Circulating tumor cells (CTC) are rarely detected in the blood of cancer patients, even though they are a direct harbinger of eventual patient demise. We developed an innovative CTC culture technology to allow more se...Circulating tumor cells (CTC) are rarely detected in the blood of cancer patients, even though they are a direct harbinger of eventual patient demise. We developed an innovative CTC culture technology to allow more sensitive isolation, expansion, and characterization of viable colonies from patient blood. In this assay, the entire leukocyte fraction from 10 ml of anticoagulated patient blood is placed into culture medium without any pre-selection. After 16 days in culture, CTC derived colonies are counted. As a proof-of-principle, blood samples from 58 Stage IIa-IV melanoma patients were tested. Ninety percent of these samples grew colonies. The colony numbers ranged from 0 - 308 (mean 63 ± 9.5 SEM). Ten normal volunteers had virtually no growth (mean 0.5 ± 1.4 colonies). Colonies were harvested using a micropipette for characterization. Tumor-cell containing spheroids were embedded in paraffin, sectioned, and stained with melanoma-specific mAb for histologic characterization. MITF proved to be the most consistent immunostain that identified melanoma cells in these colonies. A host-cell component in colonies was also identified using CD68 and CD43 mAb staining. Following enzymatic dissociation of colonies, a variety of immunostains were tested. Papanicolau staining proved most useful for identifying the abnormal nuclei of tumor cells. Flow cytometry could readily distinguish host and tumor cell populations based on DNA content and forward/side scatter in dissociated colonies. The stem cell marker ALDH1A1 associated with the aneuploid population, but CD45 was expressed on both diploid and aneuploid cells. The ability to repeatedly isolate CTC derived colonies from cancer patient blood samples opens the door to a novel type of long-term clinical monitoring. This novel CTC culture technology may prove useful to perform molecular characterization, assessment of treatment response, and testing of drug sensitivity and resistance in patients during treatment.展开更多
Genetically engineered mouse(GEM)models are commonly used in biomedical research.Generating GEMs involve complex set of experimental procedures requiring sophisticated equipment and highly skilled technical staff.Beca...Genetically engineered mouse(GEM)models are commonly used in biomedical research.Generating GEMs involve complex set of experimental procedures requiring sophisticated equipment and highly skilled technical staff.Because of these reasons,most research institutes set up centralized core facilities where custom GEMs are created for research groups.Researchers,on the other hand,when they begin thinking about generating GEMs for their research,several questions arise in their minds.For example,what type of model(s)would be best useful for my research,how do I design them,what are the latest technologies and tools available for developing my model(s),and finally how to breed GEMs in my research.As there are several considerations and options in mouse designs,and as it is an expensive and time-consuming endeavor,careful planning upfront can ensure the highest chance of success.In this article,we provide brief answers to several frequently asked questions that arise when researchers begin thinking about generating mouse model(s)for their work.展开更多
Metastatic Merkel Cell carcinoma (MCC) is a highly unusual and aggressive skin cancer that presents as a small, pink to violet skin lesion and metastasizes early in its growth. Metastatic MCC is generally treated with...Metastatic Merkel Cell carcinoma (MCC) is a highly unusual and aggressive skin cancer that presents as a small, pink to violet skin lesion and metastasizes early in its growth. Metastatic MCC is generally treated with small cell lung cancer chemotherapy regimens, because the tumor consists of neuroendocrine cells, but patients generally do not have durable responses. The pathogenesis of MCC has recently been attributed to the Merkel Cell polyoma virus. This virus activates the cellular retinoblastoma oncoprotein and cell cycle machinery, triggering continual cellular proliferation. A 77-year-old man developed extensive MCC metastases, involving more than one fourth of his scalp and numerous cervical lymph nodes. Following failure of initial chemotherapy and radiation, effective palliation was achieved by using a sequence of electron-beam radiotherapy, low dose gemcitabine, and etoposide, resulting in significant periods of tumor regression and prolonged survival. A novel circulating tumor cell (CTC) culture assay was performed on four separate clinic visits during the treatment period. Tumor colonies were cultured from the patient’s peripheral blood and CTC colony counts were correlated with clinical treatment response. Not only did the patient respond to palliative cell cycle directed chemotherapy and electron beam radiation, but we demonstrated that CTC can be cultured from peripheral blood of MCC patients and serve as a predictive marker to monitor treatment response.展开更多
Background: Sporadic colorectal tumors probably carry genetic alterations that may be related to familiar clusters according to risk loci visualized by SNP arrays on normal tissues. The aim of the present study was th...Background: Sporadic colorectal tumors probably carry genetic alterations that may be related to familiar clusters according to risk loci visualized by SNP arrays on normal tissues. The aim of the present study was therefore to search for DNA regions (copy number variations, CNVs) as biomarkers associated to genetic susceptibility for early risk predictions of colorectal cancer. Such sequence alterations could provide additional information on phenotypic grouping of patients. Material and Methods: High resolution 105K oligonucleotide microarrays were used in search for CNV loci in DNA from tumor-free colon mucosa at primary operations for colon cancer in 60 unselected patients in comparison to DNA in buffy coat cells from 44 confirmed tumor-free and healthy blood donors. Array-detected CNVs were confirmed by Multiplex ligation-dependent probe amplification (MLPA). Results: A total number of 205 potential CNVs were present in DNA from colon mucosa. 184 (90%) of the 205 potential CNVs had been identified earlier in mucosa DNA from healthy individuals as reported to the Database of Genomic Variants. Remaining 21 (10%) CNVs were potentially novel sites. Two CNVs (3q23 and 10q21.1) were significantly related to colon cancer, but not confirmed in buffy coat DNA from the cancer patients. Conclusion: Our study reveals two CNVs that indicate increased risk for colon cancer;These DNA alterations may have? been acquired by colon stem cells with subsequent appearance among epithelial mucosa cells. Impact: Certain mucosa CNV alterations may indicate individual susceptibility for malignant transformation in relationship to intestinal toxins and bacterial growth.展开更多
Recent studies reveal a critical role of tumor cell-released extracellular vesicles(EVs)in pancreatic cancer(PC)progression.However,driver genes that direct EV function,the EV-recipient cells,and their cellular respon...Recent studies reveal a critical role of tumor cell-released extracellular vesicles(EVs)in pancreatic cancer(PC)progression.However,driver genes that direct EV function,the EV-recipient cells,and their cellular response to EV uptake remain to be identified.Therefore,we studied the role of Bcl-2-associated-anthanogene 6(BAG6),a regulator of EV biogenesis for cancer progression.We used a Cre recombinase/LoxP-based reporter system in combination with single-cell RNA sequencing to monitor in vivo EV uptake and tumor microenvironment(TME)changes in mouse models for pancreatic ductal adenocarcinoma(PDAC)in a Bag6 pro-or deficient background.In vivo data were validated using mouse and human organoids and patient samples.Our data demonstrated that Bag6-deficient subcutaneous and orthotopic PDAC tumors accelerated tumor growth dependent on EV release.Mechanistically,this was attributed to mast cell(MC)activation via EV-associated IL33.Activated MCs promoted tumor cell proliferation and altered the composition of the TME affecting fibroblast polarization and immune cell infiltration.Tumor cell proliferation and fibroblast polarization were mediated via the MC secretome containing high levels of PDGF and CD73.Patients with high BAG6 gene expression and high protein plasma level have a longer overall survival indicating clinical relevance.The current study revealed a so far unknown tumor-suppressing activity of BAG6 in PDAC.Bag6-deficiency allowed the release of EV-associated IL33 which modulate the TME via MC activation promoting aggressive tumor growth.MC depletion using imatinib diminished tumor growth providing a scientific rationale to consider imatinib for patients stratified with low BAG6 expression and high MC infiltration.展开更多
Medicago truncatula is a model legume species that has been studied for decades to understand the symbiotic relationship between legumes and soil bacteria collectively named rhizobia.This symbiosis called nodulation i...Medicago truncatula is a model legume species that has been studied for decades to understand the symbiotic relationship between legumes and soil bacteria collectively named rhizobia.This symbiosis called nodulation is initiated in roots with the infection of root hair cells by the bacteria,as well as the initiation of nodule primordia from root cortical,endodermal,and pericycle cells,leading to the development of a new root organ,the nodule,where bacteria fix and assimilate the atmospheric dinitrogen for the benefit of the plant.Here,we report the isolation and use of the nuclei from mock and rhizobia-inoculated roots for the single nuclei RNA-seq(sNucRNA-seq)profiling to gain a deeper understanding of early responses to rhizobial infection in Medicago roots.A gene expression map of the Medicago root was generated,comprising 25 clusters,which were annotated as specific cell types using 119 Medicago marker genes and orthologs to Arabidopsis cell-type marker genes.A focus on root hair,cortex,endodermis,and pericycle cell types,showing the strongest differential regulation in response to a short-term(48 h)rhizobium inoculation,revealed not only known genes and functional pathways,validating the sNucRNA-seq approach,but also numerous novel genes and pathways,allowing a comprehensive analysis of early root symbiotic responses at a cell type-specific level.展开更多
Colorectal cancer(CRC)is a predominant life-threatening cancer,with liver and peritoneal metastases as the primary causes of death.Intestinal inflammation,a known CRC risk factor,nurtures a local inflammatory environm...Colorectal cancer(CRC)is a predominant life-threatening cancer,with liver and peritoneal metastases as the primary causes of death.Intestinal inflammation,a known CRC risk factor,nurtures a local inflammatory environment enriched with tumor cells,endothelial cells,immune cells,cancer-associated fibroblasts,immunosuppressive cells,and secretory growth factors.The complex interactions of aberrantly expressed cytokines,chemokines,growth factors,and matrix-remodeling enzymes promote CRC pathogenesis and evoke systemic responses that affect disease outcomes.Mounting evidence suggests that these cytokines and chemokines play a role in the progression of CRC through immunosuppression and modulation of the tumor microenvironment,which is partly achieved by the recruitment of immunosuppressive cells.These cells impart features such as cancer stem cell-like properties,drug resistance,invasion,and formation of the premetastatic niche in distant organs,promoting metastasis and aggressive CRC growth.A deeper understanding of the cytokineand chemokine-mediated signaling networks that link tumor progression and metastasis will provide insights into the mechanistic details of disease aggressiveness and facilitate the development of novel therapeutics for CRC.Here,we summarized the current knowledge of cytokine-and chemokine-mediated crosstalk in the inflammatory tumor microenvironment,which drives immunosuppression,resistance to therapeutics,and metastasis during CRC progression.We also outlined the potential of this crosstalk as a novel therapeutic target for CRC.The major cytokine/chemokine pathways involved in cancer immunotherapy are also discussed in this review.展开更多
Market drugs,suchas Foodand Drug Administration(FDA)or European Medicines Agency(EMA)-approved drugs for specific indications provide opportunities for repurposing for newer therapeutics.This potentially saves resourc...Market drugs,suchas Foodand Drug Administration(FDA)or European Medicines Agency(EMA)-approved drugs for specific indications provide opportunities for repurposing for newer therapeutics.This potentially saves resources invested in clinical trials that verify drug safety and tolerance in humans prior to alternative indication approval.Protein arginine methyltransferase 5(PRMT5)overexpression has been linked to promoting the tumor phenotype in several cancers,including pancreatic ductal adenocarcinoma(PDAC),colorectal cancer(CRC),and breast cancer(BC),making PRMT5 an important target for cancer therapy.Previously,we showed that PRMT5-mediated methylation of the nuclear factor(NF)-kB,partially contributes to its constitutive activation observed in cancers.In this study,we utilized an AlphaLiSA-based high-throughput screening method adapted in our lab,and identified one FDA-approved drug,Candesartan cilexetil(Can,used in hypertension treatment)and one EMA-approved drug,Cloperastine hydrochloride(Clo,used in cough treatment)that had significant PRMT5-inhibitory activity,and their anti-tumor properties were validated using cancer phenotypic assays in vitro.Furthermore,PRMT5 selective inhibition of methyltransferase activity was confirmed by reduction of both NF-kB methylation and its subsequent activation upon drug treatment.Using in silico prediction,we identified critical residues on PRMT5 targeted by these drugs that may interfere with its enzymatic activity.Finally,Clo and Can treatment have exhibited marked reduction in tumor growth in vivo.Overall,we provide basis for pursuing repurposing Clo and Can as anti-PRMT5 cancer therapies.Our study offers potential safe and fast repurposing of previously unknown PRMT5 inhibitors into clinical practice.展开更多
Exposure to disinfection by-products(DBP) such as trihalomethanes(THM) in swimming pools has been linked to adverse health effects in humans, but their biological mechanisms are unclear. We evaluated short-term ch...Exposure to disinfection by-products(DBP) such as trihalomethanes(THM) in swimming pools has been linked to adverse health effects in humans, but their biological mechanisms are unclear. We evaluated short-term changes in blood gene expression of adult recreational swimmers after swimming in a chlorinated pool. Volunteers swam 40 min in an indoor chlorinated pool. Blood samples were drawn and four THM(chloroform,bromodichloromethane, dibromochloromethane and bromoform) were measured in exhaled breath before and after swimming. Intensity of physical activity was measured as metabolic equivalents(METs). Gene expression in whole blood m RNA was evaluated using Illumina Human HT-12v3 Expression-Bead Chip. Linear mixed models were used to evaluate the relationship between gene expression changes and THM exposure. Thirty-seven before-after pairs were analyzed. The median increase from baseline to after swimming were: 0.7 to 2.3 for MET, and 1.4 to 7.1 μg/m^3 for exhaled total THM(sum of the four THM).Exhaled THM increased on average 0.94 μg/m^3 per 1 MET. While 1643 probes were differentially expressed post-exposure. Of them, 189 were also associated with exhaled levels of individual/total THM or MET after False Discovery Rate. The observed associations with the exhaled THM were low to moderate(Log-fold change range:-0.17 to 0.15). In conclusion, we identified short-term gene expression changes associated with swimming in a pool that were minor in magnitude and their biological meaning was unspecific. The high collinearity between exhaled THM levels and intensity of physical activity precluded mutually adjusted models with both covariates. These exploratory results should be validated in future studies.展开更多
文摘Circulating tumor cells (CTC) are rarely detected in the blood of cancer patients, even though they are a direct harbinger of eventual patient demise. We developed an innovative CTC culture technology to allow more sensitive isolation, expansion, and characterization of viable colonies from patient blood. In this assay, the entire leukocyte fraction from 10 ml of anticoagulated patient blood is placed into culture medium without any pre-selection. After 16 days in culture, CTC derived colonies are counted. As a proof-of-principle, blood samples from 58 Stage IIa-IV melanoma patients were tested. Ninety percent of these samples grew colonies. The colony numbers ranged from 0 - 308 (mean 63 ± 9.5 SEM). Ten normal volunteers had virtually no growth (mean 0.5 ± 1.4 colonies). Colonies were harvested using a micropipette for characterization. Tumor-cell containing spheroids were embedded in paraffin, sectioned, and stained with melanoma-specific mAb for histologic characterization. MITF proved to be the most consistent immunostain that identified melanoma cells in these colonies. A host-cell component in colonies was also identified using CD68 and CD43 mAb staining. Following enzymatic dissociation of colonies, a variety of immunostains were tested. Papanicolau staining proved most useful for identifying the abnormal nuclei of tumor cells. Flow cytometry could readily distinguish host and tumor cell populations based on DNA content and forward/side scatter in dissociated colonies. The stem cell marker ALDH1A1 associated with the aneuploid population, but CD45 was expressed on both diploid and aneuploid cells. The ability to repeatedly isolate CTC derived colonies from cancer patient blood samples opens the door to a novel type of long-term clinical monitoring. This novel CTC culture technology may prove useful to perform molecular characterization, assessment of treatment response, and testing of drug sensitivity and resistance in patients during treatment.
基金We thank D.D.Meigs(University of Nebraska Medical Center)and Tonya Cejka(freelance English editor)for editing assistance.C.B.G.is funded by NIH grants R35HG010719,R21GM129559,R21AI143394 and R21DA046831.M.O.is funded by 2016–2017 Tokai University School of Medicine Project Research,the Research Aid from the Institute of Medical Sciences in Tokai University,Grant-in-Aid for Scientific Research(25290035)from MEXTa Grant-in-Aid for Challenging Exploratory Research(15K14371)from JSPS.
文摘Genetically engineered mouse(GEM)models are commonly used in biomedical research.Generating GEMs involve complex set of experimental procedures requiring sophisticated equipment and highly skilled technical staff.Because of these reasons,most research institutes set up centralized core facilities where custom GEMs are created for research groups.Researchers,on the other hand,when they begin thinking about generating GEMs for their research,several questions arise in their minds.For example,what type of model(s)would be best useful for my research,how do I design them,what are the latest technologies and tools available for developing my model(s),and finally how to breed GEMs in my research.As there are several considerations and options in mouse designs,and as it is an expensive and time-consuming endeavor,careful planning upfront can ensure the highest chance of success.In this article,we provide brief answers to several frequently asked questions that arise when researchers begin thinking about generating mouse model(s)for their work.
文摘Metastatic Merkel Cell carcinoma (MCC) is a highly unusual and aggressive skin cancer that presents as a small, pink to violet skin lesion and metastasizes early in its growth. Metastatic MCC is generally treated with small cell lung cancer chemotherapy regimens, because the tumor consists of neuroendocrine cells, but patients generally do not have durable responses. The pathogenesis of MCC has recently been attributed to the Merkel Cell polyoma virus. This virus activates the cellular retinoblastoma oncoprotein and cell cycle machinery, triggering continual cellular proliferation. A 77-year-old man developed extensive MCC metastases, involving more than one fourth of his scalp and numerous cervical lymph nodes. Following failure of initial chemotherapy and radiation, effective palliation was achieved by using a sequence of electron-beam radiotherapy, low dose gemcitabine, and etoposide, resulting in significant periods of tumor regression and prolonged survival. A novel circulating tumor cell (CTC) culture assay was performed on four separate clinic visits during the treatment period. Tumor colonies were cultured from the patient’s peripheral blood and CTC colony counts were correlated with clinical treatment response. Not only did the patient respond to palliative cell cycle directed chemotherapy and electron beam radiation, but we demonstrated that CTC can be cultured from peripheral blood of MCC patients and serve as a predictive marker to monitor treatment response.
基金Supported in parts by grants from the Swedish Cancer Society(CAN 2010/255),the Swedish Research Council(08712),Tore Nilson Foundation,Assar Gabrielsson Foundation(AB Volvo),Jubileumskliniken Foundation,IngaBritt&Arne Lundberg Research Foundation,Swedish and Gothenburg Medical Societies and the Medical Faculty,University of Gothenburg,VGR 19/00,1019/00.
文摘Background: Sporadic colorectal tumors probably carry genetic alterations that may be related to familiar clusters according to risk loci visualized by SNP arrays on normal tissues. The aim of the present study was therefore to search for DNA regions (copy number variations, CNVs) as biomarkers associated to genetic susceptibility for early risk predictions of colorectal cancer. Such sequence alterations could provide additional information on phenotypic grouping of patients. Material and Methods: High resolution 105K oligonucleotide microarrays were used in search for CNV loci in DNA from tumor-free colon mucosa at primary operations for colon cancer in 60 unselected patients in comparison to DNA in buffy coat cells from 44 confirmed tumor-free and healthy blood donors. Array-detected CNVs were confirmed by Multiplex ligation-dependent probe amplification (MLPA). Results: A total number of 205 potential CNVs were present in DNA from colon mucosa. 184 (90%) of the 205 potential CNVs had been identified earlier in mucosa DNA from healthy individuals as reported to the Database of Genomic Variants. Remaining 21 (10%) CNVs were potentially novel sites. Two CNVs (3q23 and 10q21.1) were significantly related to colon cancer, but not confirmed in buffy coat DNA from the cancer patients. Conclusion: Our study reveals two CNVs that indicate increased risk for colon cancer;These DNA alterations may have? been acquired by colon stem cells with subsequent appearance among epithelial mucosa cells. Impact: Certain mucosa CNV alterations may indicate individual susceptibility for malignant transformation in relationship to intestinal toxins and bacterial growth.
基金This work was supported by grants from Deutsche Forschungsgemeinschaft(KFO325,project 329116008 and GRK2573,project 416910386 to EPvS)Hessisches Ministerium fur Wissenschaft und Kunst(LOEWE iCANx to EPvS)+1 种基金from von Behring-RontgenStiftung(66-0024 to VP and BD)Open Access funding enabled and organized by Projekt DEAL.
文摘Recent studies reveal a critical role of tumor cell-released extracellular vesicles(EVs)in pancreatic cancer(PC)progression.However,driver genes that direct EV function,the EV-recipient cells,and their cellular response to EV uptake remain to be identified.Therefore,we studied the role of Bcl-2-associated-anthanogene 6(BAG6),a regulator of EV biogenesis for cancer progression.We used a Cre recombinase/LoxP-based reporter system in combination with single-cell RNA sequencing to monitor in vivo EV uptake and tumor microenvironment(TME)changes in mouse models for pancreatic ductal adenocarcinoma(PDAC)in a Bag6 pro-or deficient background.In vivo data were validated using mouse and human organoids and patient samples.Our data demonstrated that Bag6-deficient subcutaneous and orthotopic PDAC tumors accelerated tumor growth dependent on EV release.Mechanistically,this was attributed to mast cell(MC)activation via EV-associated IL33.Activated MCs promoted tumor cell proliferation and altered the composition of the TME affecting fibroblast polarization and immune cell infiltration.Tumor cell proliferation and fibroblast polarization were mediated via the MC secretome containing high levels of PDGF and CD73.Patients with high BAG6 gene expression and high protein plasma level have a longer overall survival indicating clinical relevance.The current study revealed a so far unknown tumor-suppressing activity of BAG6 in PDAC.Bag6-deficiency allowed the release of EV-associated IL33 which modulate the TME via MC activation promoting aggressive tumor growth.MC depletion using imatinib diminished tumor growth providing a scientific rationale to consider imatinib for patients stratified with low BAG6 expression and high MC infiltration.
基金Supported by grants to M.L.from the U.S.National Sclence Foundation (I0S#1854326 and 2127485),USDA-NIFA(2022-67013-36144)by the Center for Plant Science Innovation,and by the Department of Agronomy and Horticulture at the University of Nebraska-Lincoln.Work in F.F.labo-ratory was supported by the"Ecole Universitaire de Recherche"Saclay Plant Sciences(EUR-SPS).
文摘Medicago truncatula is a model legume species that has been studied for decades to understand the symbiotic relationship between legumes and soil bacteria collectively named rhizobia.This symbiosis called nodulation is initiated in roots with the infection of root hair cells by the bacteria,as well as the initiation of nodule primordia from root cortical,endodermal,and pericycle cells,leading to the development of a new root organ,the nodule,where bacteria fix and assimilate the atmospheric dinitrogen for the benefit of the plant.Here,we report the isolation and use of the nuclei from mock and rhizobia-inoculated roots for the single nuclei RNA-seq(sNucRNA-seq)profiling to gain a deeper understanding of early responses to rhizobial infection in Medicago roots.A gene expression map of the Medicago root was generated,comprising 25 clusters,which were annotated as specific cell types using 119 Medicago marker genes and orthologs to Arabidopsis cell-type marker genes.A focus on root hair,cortex,endodermis,and pericycle cell types,showing the strongest differential regulation in response to a short-term(48 h)rhizobium inoculation,revealed not only known genes and functional pathways,validating the sNucRNA-seq approach,but also numerous novel genes and pathways,allowing a comprehensive analysis of early root symbiotic responses at a cell type-specific level.
基金Ramalingaswami Fellowship,Grant/Award Number:D.O.NO.BT/HRD/35/02/2006the Department of Biotechnology,&Core Research grant,Grant/Award Number:CRG/2021/003805+1 种基金Science and Engineering Research Board(SERB),Govt.of India,New DelhiSidra Medicine Precision Program,Grant/Award Numbers:5081012003,5081012002。
文摘Colorectal cancer(CRC)is a predominant life-threatening cancer,with liver and peritoneal metastases as the primary causes of death.Intestinal inflammation,a known CRC risk factor,nurtures a local inflammatory environment enriched with tumor cells,endothelial cells,immune cells,cancer-associated fibroblasts,immunosuppressive cells,and secretory growth factors.The complex interactions of aberrantly expressed cytokines,chemokines,growth factors,and matrix-remodeling enzymes promote CRC pathogenesis and evoke systemic responses that affect disease outcomes.Mounting evidence suggests that these cytokines and chemokines play a role in the progression of CRC through immunosuppression and modulation of the tumor microenvironment,which is partly achieved by the recruitment of immunosuppressive cells.These cells impart features such as cancer stem cell-like properties,drug resistance,invasion,and formation of the premetastatic niche in distant organs,promoting metastasis and aggressive CRC growth.A deeper understanding of the cytokineand chemokine-mediated signaling networks that link tumor progression and metastasis will provide insights into the mechanistic details of disease aggressiveness and facilitate the development of novel therapeutics for CRC.Here,we summarized the current knowledge of cytokine-and chemokine-mediated crosstalk in the inflammatory tumor microenvironment,which drives immunosuppression,resistance to therapeutics,and metastasis during CRC progression.We also outlined the potential of this crosstalk as a novel therapeutic target for CRC.The major cytokine/chemokine pathways involved in cancer immunotherapy are also discussed in this review.
基金This work was supported by grants from Indiana Center for Technology and Science Innovation(CTSl),USA(No.2286230 to TL)and Indiana Drug Discovery Alliance(IDDA),USA(No.2286233 to TL),both are funded in part by National Institutes of Health,USA(No.UL1TR002529)National Institutes of Health,USA(No.1R01GM120156-01A1 to TL+5 种基金No.R03 CA223906-01 to TL)This work was also supported by National Institutes of Health,USA(No.P41-GM103426 and DP20D007237 to REA),National Science Foundation,USA(No.CHE060073N to REA)National Institutes of Health,USA(No.R01 CA069202 to ZYZ)MLF and MRK were supported by IUSCCC Cancer Center,USA(No.P30 CA082709),National Institutes of Health,USA(No.R01CA167291and R01CA254110).MRK was also supported by National Institutes of Health,USA(No.R01CA205166,R01CA231267,and R01HL140961)MLF was also supported by National Institutes of Health,USA(No.R01CA211098,U01HL143403,and NF180045)MLF and MRK were additionally supported by the Riley Children's Foundation,USA.
文摘Market drugs,suchas Foodand Drug Administration(FDA)or European Medicines Agency(EMA)-approved drugs for specific indications provide opportunities for repurposing for newer therapeutics.This potentially saves resources invested in clinical trials that verify drug safety and tolerance in humans prior to alternative indication approval.Protein arginine methyltransferase 5(PRMT5)overexpression has been linked to promoting the tumor phenotype in several cancers,including pancreatic ductal adenocarcinoma(PDAC),colorectal cancer(CRC),and breast cancer(BC),making PRMT5 an important target for cancer therapy.Previously,we showed that PRMT5-mediated methylation of the nuclear factor(NF)-kB,partially contributes to its constitutive activation observed in cancers.In this study,we utilized an AlphaLiSA-based high-throughput screening method adapted in our lab,and identified one FDA-approved drug,Candesartan cilexetil(Can,used in hypertension treatment)and one EMA-approved drug,Cloperastine hydrochloride(Clo,used in cough treatment)that had significant PRMT5-inhibitory activity,and their anti-tumor properties were validated using cancer phenotypic assays in vitro.Furthermore,PRMT5 selective inhibition of methyltransferase activity was confirmed by reduction of both NF-kB methylation and its subsequent activation upon drug treatment.Using in silico prediction,we identified critical residues on PRMT5 targeted by these drugs that may interfere with its enzymatic activity.Finally,Clo and Can treatment have exhibited marked reduction in tumor growth in vivo.Overall,we provide basis for pursuing repurposing Clo and Can as anti-PRMT5 cancer therapies.Our study offers potential safe and fast repurposing of previously unknown PRMT5 inhibitors into clinical practice.
基金funded by the projects SAF2005-07643-C03-01/02/03 and SAF2007-62719 by Spanish Health Ministry grantsby FIS CP06/00341, FI06/00651 and CP01/3058 from the Fondo de Investigación Sanitaria (FIS), Ministerio de Sanidad+3 种基金from the Plan Nacional, Ministerio de Educación y Cienciasupported by the Instituto de Salud Carlos Ⅲ (CP06/00341)supported by a predoctoral fellowship (FI06/00651) from the Spanish Health Ministrysupported by a Colciencias International PhD Scholarship (Grant: 529/2011),from the Fund for science and technology of Colombian Ministry of Education
文摘Exposure to disinfection by-products(DBP) such as trihalomethanes(THM) in swimming pools has been linked to adverse health effects in humans, but their biological mechanisms are unclear. We evaluated short-term changes in blood gene expression of adult recreational swimmers after swimming in a chlorinated pool. Volunteers swam 40 min in an indoor chlorinated pool. Blood samples were drawn and four THM(chloroform,bromodichloromethane, dibromochloromethane and bromoform) were measured in exhaled breath before and after swimming. Intensity of physical activity was measured as metabolic equivalents(METs). Gene expression in whole blood m RNA was evaluated using Illumina Human HT-12v3 Expression-Bead Chip. Linear mixed models were used to evaluate the relationship between gene expression changes and THM exposure. Thirty-seven before-after pairs were analyzed. The median increase from baseline to after swimming were: 0.7 to 2.3 for MET, and 1.4 to 7.1 μg/m^3 for exhaled total THM(sum of the four THM).Exhaled THM increased on average 0.94 μg/m^3 per 1 MET. While 1643 probes were differentially expressed post-exposure. Of them, 189 were also associated with exhaled levels of individual/total THM or MET after False Discovery Rate. The observed associations with the exhaled THM were low to moderate(Log-fold change range:-0.17 to 0.15). In conclusion, we identified short-term gene expression changes associated with swimming in a pool that were minor in magnitude and their biological meaning was unspecific. The high collinearity between exhaled THM levels and intensity of physical activity precluded mutually adjusted models with both covariates. These exploratory results should be validated in future studies.