期刊文献+
共找到7篇文章
< 1 >
每页显示 20 50 100
Direct microwelding of dissimilar glass and Kovar alloy without optical contact using femtosecond laser pulses 被引量:1
1
作者 JI Chang-hao HUANG Yu-jia +3 位作者 CHEN Xu JIANG Ji-yan GUO Zhi-jun LONG Yu 《Journal of Central South University》 SCIE EI CAS CSCD 2022年第10期3422-3435,共14页
In the current microwelding process using femtosecond(fs) laser between dissimilar materials,surface polishing and pressure assistance,so-called optical contact,are believed necessary.In this paper,direct welding of s... In the current microwelding process using femtosecond(fs) laser between dissimilar materials,surface polishing and pressure assistance,so-called optical contact,are believed necessary.In this paper,direct welding of soda lime glass and Kovar alloy using a fs laser is investigated to overcome the limit of optical contact.The processing of fs laser welding is comprehensively studied by varying the laser power,welding velocity and the number of welding.The shear joining strength is as high as 2 MPa.The cross-section of glass-Kovar alloy joints,the elemental diffusion and the fracture behavior of welded joints were studied.The results show that the fs laser irradiates the surface of Kovar alloy,micron/nanometer-sized metal particles are generated.These particles perform the role as an adhesive part in the welding process.It is believed that the Si atoms diffuses to Kovar alloy from the glass and partially replaces the Fe^(2+) ions on the surface of Kovar alloy,indicating that the mixing and interdiffusion of materials have occurred during the welding process.Finally,the welded sample was tested and has excellent water resistance and sealing property.Furthermore,to justify that this method can be applied to other stack ups,the glass-copper,the glass-Al6063 and sapphire-ceramic are also welded together.This work greatly simplifies the fs laser microwelding process and promotes its industrial applications,such as optoelectronic devices,medical devices and MEMS. 展开更多
关键词 femtosecond laser microwelding GLASS Kovar alloy optical contact
在线阅读 下载PDF
Thin-disk multi-pass amplifier for kilowatt-class ultrafast lasers
2
作者 Sizhi Xu Xing Liu +13 位作者 Yubo Gao Zuoyuan Ou Fayyaz Javed Xingyu He Haotian Lu Junzhan Chen Yewang Chen Deqin Ouyang Junqing Zhao Xu Wu Chunyu Guo Cangtao Zhou Qitao Lue Shuangchen Ruan 《High Power Laser Science and Engineering》 CSCD 2024年第5期22-27,共6页
We report on an improved ytterbium-doped yttrium aluminum garnet thin-disk multi-pass amplifier for kilowatt-level ultrafast lasers,showcasing excellent beam quality.At a repetition rate of 800 kHz,the 6.8 ps,276 W se... We report on an improved ytterbium-doped yttrium aluminum garnet thin-disk multi-pass amplifier for kilowatt-level ultrafast lasers,showcasing excellent beam quality.At a repetition rate of 800 kHz,the 6.8 ps,276 W seed laser is amplified up to an average power of 1075 W,corresponding to a pulse energy of 1.34 mJ.The 36-pass amplifier is designed as a compact mirror array in which the beam alternately propagates between the mirrors and the disk by a quasi-collimated state.We adopted a quasi-collimated propagation to confine stray and diffracted light by the slight curvature of the disk,which enables us to achieve an outstanding extraction efficiency of up to 57%with excellent beam quality in stable laser operation at high power.The beam quality at 1075 W was measured to be M^(2)<1.51.Furthermore,stability testing was demonstrated with a root-mean-square power fiuctuation of less than 1.67%for 10 min. 展开更多
关键词 high-power laser kilowatt level multi-pass amplifier thin-disk laser ultrafast laser
原文传递
Mode-locked fiber laser of 3.5 μm using a single-walled carbon nanotube saturable absorber mirror 被引量:5
3
作者 Jincheng Wei Peng Li +9 位作者 Linpeng Yu Shuangchen Ruan Keyi Li Peiguang Yan Jiachen Wang Jinzhang Wang Chunyu Guo Wenjun Liu Ping Hua Qitao Lü 《Chinese Optics Letters》 SCIE EI CAS CSCD 2022年第1期79-84,共6页
We report on a mid-infrared fiber laser that uses a single-walled carbon nanotube saturable absorber mirror to realize the mode-locking operation.The laser generates 3.5 μm ultra-short pulses from an erbium-doped flu... We report on a mid-infrared fiber laser that uses a single-walled carbon nanotube saturable absorber mirror to realize the mode-locking operation.The laser generates 3.5 μm ultra-short pulses from an erbium-doped fluoride fiber by utilizing a dual-wavelength pumping scheme.Stable mode-locking is achieved at the 3.5 μm band with a repetition rate of 25.2 MHz.The maximum average power acquired from the laser in the mode-locking regime is 25 mW.The experimental results indicate that the carbon nanotube is an effective saturable absorber for mode-locking in the mid-infrared spectral region. 展开更多
关键词 mid-infrared laser fluoride fiber laser mode-locked laser saturable absorber
原文传递
High period frequency LIPSS emerging on 304 stainless steel under the irradiation of femtosecond laser double-pulse trains 被引量:4
4
作者 Yifei Li Jie Hu +2 位作者 Wei Liu Jiangang Yin Jiangang Lu 《Chinese Optics Letters》 SCIE EI CAS CSCD 2021年第12期156-163,共8页
In this work,we used femtosecond laser double-pulse trains to produce laser-induced periodic surface structures(LIPSS)on 304 stainless steel.Surprisingly,a novel type of periodic structure was discovered,which,to the ... In this work,we used femtosecond laser double-pulse trains to produce laser-induced periodic surface structures(LIPSS)on 304 stainless steel.Surprisingly,a novel type of periodic structure was discovered,which,to the best of our knowledge,is the first in literature.We surmised that the cause for this novel LIPSS was related to the weak energy coupling of subpulses when the intrapulse delay was longer than the thermal relaxation time of stainless steel.Furthermore,we found that the fluence combination and arrival sequence of subpulses in a double-pulse train also influenced LIPSS morphology. 展开更多
关键词 femtosecond laser laser-induced periodic surface structures morphology stainless steel
原文传递
High-power mid-infrared femtosecond master oscillator power amplifier Er:ZBLAN fiber laser system 被引量:1
5
作者 Linpeng Yu Jinhui Liang +9 位作者 Qinghui Zeng Jiacheng Wang Xing Luo Jinzhang Wang Peiguang Yan Fanlong Dong Xing Liu Qitao Lü Chunyu Guo Shuangchen Ruan 《High Power Laser Science and Engineering》 SCIE EI CAS CSCD 2023年第4期85-90,共6页
High-power femtosecond mid-infrared(MIR)lasers are of vast importance to both fundamental research and applications.We report a high-power femtosecond master oscillator power amplifier laser system consisting of a sin... High-power femtosecond mid-infrared(MIR)lasers are of vast importance to both fundamental research and applications.We report a high-power femtosecond master oscillator power amplifier laser system consisting of a singlemode Er:ZBLAN fiber mode-locked oscillator and pre-amplifier followed by a large-mode-area Er:ZBLAN fiber main amplifier.The main amplifier is actively cooled and bidirectionally pumped at 976 nm,generating a slope efficiency of 26.9%.Pulses of 8.12 W,148 fs at 2.8μm with a repetition rate of 69.65 MHz are achieved.To the best of our knowledge,this is the highest average power ever achieved from a femtosecond MIR laser source.Such a compact ultrafast laser system is promising for a wide range of applications,such as medical surgery and material processing. 展开更多
关键词 femtosecond fiber laser fluoride fiber amplifier master oscillator power amplifier MID-INFRARED
原文传递
High-repetition-rate and high-power efficient picosecond thin-disk regenerative amplifier 被引量:1
6
作者 Sizhi Xu Yubo Gao +9 位作者 Xing Liu Yewang Chen Deqin Ouyang Junqing Zhao Minqiu Liu Xu Wu Chunyu Guo Cangtao Zhou Qitao Lue Shuangchen Ruan 《High Power Laser Science and Engineering》 SCIE CAS CSCD 2024年第2期16-23,共8页
We present an effective approach to realize a highly efficient,high-power and chirped pulse amplification-free ultrafast ytterbium-doped yttrium aluminum garnet thin-disk regenerative amplifier pumped by a zero-phonon... We present an effective approach to realize a highly efficient,high-power and chirped pulse amplification-free ultrafast ytterbium-doped yttrium aluminum garnet thin-disk regenerative amplifier pumped by a zero-phonon line 969 nm laser diode.The amplifier delivers an output power exceeding 154 W at a pulse repetition rate of 1 MHz with custom-designed 48 pump passes.The exceptional thermal management on the thin disk through high-quality bonding,efficient heat dissipation and a fully locked spectrum collectively contributes to achieving a remarkable optical-to-optical efficiency of 61%and a near-diffraction-limit beam quality with an M2 factor of 1.06.To the best of our knowledge,this represents the highest conversion efficiency reported in ultrafast thin-disk regenerative amplifiers.Furthermore,the amplifier operates at room temperature and exhibits exceptional stability,with root mean square stability of less than 0.33%.This study significantly represents advances in the field of laser amplification systems,particularly in terms of efficiency and average power.This advantageous combination of high efficiency and diffraction limitation positions the thin-disk regenerative amplifier as a promising solution for a wide range of scientific and industrial applications. 展开更多
关键词 high efficiency high power picosecond laser regenerative amplifier thin-disk laser
原文传递
Generation of single solitons tunable from 3 to3.8μm in cascaded Er^(3+)-doped and Dy^(3+)-doped fluoride fiber amplifiers 被引量:2
7
作者 LINPENG YU JINHUI LIANG +9 位作者 SHITING HUANG JINZHANG WANG JIACHEN WANG XING LUO PEIGUANG YAN FANLONG DONG XING LIU QITAO LUE CHUNYU GUO SHUANGCHEN RUAN 《Photonics Research》 SCIE EI CAS CSCD 2022年第9期2140-2146,共7页
High-power tunable femtosecond mid-infrared(MIR)pulses are of great interest for many scientific and industrial applications.Here we demonstrate a compact fluoride-fiber-based system that generates single solitons tun... High-power tunable femtosecond mid-infrared(MIR)pulses are of great interest for many scientific and industrial applications.Here we demonstrate a compact fluoride-fiber-based system that generates single solitons tunable from 3 to 3.8μm.The system is composed of an Er:ZBLAN fiber oscillator and amplifier followed by a fusion-spliced Dy:ZBLAN fiber amplifier.The Er:ZBLAN fiber amplifier acts as a power booster as well as a frequency shifter to generate Raman solitons up to 3μm.The Dy:ZBLAN fiber amplifier transfers the energy from the residual 2.8μm radiation into the Raman solitons using an in-band pumping scheme,and further extends the wavelength up to 3.8μm.Common residual pump radiation and secondary solitons accompanying the soliton self-frequency shift(SSFS)are recycled to amplify Raman solitons,consequently displaying a higher output power and pulse energy,a wider shifting range,and an excellent spectral purity.Stable 252 fs pulses at3.8μm with a record average power of 1.6 W and a pulse energy of 23 n J are generated.This work provides an effective way to develop high-power widely tunable ultrafast single-soliton MIR laser sources,and this method can facilitate the design of other SSFS-based laser systems for single-soliton generation. 展开更多
关键词 fiber TUNABLE AMPLIFIER
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部