期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Adjusting Nitrogen Application in Accordance with Soil Water Availability Enhances Yield and Water Use by Regulating Physiological Traits of Maize under Drip Fertigation
1
作者 Mingda Yang Shouchen Ma +3 位作者 Fujian Mei Li Wei Tongchao Wang Xiaokang Guan 《Phyton-International Journal of Experimental Botany》 SCIE 2021年第2期417-435,共19页
Knowledge of the interactive effects of water and nitrogen(N)on physio-chemical traits of maize(Zea mays L.)helps to optimize water and N management and improve productivity.A split-plot experiment was conducted with ... Knowledge of the interactive effects of water and nitrogen(N)on physio-chemical traits of maize(Zea mays L.)helps to optimize water and N management and improve productivity.A split-plot experiment was conducted with three soil water conditions(severe drought,moderate drought,and fully water supply referring to 45%-55%,65%-75%,and 85%-95%field capacity,respectively)and four N application rates(N0,N150,N240,and N330 referring to 0,150,240,330 kg N ha^(-1)respectively)under drip fertigation in 2014 and 2015 in the Huang-Huai-Hai Plain of China.The results indicated that drought stress inhibited physiological activity of plants(leaf relative water content,root bleeding sap,and net photosynthetic rate),resulting in low dry matter accumulation after silking,yield,and N uptake,whereas increased WUE and NUE.N application rates over than 150 kg ha^(-1)aggravated the inhibition of physiological activity under severe drought condition,while it was offset under moderate drought condition.High N application rates(N330)still revealed negative effects under moderate drought condition,as it did not consistently enhance plant physiological activity and significantly reduced N uptake as compared to the N240 treatment.With fully water supply,increasing N application rates synergistically enhanced physiological activity,promoted dry matter accumulation after silking,and increased yield,WUE,and N uptake.Although the N240 treatment reduced yield by 5.4%in average,it saved 27.3%N under full water supply condition as compared with N330 treatment.The results indicated that N regulated growth of maize in aspects of physiological traits,dry matter accumulation,and yield as well as water and N use was depended on soil water status.The appropriate N application rates for maize production was 150 kg ha^(-1)under moderate drought or 240 kg ha^(-1)under fully water supply under drip fertigation,and high N supply(>150 kg ha^(-1))should be avoided under severe drought condition. 展开更多
关键词 Interaction of water and nitrogen net photosynthetic rate root bleeding sap nitrogen uptake water use efficiency
在线阅读 下载PDF
Effects of long-term organic fertilization on soil microbiologic characteristics,yield and sustainable production of winter wheat 被引量:29
2
作者 LI Chun-xi MA Shou-chen +2 位作者 SHAO Yun MA Shou-tian ZHANG Ling-ling 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2018年第1期210-219,共10页
We investigated the soil microbiologic characteristics, and the yield and sustainable production of winter wheat, by conducting a long-term fertilization experiment. A single application of N, P and K (NPK) fertiliz... We investigated the soil microbiologic characteristics, and the yield and sustainable production of winter wheat, by conducting a long-term fertilization experiment. A single application of N, P and K (NPK) fertilizer was taken as the control (CK) and three organic fertilization treatments were used: NPK fertilizer+pig manure (T1), NPK fertilizer+straw return (T2), NPK fertilizer+pig manure+straw return (T3). The results showed that all three organic fertilization treatments (T1, T2 and T3) significantly increased both soil total N (STN) and soil organic carbon (SOC) from 2008 onwards. In 2016, the SOC content and soil C/N ratios for T1, T2 and T3 were significantly higher than those for CK. The three organic fertilization treatments increased soil microbial activity. In 2016, the activity of urease (sucrase) and the soil respiration rate (SRS) for T1, T2 and T3 were significantly higher than those under CK. The organic fertilization treatments also increased the content of soil microbial biomass carbon (SMBC) and microbial biomass nitrogen (SMBN), the SMBC/SMBN ratio and the microbial quotient (qMB). The yield for T1, T2 and T3 was significantly higher than that of CK, respectively. Over the nine years of the investigation, the average yield increased by 9.9, 13.2 and 17.4% for T1, T2 and T3, respectively, compared to the initial yield for each treatment, whereas the average yield of CK over the same period was reduced by 6.5%. T1, T2, and T3 lowered the coefficient of variation (CV) of wheat yield and increased the sustainable yield index (SYI). Wheat grain yield was significantly positively correlated with each of the soil microbial properties (P〈0.01). These results showed that the long-term application of combined organic and chemical fertilizers can stabilize crop yield and make it more sustainable by improving the properties of the soil. 展开更多
关键词 winter wheat long-term organic fertilization soil microbial features yield stability yield sustainability
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部