocks,and‘Jinyou No 3'cucumber as scion,the effects of different root zone temperature conditions optimal temperature(CK)(18-20℃),suboptimal temperature(13...Taking Cucurbita maxima and Cucurbita moschata as root stocks,and‘Jinyou No 3'cucumber as scion,the effects of different root zone temperature conditions optimal temperature(CK)(18-20℃),suboptimal temperature(13-15℃)and low temperature(8-10℃)on the growth and photosynthesis indexes were studied.The results showed that,compared with optimal temperature(CK),suboptimal temperature and low temperature produced a significant inhibition of growth on cucumbers.The plant height,stem diameter,leaf area,number of leaves and dry weight of aboveground part were all reduced,dry weight of underground part and root shoot ratio all increased,while the inhibition was more significant at low temperature.Low and suboptimal temperature conditions also reduced SPAD value,net photosynthetic rate,transpiration rate,intercellular CO_(2) concentration and stomatal conductance of the grafted cucumber.And there were differences between different grafted seedlings,and seedlings with‘black seeds'as stock performed better than those with‘white seeds'as stock at low temperature.展开更多
In a nine-year field experiment in a wheat-maize-sunflower cropping system in Hetao Irrigation Area,Inner Mongolia,China,organic amendments applied as straw,manure,green manure,and the combination of green manure and ...In a nine-year field experiment in a wheat-maize-sunflower cropping system in Hetao Irrigation Area,Inner Mongolia,China,organic amendments applied as straw,manure,green manure,and the combination of green manure and straw increased wheat and maize yield,soil aggregate stability,and soil microbial activity in comparison with chemical fertilizer,without changing greenhouse gas emission intensity.展开更多
基金supported by grants from the National Natural Science Foundation of China (31971891)the Guangxi Key Research and Development Projects, China (GuikeAB21238004)+1 种基金the Scientific Innovation 2030 Project, China (2022ZD0401703)the Modern AgroIndustry Technology Research System of Maize, China (CARS-02-03)。
文摘The crown root system is the most important root component in maize at both the vegetative and reproductive stages. However, the genetic basis of maize crown root traits(CRT) is still unclear, and the relationship between CRT and aboveground agronomic traits in maize is poorly understood. In this study, an association panel including 531 elite maize inbred lines was planted to phenotype the CRT and aboveground agronomic traits in different field environments. We found that root traits were significantly and positively correlated with most aboveground agronomic traits, including flowering time, plant architecture and grain yield. Using a genome-wide association study(GWAS)coupled with resequencing, a total of 115 associated loci and 22 high-confidence candidate genes were identified for CRT. Approximately one-third of the genetic variation in crown root was co-located with 46 QTLs derived from flowering and plant architecture. Furthermore, 103 (89.6%) of 115 crown root loci were located within known domestication-and/or improvement-selective sweeps, suggesting that crown roots might experience indirect selection in maize during domestication and improvement. Furthermore, the expression of Zm00001d036901, a high-confidence candidate gene, may contribute to the phenotypic variation in maize crown roots, and Zm00001d036901 was selected during the domestication and improvement of maize. This study promotes our understanding of the genetic basis of root architecture and provides resources for genomics-enabled improvements in maize root architecture.
基金Supported by National Natural Science Foundation of China(31060269)Science and Technology Planning Project of the Inner Mongolia Autonomous Region(20110710)+2 种基金Doctor Station Fund of Ministry of Education(20101515110005)Program of Research and Innovation for Graduate Students in Inner Mongolia(B20151012904Z)Science Research Project of Colleges and Universities in the Inner Mongolia Autonomous Region(NJZY060,NJZC17068)
文摘Taking Cucurbita maxima and Cucurbita moschata as root stocks,and‘Jinyou No 3'cucumber as scion,the effects of different root zone temperature conditions optimal temperature(CK)(18-20℃),suboptimal temperature(13-15℃)and low temperature(8-10℃)on the growth and photosynthesis indexes were studied.The results showed that,compared with optimal temperature(CK),suboptimal temperature and low temperature produced a significant inhibition of growth on cucumbers.The plant height,stem diameter,leaf area,number of leaves and dry weight of aboveground part were all reduced,dry weight of underground part and root shoot ratio all increased,while the inhibition was more significant at low temperature.Low and suboptimal temperature conditions also reduced SPAD value,net photosynthetic rate,transpiration rate,intercellular CO_(2) concentration and stomatal conductance of the grafted cucumber.And there were differences between different grafted seedlings,and seedlings with‘black seeds'as stock performed better than those with‘white seeds'as stock at low temperature.
基金supported by the National Key Research and Development Program of China (2021YFD1700200)the earmarked fund for CARS-Green manure (CARS-22)+2 种基金the Inner Mongolia Natural Science Foundation (2022QN03032)the National Natural Science Foundation of China (32101852, 42207388)the Inner Mongolia Science and Technology Plan Project (2023YFHH0011)
文摘In a nine-year field experiment in a wheat-maize-sunflower cropping system in Hetao Irrigation Area,Inner Mongolia,China,organic amendments applied as straw,manure,green manure,and the combination of green manure and straw increased wheat and maize yield,soil aggregate stability,and soil microbial activity in comparison with chemical fertilizer,without changing greenhouse gas emission intensity.