Quinoa research aims to deeply understand its nutritional value,develop planting techniques,and explore food applications to promote quinoa industry development and improve human health.Future research directions incl...Quinoa research aims to deeply understand its nutritional value,develop planting techniques,and explore food applications to promote quinoa industry development and improve human health.Future research directions include further exploring nutritional functions,adaptive breeding,cultivation techniques and food processing of quinoa,so as to promote innovation and development in the quinoa industry.Expected outcomes include increased production,improved quality,expanded markets,diversified food sources,reduced environmental impact,and biodiversity protection.There are still challenges such as fluctuating market demand,resource constraints,insufficient nutritional knowledge,and fierce competition.Solutions may include education and publicity,diversified product lines,health certification and brand building,partnerships,new variety cultivation and sustainable farming,and resource sharing.Future research and practice will further promote innovation and development in the quinoa industry,making it one of the most important food and functional ingredients globally.展开更多
Adjusting agronomic measures to alleviate the kernel position effect in maize is important for ensuring high yields.In order to clarify whether the combined application of organic fertilizer and chemical fertilizer(CA...Adjusting agronomic measures to alleviate the kernel position effect in maize is important for ensuring high yields.In order to clarify whether the combined application of organic fertilizer and chemical fertilizer(CAOFCF)can alleviate the kernel position effect of summer maize,field experiments were conducted during the 2019 and 2020 growing seasons,and five treatments were assessed:CF,100%chemical fertilizer;OFCF1,15%organic fertilizer+85%chemical fertilizer;OFCF2,30%organic fertilizer+70%chemical fertilizer;OFCF3,45%organic fertilizer+55%chemical fertilizer;and OFCF4,60%organic fertilizer+40%chemical fertilizer.Compared with the CF treatment,the OFCF1 and OFCF2 treatments significantly alleviated the kernel position effect by increasing the weight ratio of inferior kernels to superior kernels and reducing the weight gap between the superior and inferior kernels.These effects were largely due to the improved filling and starch accumulation of inferior kernels.However,there were no obvious differences in the kernel position effect among plants treated with CF,OFCF3,or OFCF4 in most cases.Leaf area indexes,post-silking photosynthetic rates,and net assimilation rates were higher in plants treated with OFCF1 or OFCF2 than in those treated with CF,reflecting an enhanced photosynthetic capacity and improved postsilking dry matter accumulation(DMA)in the plants treated with OFCF1 or OFCF2.Compared with the CF treatment,the OFCF1 and OFCF2 treatments increased post-silking N uptake by 66.3 and 75.5%,respectively,which was the major factor driving post-silking photosynthetic capacity and DMA.Moreover,the increases in root DMA and zeatin riboside content observed following the OFCF1 and OFCF2 treatments resulted in reduced root senescence,which is associated with an increased post-silking N uptake.Analyses showed that post-silking N uptake,DMA,and grain yield in summer maize were negatively correlated with the kernel position effect.In conclusion,the combined application of 15-30%organic fertilizer and 70-85%chemical fertilizer alleviated the kernel position effect in summer maize by improving post-silking N uptake and DMA.These results provide new insights into how CAOFCF can be used to improve maize productivity.展开更多
[Objectives]To study the optimum sowing density of quinoa in Chengde region.[Methods]Yanli No.2 cultivated by Institute of Millet Crops,Hebei Academy of Agriculture and Forestry Sciences was taken as test material.In ...[Objectives]To study the optimum sowing density of quinoa in Chengde region.[Methods]Yanli No.2 cultivated by Institute of Millet Crops,Hebei Academy of Agriculture and Forestry Sciences was taken as test material.In Chengde region,single-factor density test design was used to study the effects of sowing on agronomic characters and yield of quinoa.[Results]Quinoa had the highest comprehensive yield when row spacing was 30 cm and plant spacing was 25 cm.[Conclusions]The research could provide theoretical basis for quinoa planting in Chengde region.展开更多
基金Supported by Beijing Science and Technology Program(Z201100008020006).
文摘Quinoa research aims to deeply understand its nutritional value,develop planting techniques,and explore food applications to promote quinoa industry development and improve human health.Future research directions include further exploring nutritional functions,adaptive breeding,cultivation techniques and food processing of quinoa,so as to promote innovation and development in the quinoa industry.Expected outcomes include increased production,improved quality,expanded markets,diversified food sources,reduced environmental impact,and biodiversity protection.There are still challenges such as fluctuating market demand,resource constraints,insufficient nutritional knowledge,and fierce competition.Solutions may include education and publicity,diversified product lines,health certification and brand building,partnerships,new variety cultivation and sustainable farming,and resource sharing.Future research and practice will further promote innovation and development in the quinoa industry,making it one of the most important food and functional ingredients globally.
基金financially supported by the HAAFS Science and Technology Innovation Special Project China(2022KJCXZX-LYS-9)the Natural Science Foundation of Hebei Province China(C2021301004)the Key Research and Dvelopment Program of Hebei Province China(20326401D)。
文摘Adjusting agronomic measures to alleviate the kernel position effect in maize is important for ensuring high yields.In order to clarify whether the combined application of organic fertilizer and chemical fertilizer(CAOFCF)can alleviate the kernel position effect of summer maize,field experiments were conducted during the 2019 and 2020 growing seasons,and five treatments were assessed:CF,100%chemical fertilizer;OFCF1,15%organic fertilizer+85%chemical fertilizer;OFCF2,30%organic fertilizer+70%chemical fertilizer;OFCF3,45%organic fertilizer+55%chemical fertilizer;and OFCF4,60%organic fertilizer+40%chemical fertilizer.Compared with the CF treatment,the OFCF1 and OFCF2 treatments significantly alleviated the kernel position effect by increasing the weight ratio of inferior kernels to superior kernels and reducing the weight gap between the superior and inferior kernels.These effects were largely due to the improved filling and starch accumulation of inferior kernels.However,there were no obvious differences in the kernel position effect among plants treated with CF,OFCF3,or OFCF4 in most cases.Leaf area indexes,post-silking photosynthetic rates,and net assimilation rates were higher in plants treated with OFCF1 or OFCF2 than in those treated with CF,reflecting an enhanced photosynthetic capacity and improved postsilking dry matter accumulation(DMA)in the plants treated with OFCF1 or OFCF2.Compared with the CF treatment,the OFCF1 and OFCF2 treatments increased post-silking N uptake by 66.3 and 75.5%,respectively,which was the major factor driving post-silking photosynthetic capacity and DMA.Moreover,the increases in root DMA and zeatin riboside content observed following the OFCF1 and OFCF2 treatments resulted in reduced root senescence,which is associated with an increased post-silking N uptake.Analyses showed that post-silking N uptake,DMA,and grain yield in summer maize were negatively correlated with the kernel position effect.In conclusion,the combined application of 15-30%organic fertilizer and 70-85%chemical fertilizer alleviated the kernel position effect in summer maize by improving post-silking N uptake and DMA.These results provide new insights into how CAOFCF can be used to improve maize productivity.
基金Supported by Key R&D Projects in Hebei Province(19227527D)Science and Technology Innovation Team Project of Hebei Coarse Grain and Soybean Seed Industry。
文摘[Objectives]To study the optimum sowing density of quinoa in Chengde region.[Methods]Yanli No.2 cultivated by Institute of Millet Crops,Hebei Academy of Agriculture and Forestry Sciences was taken as test material.In Chengde region,single-factor density test design was used to study the effects of sowing on agronomic characters and yield of quinoa.[Results]Quinoa had the highest comprehensive yield when row spacing was 30 cm and plant spacing was 25 cm.[Conclusions]The research could provide theoretical basis for quinoa planting in Chengde region.