Offshore wind power is a kind of important clean renewable energy and has attracted increasing attention due to the rapid consumption of non-renewable energy.To reduce the high cost of energy,a possible try is to util...Offshore wind power is a kind of important clean renewable energy and has attracted increasing attention due to the rapid consumption of non-renewable energy.To reduce the high cost of energy,a possible try is to utilize the combination of wind and wave energy considering their natural correlation.A combined concept consisting of a semi-submersible wind turbine and four torus-shaped wave energy converters was proposed and numerically studied under normal operating conditions.However,the dynamic behavior of the integrated system under extreme sea conditions has not been studied yet.In the present work,extreme responses of the integrated system under two different survival modes are evaluated.Fully coupled time-domain simulations with consideration of interactions between the semi-submersible wind turbine and the torus-shaped wave energy converters are performed to investigate dynamic responses of the integrated system,including mooring tensions,tower bending moments,end stop forces,and contact forces at the Column-Torus interface.It is found that the addition of four tori will reduce the mean motions of the yaw,pitch and surge.When the tori are locked at the still water line,the whole integrated system is more suitable for the survival modes.展开更多
In this article,plasma-assisted NH;synthesis directly from N;and H;over packing materials with different dielectric constants(BaTiO_(2),TiO_(2) and SiO_(2))and thermal conductivities(Be O,Al N and Al_(2)O_(2))at room ...In this article,plasma-assisted NH;synthesis directly from N;and H;over packing materials with different dielectric constants(BaTiO_(2),TiO_(2) and SiO_(2))and thermal conductivities(Be O,Al N and Al_(2)O_(2))at room temperature and atmospheric pressure is reported.The higher dielectric constant and thermal conductivity of packing material are found to be the key parameters in enhancing the NH;synthesis performance.The NH;concentration of 1344 ppm is achieved in the presence of BaTiO_(2),which is 106%higher than that of SiO_(2),at the specific input energy(SIE)of 5.4 k J·l^(-1).The presence of materials with higher dielectric constant,i.e.BaTiO_(2) and TiO_(2)in this work,would contribute to the increase of electron energy and energy injected to plasma,which is conductive to the generation of chemically active species by electron-impact reactions.Therefore,the employment of packing materials with higher dielectric constant has proved to be beneficial for NH;synthesis.Compared to that of Al_(2)O_(3),the presence of Be O and Al N yields 31.0%and 16.9%improvement in NH;concentration,respectively,at the SIE of5.4 k J·l^(-1).The results of IR imaging show that the addition of Be O decreases the surface temperature of the packed region by 20.5%to 70.3℃ and results in an extension of entropy increment compared to that of Al_(2)O_(3),at the SIE of 5.4 k J·l^(-1).The results indicate that the presence of materials with higher thermal conductivity is beneficial for NH;synthesis,which has been confirmed by the lower surface temperature and higher entropy increment of the packed region.In addition,when SIE is higher than the optimal value,further increasing SIE would lead to the decrease of energy efficiency,which would be related to the exacerbation in reverse reaction of NH;formation reactions.展开更多
A car-following model is presented, in which the effects of non-motor vehicles on adjacent lanes are taken into ac- count. A control signal including the velocity differences between the following vehicle and the targ...A car-following model is presented, in which the effects of non-motor vehicles on adjacent lanes are taken into ac- count. A control signal including the velocity differences between the following vehicle and the target vehicle is introduced according to the feedback control theory. The stability condition for the new model is derived. Numerical simulation is used to demonstrate the advantage of the new model including the control signal; the results are consistent with the analytical ones展开更多
Pipelines are widely used for transporting oil resources in the context of offshore oil exploitation.The pipeline stress-strength analysis is an important stage in related design and ensuing construction techniques.In...Pipelines are widely used for transporting oil resources in the context of offshore oil exploitation.The pipeline stress-strength analysis is an important stage in related design and ensuing construction techniques.In this study,assuming representative work environment parameters,pipeline lifting operations are investigated numerically.More specifically,a time-domain coupled dynamic analysis method is used to conduct a hydrodynamic analysis under different current velocities and wave heights.The results show that proper operation requires the lifting points are reasonably set in combination with the length of the pipeline and the position of the lifting device on the construction ship.The impact of waves on the pipeline is limited,however lifting operations under strong wind and waves should be avoided as far as possible.展开更多
A new car-following model is proposed based on the full velocity difference model(FVDM) taking the influence of the friction coefficient and the road curvature into account. Through the control theory, the stability...A new car-following model is proposed based on the full velocity difference model(FVDM) taking the influence of the friction coefficient and the road curvature into account. Through the control theory, the stability conditions are obtained,and by using nonlinear analysis, the time-dependent Ginzburg-Landau(TDGL) equation and the modified Korteweg-de Vries(mKdV) equation are derived. Furthermore, the connection between TDGL and mKdV equations is also given. The numerical simulation is consistent with the theoretical analysis. The evolution of a traffic jam and the corresponding energy consumption are explored. The numerical results show that the control scheme is effective not only to suppress the traffic jam but also to reduce the energy consumption.展开更多
In the light of the visual angle model(VAM),an improved car-following model considering driver's visual angle,anticipated time and stabilizing driving behavior is proposed so as to investigate how the driver's...In the light of the visual angle model(VAM),an improved car-following model considering driver's visual angle,anticipated time and stabilizing driving behavior is proposed so as to investigate how the driver's behavior factors affect the stability of the traffic flow.Based on the model,linear stability analysis is performed together with bifurcation analysis,whose corresponding stability condition is highly fit to the results of the linear analysis.Furthermore,the time-dependent Ginzburg–Landau(TDGL)equation and the modified Korteweg–de Vries(m Kd V)equation are derived by nonlinear analysis,and we obtain the relationship of the two equations through the comparison.Finally,parameter calibration and numerical simulation are conducted to verify the validity of the theoretical analysis,whose results are highly consistent with the theoretical analysis.展开更多
With the increasing requirements for fast charging and discharging,higher requirements have been put forward for the thermal management of power batteries.Therefore,there is an urgent need to develop efficient heat tr...With the increasing requirements for fast charging and discharging,higher requirements have been put forward for the thermal management of power batteries.Therefore,there is an urgent need to develop efficient heat transfer fluids.As a new type of heat transfer fluids,functional thermal fluids mainly includ-ing nanofluids(NFs)and phase change fluids(PCFs),have the advantages of high heat carrying density,high heat transfer rate,and broad operational temperature range.However,challenges that hinder their practical applications remain.In this paper,we firstly overview the classification,thermophysical prop-erties,drawbacks,and corresponding modifications of functional thermal fluids.For NFs,the high ther-mal conductivity and high convective heat transfer performance were mainly elaborated,while the stability and viscosity issues were also analyzed.And then for PCFs,the high heat carrying density was mainly elaborated,while the problems of supercooling,stability,and viscosity were also analyzed.On this basis,the composite fluids combined NFs and PCFs technology,has been summarized.Furthermore,the thermal properties of traditional fluids,NFs,PCFs,and composite fluids are compared,which proves that functional thermal fluids are a good choice to replace traditional fluids as coolants.Then,battery thermal management system(BTMS)based on functional thermal fluids is summarized in detail,and the thermal management effects and pump consumption are compared with that of water-based BTMS.Finally,the current technical challenges that parameters optimization of functional thermal fluids and structures optimization of BTMS systematically are presented.In the future,it is necessary to pay more attention to using machine learning to predict thermophysical properties of functional thermal fluids and their applications for BTMS under actual vehicle conditions.展开更多
The proper selection of a relevant mixer generally requires an effective assessment of several models against theapplication requirements. This is a complex task, as traditional evaluation methods generally focus only...The proper selection of a relevant mixer generally requires an effective assessment of several models against theapplication requirements. This is a complex task, as traditional evaluation methods generally focus only on a single aspect of performance, such as pressure loss, mixing characteristics, or heat transfer. This study assesses aurea-based selective catalytic reduction (SCR) system installed on a ship, where the installation space is limitedand the distance between the urea aqueous solution injection position and the reactor is low;therefore, the staticmixer installed in this pipeline has special performance requirements. In particular, four evaluation indices areused in this study: The B value, C value, pressure loss correction factor (Z′), and the ratio of the required distanceto the equivalent diameter of the pipe (LV/D) when the velocity field after the mixer attains uniformity. Six typesof static mixers were simulated with varying concentrations, flow speeds, and positions. A fuzzy comprehensiveevaluation method was introduced to evaluate and compare the related advantages and disadvantages. The resultsshowed that 1) mixing performance was related to the shape of the mixer and had no direct relationship with flowvelocity. 2) For the same mixer position, the lower the urea concentration, the greater the difficulty of evenly mixing the solution. 3) At a constant urea concentration, the mixing performance improved when the mixer was closer to the injection inlet. 4) The installation of a GK mixer in the SCR system of a 9L20C diesel engine was best.展开更多
In the bridge technical condition assessment standards,the evaluation of bridge conditions primarily relies on the defects identified through manual inspections,which are determined using the comprehensive hierarchica...In the bridge technical condition assessment standards,the evaluation of bridge conditions primarily relies on the defects identified through manual inspections,which are determined using the comprehensive hierarchical analysis method.However,the relationship between the defects and the technical condition of the bridges warrants further exploration.To address this situation,this paper proposes a machine learning-based intelligent diagnosis model for the technical condition of highway bridges.Firstly,collect the inspection records of highway bridges in a certain region of China,then standardize the severity of diverse defects in accordance with relevant specifications.Secondly,in order to enhance the independence between the defects,the key defect indicators were screened using Principal Component Analysis(PCA)in combination with the weights of the building blocks.Based on this,an enhanced Naive Bayesian Classification(NBC)algorithm is established for the intelligent diagnosis of technical conditions of highway bridges,juxtaposed with four other algorithms for comparison.Finally,key defect variables that affect changes in bridge grades are discussed.The results showed that the technical condition level of the superstructure had the highest correlation with cracks;the PCA-NBC algorithm achieved an accuracy of 93.50%of the predicted values,which was the highest improvement of 19.43%over other methods.The purpose of this paper is to provide inspectors with a convenient and predictive information-rich method to intelligently diagnose the technical condition of bridges based on bridge defects.The results of this research can help bridge inspectors and even non-specialists to better understand the condition of bridge defects.展开更多
Battery safety is influenced by various factors,with thermal runaway being one of the most significant concerns.While most studies have concentrated on developing one-time,self-activating mechanism for thermal protect...Battery safety is influenced by various factors,with thermal runaway being one of the most significant concerns.While most studies have concentrated on developing one-time,self-activating mechanism for thermal protection,such as temperature-responsive electrodes,and thermal-shutdown separators,these methods only provide irreversible protection.Recently,reversible temperature-sensitive electrolytes have emerged as promising alternatives,offering both thermo-reversibility and self-protective properties.However,further research is crucial to fully understand these thermal-shutdown electrolytes.In this study,we propose lower critical solution temperature(LCST)phase behavior poly(benzyl methacrylate)/imidazolium-based ionic liquid mixtures to prepare temperature-sensitive electrolytes that provide reversible thermal shutdown protection of batteries.This electrolyte features an appropriate protection temperature(~105℃)and responds quickly within a 1 min at 105℃,causing cells to hardly discharge as the voltage suddenly drops to 3.38 V,and providing efficient thermal shutdown protection within 30 min.Upon cooling back to room temperature,the battery regains its original performance.Additionally,the electrolyte exhibits excellent cycling stability with the capacity retention of the battery is 91.6%after 500 cycles.This work provides a viable solution for preventing batteries from thermal runaway triggered by overheating.展开更多
Accurate prediction of road traffic flow is a significant part in the intelligent transportation systems.Accurate prediction can alleviate traffic congestion,and reduce environmental pollution.For the management depar...Accurate prediction of road traffic flow is a significant part in the intelligent transportation systems.Accurate prediction can alleviate traffic congestion,and reduce environmental pollution.For the management department,it can make effective use of road resources.For individuals,it can help people plan their own travel paths,avoid congestion,and save time.Owing to complex factors on the road,such as damage to the detector and disturbances from environment,the measured traffic volume can contain noise.Reducing the influence of noise on traffic flow prediction is a piece of very important work.Therefore,in this paper we propose a combination algorithm of denoising and BILSTM to effectively improve the performance of traffic flow prediction.At the same time,three denoising algorithms are compared to find the best combination mode.In this paper,the wavelet(WL) denoising scheme,the empirical mode decomposition(EMD) denoising scheme,and the ensemble empirical mode decomposition(EEMD) denoising scheme are all introduced to suppress outliers in traffic flow data.In addition,we combine the denoising schemes with bidirectional long short-term memory(BILSTM)network to predict the traffic flow.The data in this paper are cited from performance measurement system(PeMS).We choose three kinds of road data(mainline,off ramp,on ramp) to predict traffic flow.The results for mainline show that data denoising can improve prediction accuracy.Moreover,prediction accuracy of BILSTM+EEMD scheme is the highest in the three methods(BILSTM+WL,BILSTM+EMD,BILSTM+EEMD).The results for off ramp and on ramp show the same performance as the results for mainline.It is indicated that this model is suitable for different road sections and long-term prediction.展开更多
Various kinds of deflection characteristics on the steel cable-stayed bridge(Nanjing No.3 Yangtze River Bridge)are investigated by different mathematical statistical methods.Firstly,via Pearson correlation coefficient...Various kinds of deflection characteristics on the steel cable-stayed bridge(Nanjing No.3 Yangtze River Bridge)are investigated by different mathematical statistical methods.Firstly,via Pearson correlation coefficient calculation,it shows good consistency between the adjacent measuring point of side span or middle span.Secondly,taking mid-span deflection as an example,the correlation analysis of deflection and temperature is conducted.They are synchronous via cross correlation coefficient calculation but not completely linear and a"hysteresis loop"phenomenon of three stages is formed.The fitting result on the monitoring data at day time is consistent with the numerical value through the application of unit temperature difference between the cable and girder and the positive temperature gradient of girder in the finite element model.And the temperature effect is considerable.Vehicle loads effect is obtained from wavelet analysis.The extracted curve can indirectly reflect the change of traffic loads.Finally,the structural damage is analyzed through the trend fusion on the deflection,cable force and visual inspection from 2006 to 2015.Relevant conclusions can provide a basis for management departments to carry out special detection.展开更多
To further investigate car-following behaviors in the cooperative adaptive cruise control(CACC) strategy,a comprehensive control system which can handle three traffic conditions to guarantee driving efficiency and s...To further investigate car-following behaviors in the cooperative adaptive cruise control(CACC) strategy,a comprehensive control system which can handle three traffic conditions to guarantee driving efficiency and safety is designed by using three CACC models.In this control system,some vital comprehensive information,such as multiple preceding cars’ speed differences and headway,variable safety distance(VSD) and time-delay effect on the traffic current and the jamming transition have been investigated via analytical or numerical methods.Local and string stability criterion for the velocity control(VC) model and gap control(GC) model are derived via linear stability theory.Numerical simulations are conducted to study the performance of the simulated traffic flow.The simulation results show that the VC model and GC model can improve driving efficiency and suppress traffic congestion.展开更多
In a coordinated road network,the optimal common cycle time is determined by evaluating the performance of the network in the given range of cycles. Normally,this range is determined by users 'experience. And a la...In a coordinated road network,the optimal common cycle time is determined by evaluating the performance of the network in the given range of cycles. Normally,this range is determined by users 'experience. And a large range of common cycle time,e. g. [30,200] is chosen,which requires long computation time. This study considers that the optimal common cycle time ranges between the minimal and maximal value of intersections' individual optimal cycle time. It is proved mathematically from the convexity condition,that the delay of the network and each individual intersection are convex functions of the cycle time according to Webster delay model. Finally,2 000 random cases for the network composed of two intersections and of eight intersections are created to underline the proposed conclusions. The results of all cases confirm the validity,and show up to 90% improvement in computation time to compare with experience range. The signal optimization tool,Synchro,is also used to validate the conclusion by 50 random cases. The results confirm reliability further.展开更多
Path marginal cost (PMC) is the change in totaltravel cost for flow on the network that arises when timedependentpath flow changes by 1 unit. Because it is hardto obtain the marginal cost on all the links, the local...Path marginal cost (PMC) is the change in totaltravel cost for flow on the network that arises when timedependentpath flow changes by 1 unit. Because it is hardto obtain the marginal cost on all the links, the local PMC,considering marginal cost of partial links, is normallycalculated to approximate the global PMC. When analyzingthe marginal cost at a congested diverge intersection, ajump-point phenomenon may occur. It manifests as alikelihood that a vehicle may unsteadily lift up (down) inthe cumulative flow curve of the downstream links. Previously,the jump-point caused delay was ignored whencalculating the local PMC. This article proposes an analyticalmethod to solve this delay which can contribute toobtaining a more accurate local PMC. Next to that, we usea simple case to calculate the previously local PMC and themodified one. The test shows a large gap between them,which means that this delay should not be omitted in thelocal PMC calculation.展开更多
An extended car-following model with multiple delays is constructed to describe driver's driving behavior.Through stability analysis,the stability condition of this uncontrolled model is given.To dampen the negati...An extended car-following model with multiple delays is constructed to describe driver's driving behavior.Through stability analysis,the stability condition of this uncontrolled model is given.To dampen the negative impact of the driver's multiple delays(i.e.,stability condition is not satisfied),a novel control strategy is proposed to assist the driver in adjusting vehicle operation.The control strategy consists of two parts:the design of control term as well as the design of the parameters in the term.Bifurcation analysis is performed to illustrate the necessity of the design of parameters in control terms.In the course of the design of parameters in the control term,we improve the definite integral stability method to reduce the iterations by incorporating the characteristics of bifurcation,which can determine the appropriate parameters in the control terms more quickly.Finally,in the case study,we validate the control strategy by utilizing measured data and configuring scenario,which is closer to the actual traffic.The results of validation show that the control strategy can effectively stabilize the unstable traffic flow caused by driver's delays.展开更多
The present paper deals with the numerical solution of the coupled Schrodinger-KdV equations using the elementfree Galerkin (EFG) method which is based on the moving least-square approximation. Instead of traditiona...The present paper deals with the numerical solution of the coupled Schrodinger-KdV equations using the elementfree Galerkin (EFG) method which is based on the moving least-square approximation. Instead of traditional mesh oriented methods such as the finite difference method (FDM) and the finite element method (FEM), this method needs only scattered nodes in the domain. For this scheme, a variational method is used to obtain discrete equations and the essential boundary conditions are enforced by the penalty method. In numerical experiments, the results are presented and compared with the findings of the finite element method, the radial basis functions method, and an analytical solution to confirm the good accuracy of the presented scheme.展开更多
A thermodynamic theory is formulated to describe the phase transition and critical phenomena in pedestrian flow. Based on the extended lattice hydrodynamic pedestrian model taking the interaction of the next-nearest-n...A thermodynamic theory is formulated to describe the phase transition and critical phenomena in pedestrian flow. Based on the extended lattice hydrodynamic pedestrian model taking the interaction of the next-nearest-neighbor persons into account, the time-dependent Ginzburg-Landau (TDGL) equation is derived to describe the pedestrian flow near the critical point through the nonlinear analysis method. The corresponding two solutions, the uniform and the kink solutions, are given. The coexisting curve, spinodal line, and critical point are obtained by the first and second derivatives of the thermodynamic potential.展开更多
Accurate and real-time passenger flow prediction of rail transit is an important part of intelligent transportation systems(ITS).According to previous studies,it is found that the prediction effect of a single model i...Accurate and real-time passenger flow prediction of rail transit is an important part of intelligent transportation systems(ITS).According to previous studies,it is found that the prediction effect of a single model is not good for datasets with large changes in passenger flow characteristics and the deep learning model with added influencing factors has better prediction accuracy.In order to provide persuasive passenger flow forecast data for ITS,a deep learning model considering the influencing factors is proposed in this paper.In view of the lack of objective analysis on the selection of influencing factors by predecessors,this paper uses analytic hierarchy processes(AHP)and one-way ANOVA analysis to scientifically select the factor of time characteristics,which classifies and gives weight to the hourly passenger flow through Duncan test.Then,combining the time weight,BILSTM based model considering the hourly travel characteristics factors is proposed.The model performance is verified through the inbound passenger flow of Ningbo rail transit.The proposed model is compared with many current mainstream deep learning algorithms,the effectiveness of the BILSTM model considering influencing factors is validated.Through comparison and analysis with various evaluation indicators and other deep learning models,the results show that the R2 score of the BILSTM model considering influencing factors reaches 0.968,and the MAE value of the BILSTM model without adding influencing factors decreases by 45.61%.展开更多
Fractional diffusion equations have been the focus of modeling problems in hydrology, biology, viscoelasticity, physics, engineering, and other areas of applications. In this paper, a meshfree method based on the movi...Fractional diffusion equations have been the focus of modeling problems in hydrology, biology, viscoelasticity, physics, engineering, and other areas of applications. In this paper, a meshfree method based on the moving Kriging inter- polation is developed for a two-dimensional time-fractional diffusion equation. The shape function and its derivatives are obtained by the moving Kriging interpolation technique. For possessing the Kronecker delta property, this technique is very efficient in imposing the essential boundary conditions. The governing time-fractional diffusion equations are transformed into a standard weak formulation by the Galerkin method. It is then discretized into a meshfree system of time-dependent equations, which are solved by the standard central difference method. Numerical examples illustrating the applicability and effectiveness of the proposed method are presented and discussed in detail.展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.52171289,42176210,and 52201330)the Guangdong Basic and Applied Basic Research Foundation,China(Grant No.2022B1515250005)Innovation Group Project of Southern Marine Science and Engineering Guangdong Laboratory(Zhuhai)(Grant No.311023014).
文摘Offshore wind power is a kind of important clean renewable energy and has attracted increasing attention due to the rapid consumption of non-renewable energy.To reduce the high cost of energy,a possible try is to utilize the combination of wind and wave energy considering their natural correlation.A combined concept consisting of a semi-submersible wind turbine and four torus-shaped wave energy converters was proposed and numerically studied under normal operating conditions.However,the dynamic behavior of the integrated system under extreme sea conditions has not been studied yet.In the present work,extreme responses of the integrated system under two different survival modes are evaluated.Fully coupled time-domain simulations with consideration of interactions between the semi-submersible wind turbine and the torus-shaped wave energy converters are performed to investigate dynamic responses of the integrated system,including mooring tensions,tower bending moments,end stop forces,and contact forces at the Column-Torus interface.It is found that the addition of four tori will reduce the mean motions of the yaw,pitch and surge.When the tori are locked at the still water line,the whole integrated system is more suitable for the survival modes.
基金the financial support from National Natural Science Foundation of China(No.51976093)K C Wong Magna Fund in Ningbo University。
文摘In this article,plasma-assisted NH;synthesis directly from N;and H;over packing materials with different dielectric constants(BaTiO_(2),TiO_(2) and SiO_(2))and thermal conductivities(Be O,Al N and Al_(2)O_(2))at room temperature and atmospheric pressure is reported.The higher dielectric constant and thermal conductivity of packing material are found to be the key parameters in enhancing the NH;synthesis performance.The NH;concentration of 1344 ppm is achieved in the presence of BaTiO_(2),which is 106%higher than that of SiO_(2),at the specific input energy(SIE)of 5.4 k J·l^(-1).The presence of materials with higher dielectric constant,i.e.BaTiO_(2) and TiO_(2)in this work,would contribute to the increase of electron energy and energy injected to plasma,which is conductive to the generation of chemically active species by electron-impact reactions.Therefore,the employment of packing materials with higher dielectric constant has proved to be beneficial for NH;synthesis.Compared to that of Al_(2)O_(3),the presence of Be O and Al N yields 31.0%and 16.9%improvement in NH;concentration,respectively,at the SIE of5.4 k J·l^(-1).The results of IR imaging show that the addition of Be O decreases the surface temperature of the packed region by 20.5%to 70.3℃ and results in an extension of entropy increment compared to that of Al_(2)O_(3),at the SIE of 5.4 k J·l^(-1).The results indicate that the presence of materials with higher thermal conductivity is beneficial for NH;synthesis,which has been confirmed by the lower surface temperature and higher entropy increment of the packed region.In addition,when SIE is higher than the optimal value,further increasing SIE would lead to the decrease of energy efficiency,which would be related to the exacerbation in reverse reaction of NH;formation reactions.
基金Project supported by the National Natural Science Foundation of China (Grant Nos.11072117 and 61074142)the Scientific Research Fund of the Educational Department of Zhejiang Province,China (Grant No.Z201119278)+2 种基金the Natural Science Foundation of Ningbo,China (Grant Nos.2012A610152 and 2012A610038)the Disciplinary Project of Ningbo,China (Grant No.SZXL1067)the K.C.Wong Magna Fund in Ningbo University,China
文摘A car-following model is presented, in which the effects of non-motor vehicles on adjacent lanes are taken into ac- count. A control signal including the velocity differences between the following vehicle and the target vehicle is introduced according to the feedback control theory. The stability condition for the new model is derived. Numerical simulation is used to demonstrate the advantage of the new model including the control signal; the results are consistent with the analytical ones
基金This study was financially supported by the Program for Scientific Research Start-Up Funds of Guangdong Ocean University(060302072101)Comparative Study,and Optimization of Horizontal Lifting of Subsea Pipeline(2021E05011).
文摘Pipelines are widely used for transporting oil resources in the context of offshore oil exploitation.The pipeline stress-strength analysis is an important stage in related design and ensuing construction techniques.In this study,assuming representative work environment parameters,pipeline lifting operations are investigated numerically.More specifically,a time-domain coupled dynamic analysis method is used to conduct a hydrodynamic analysis under different current velocities and wave heights.The results show that proper operation requires the lifting points are reasonably set in combination with the length of the pipeline and the position of the lifting device on the construction ship.The impact of waves on the pipeline is limited,however lifting operations under strong wind and waves should be avoided as far as possible.
基金Project supported by the National Natural Science Foundation of China(Grant No.11372166)the Scientific Research Fund of Zhejiang Province,China(Grant Nos.LY15A020007 and LY15E080013)+1 种基金the Natural Science Foundation of Ningbo,China(Grant Nos.2014A610028 and 2014A610022)the K.C.Wong Magna Fund in Ningbo University,China
文摘A new car-following model is proposed based on the full velocity difference model(FVDM) taking the influence of the friction coefficient and the road curvature into account. Through the control theory, the stability conditions are obtained,and by using nonlinear analysis, the time-dependent Ginzburg-Landau(TDGL) equation and the modified Korteweg-de Vries(mKdV) equation are derived. Furthermore, the connection between TDGL and mKdV equations is also given. The numerical simulation is consistent with the theoretical analysis. The evolution of a traffic jam and the corresponding energy consumption are explored. The numerical results show that the control scheme is effective not only to suppress the traffic jam but also to reduce the energy consumption.
基金the Natural Science Foundation of Zhejiang Province,China(Grant Nos.LY22G010001,LY20G010004)the Program of Humanities and Social Science of Education Ministry of China(Grant No.20YJA630008)+1 种基金the National Key Research and Development Program of China-Traffic Modeling,Surveillance and Control with Connected&Automated Vehicles(Grant No.2017YFE9134700)the K.C.Wong Magna Fund in Ningbo University,China。
文摘In the light of the visual angle model(VAM),an improved car-following model considering driver's visual angle,anticipated time and stabilizing driving behavior is proposed so as to investigate how the driver's behavior factors affect the stability of the traffic flow.Based on the model,linear stability analysis is performed together with bifurcation analysis,whose corresponding stability condition is highly fit to the results of the linear analysis.Furthermore,the time-dependent Ginzburg–Landau(TDGL)equation and the modified Korteweg–de Vries(m Kd V)equation are derived by nonlinear analysis,and we obtain the relationship of the two equations through the comparison.Finally,parameter calibration and numerical simulation are conducted to verify the validity of the theoretical analysis,whose results are highly consistent with the theoretical analysis.
基金supported by the National Natural Science Foundation of China(Grant No.52271320)"Mechanics+"interdisciplinary innovation youth fund project of Ningbo University(LJ2023005).
文摘With the increasing requirements for fast charging and discharging,higher requirements have been put forward for the thermal management of power batteries.Therefore,there is an urgent need to develop efficient heat transfer fluids.As a new type of heat transfer fluids,functional thermal fluids mainly includ-ing nanofluids(NFs)and phase change fluids(PCFs),have the advantages of high heat carrying density,high heat transfer rate,and broad operational temperature range.However,challenges that hinder their practical applications remain.In this paper,we firstly overview the classification,thermophysical prop-erties,drawbacks,and corresponding modifications of functional thermal fluids.For NFs,the high ther-mal conductivity and high convective heat transfer performance were mainly elaborated,while the stability and viscosity issues were also analyzed.And then for PCFs,the high heat carrying density was mainly elaborated,while the problems of supercooling,stability,and viscosity were also analyzed.On this basis,the composite fluids combined NFs and PCFs technology,has been summarized.Furthermore,the thermal properties of traditional fluids,NFs,PCFs,and composite fluids are compared,which proves that functional thermal fluids are a good choice to replace traditional fluids as coolants.Then,battery thermal management system(BTMS)based on functional thermal fluids is summarized in detail,and the thermal management effects and pump consumption are compared with that of water-based BTMS.Finally,the current technical challenges that parameters optimization of functional thermal fluids and structures optimization of BTMS systematically are presented.In the future,it is necessary to pay more attention to using machine learning to predict thermophysical properties of functional thermal fluids and their applications for BTMS under actual vehicle conditions.
基金wasfinancially aided by the National Natural Science Foundation of China(52276122).
文摘The proper selection of a relevant mixer generally requires an effective assessment of several models against theapplication requirements. This is a complex task, as traditional evaluation methods generally focus only on a single aspect of performance, such as pressure loss, mixing characteristics, or heat transfer. This study assesses aurea-based selective catalytic reduction (SCR) system installed on a ship, where the installation space is limitedand the distance between the urea aqueous solution injection position and the reactor is low;therefore, the staticmixer installed in this pipeline has special performance requirements. In particular, four evaluation indices areused in this study: The B value, C value, pressure loss correction factor (Z′), and the ratio of the required distanceto the equivalent diameter of the pipe (LV/D) when the velocity field after the mixer attains uniformity. Six typesof static mixers were simulated with varying concentrations, flow speeds, and positions. A fuzzy comprehensiveevaluation method was introduced to evaluate and compare the related advantages and disadvantages. The resultsshowed that 1) mixing performance was related to the shape of the mixer and had no direct relationship with flowvelocity. 2) For the same mixer position, the lower the urea concentration, the greater the difficulty of evenly mixing the solution. 3) At a constant urea concentration, the mixing performance improved when the mixer was closer to the injection inlet. 4) The installation of a GK mixer in the SCR system of a 9L20C diesel engine was best.
基金financially supported by the National Natural Science Foundation of China(No.51808301)the Scientific Research Fund of Zhejiang Provincial Education Department(No.Y202248860)the National“111”Centre on Safety and Intelligent Operation of Sea Bridge(D21013).
文摘In the bridge technical condition assessment standards,the evaluation of bridge conditions primarily relies on the defects identified through manual inspections,which are determined using the comprehensive hierarchical analysis method.However,the relationship between the defects and the technical condition of the bridges warrants further exploration.To address this situation,this paper proposes a machine learning-based intelligent diagnosis model for the technical condition of highway bridges.Firstly,collect the inspection records of highway bridges in a certain region of China,then standardize the severity of diverse defects in accordance with relevant specifications.Secondly,in order to enhance the independence between the defects,the key defect indicators were screened using Principal Component Analysis(PCA)in combination with the weights of the building blocks.Based on this,an enhanced Naive Bayesian Classification(NBC)algorithm is established for the intelligent diagnosis of technical conditions of highway bridges,juxtaposed with four other algorithms for comparison.Finally,key defect variables that affect changes in bridge grades are discussed.The results showed that the technical condition level of the superstructure had the highest correlation with cracks;the PCA-NBC algorithm achieved an accuracy of 93.50%of the predicted values,which was the highest improvement of 19.43%over other methods.The purpose of this paper is to provide inspectors with a convenient and predictive information-rich method to intelligently diagnose the technical condition of bridges based on bridge defects.The results of this research can help bridge inspectors and even non-specialists to better understand the condition of bridge defects.
基金funded by the National Natural Science Foundation of China(no.22075155)the Zhejiang Provincial Natural Science Foundation of China(No.LY24B030002)+2 种基金Ningbo Natural Science Foundation(2023J089)the China Scholarship Council(CSC)the Ningbo Science and Technology Bureau(2024QL036).
文摘Battery safety is influenced by various factors,with thermal runaway being one of the most significant concerns.While most studies have concentrated on developing one-time,self-activating mechanism for thermal protection,such as temperature-responsive electrodes,and thermal-shutdown separators,these methods only provide irreversible protection.Recently,reversible temperature-sensitive electrolytes have emerged as promising alternatives,offering both thermo-reversibility and self-protective properties.However,further research is crucial to fully understand these thermal-shutdown electrolytes.In this study,we propose lower critical solution temperature(LCST)phase behavior poly(benzyl methacrylate)/imidazolium-based ionic liquid mixtures to prepare temperature-sensitive electrolytes that provide reversible thermal shutdown protection of batteries.This electrolyte features an appropriate protection temperature(~105℃)and responds quickly within a 1 min at 105℃,causing cells to hardly discharge as the voltage suddenly drops to 3.38 V,and providing efficient thermal shutdown protection within 30 min.Upon cooling back to room temperature,the battery regains its original performance.Additionally,the electrolyte exhibits excellent cycling stability with the capacity retention of the battery is 91.6%after 500 cycles.This work provides a viable solution for preventing batteries from thermal runaway triggered by overheating.
基金Project supported by the Program of Humanities and Social Science of the Education Ministry of China(Grant No.20YJA630008)the Natural Science Foundation of Zhejiang Province,China(Grant No.LY20G010004)the K C Wong Magna Fund in Ningbo University,China。
文摘Accurate prediction of road traffic flow is a significant part in the intelligent transportation systems.Accurate prediction can alleviate traffic congestion,and reduce environmental pollution.For the management department,it can make effective use of road resources.For individuals,it can help people plan their own travel paths,avoid congestion,and save time.Owing to complex factors on the road,such as damage to the detector and disturbances from environment,the measured traffic volume can contain noise.Reducing the influence of noise on traffic flow prediction is a piece of very important work.Therefore,in this paper we propose a combination algorithm of denoising and BILSTM to effectively improve the performance of traffic flow prediction.At the same time,three denoising algorithms are compared to find the best combination mode.In this paper,the wavelet(WL) denoising scheme,the empirical mode decomposition(EMD) denoising scheme,and the ensemble empirical mode decomposition(EEMD) denoising scheme are all introduced to suppress outliers in traffic flow data.In addition,we combine the denoising schemes with bidirectional long short-term memory(BILSTM)network to predict the traffic flow.The data in this paper are cited from performance measurement system(PeMS).We choose three kinds of road data(mainline,off ramp,on ramp) to predict traffic flow.The results for mainline show that data denoising can improve prediction accuracy.Moreover,prediction accuracy of BILSTM+EEMD scheme is the highest in the three methods(BILSTM+WL,BILSTM+EMD,BILSTM+EEMD).The results for off ramp and on ramp show the same performance as the results for mainline.It is indicated that this model is suitable for different road sections and long-term prediction.
基金supported by the National Natural Science Foundation of China(Nos.51208096,51808301)
文摘Various kinds of deflection characteristics on the steel cable-stayed bridge(Nanjing No.3 Yangtze River Bridge)are investigated by different mathematical statistical methods.Firstly,via Pearson correlation coefficient calculation,it shows good consistency between the adjacent measuring point of side span or middle span.Secondly,taking mid-span deflection as an example,the correlation analysis of deflection and temperature is conducted.They are synchronous via cross correlation coefficient calculation but not completely linear and a"hysteresis loop"phenomenon of three stages is formed.The fitting result on the monitoring data at day time is consistent with the numerical value through the application of unit temperature difference between the cable and girder and the positive temperature gradient of girder in the finite element model.And the temperature effect is considerable.Vehicle loads effect is obtained from wavelet analysis.The extracted curve can indirectly reflect the change of traffic loads.Finally,the structural damage is analyzed through the trend fusion on the deflection,cable force and visual inspection from 2006 to 2015.Relevant conclusions can provide a basis for management departments to carry out special detection.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.71571107 and 11302110)The Scientific Research Fund of Zhejiang Province,China(Grant Nos.LY15A020007,LY15E080013,and LY16G010003)+2 种基金The Natural Science Foundation of Ningbo City(Grant Nos.2014A610030and 2015A610299)the Fund from the Government of the Hong Kong Administrative Region,China(Grant No.City U11209614)the K C Wong Magna Fund in Ningbo University,China
文摘To further investigate car-following behaviors in the cooperative adaptive cruise control(CACC) strategy,a comprehensive control system which can handle three traffic conditions to guarantee driving efficiency and safety is designed by using three CACC models.In this control system,some vital comprehensive information,such as multiple preceding cars’ speed differences and headway,variable safety distance(VSD) and time-delay effect on the traffic current and the jamming transition have been investigated via analytical or numerical methods.Local and string stability criterion for the velocity control(VC) model and gap control(GC) model are derived via linear stability theory.Numerical simulations are conducted to study the performance of the simulated traffic flow.The simulation results show that the VC model and GC model can improve driving efficiency and suppress traffic congestion.
基金Sponsored by German Aerospace Center(Grant I.MoVe AP3200 Nicht-kooperative Verkehrssteuerung)
文摘In a coordinated road network,the optimal common cycle time is determined by evaluating the performance of the network in the given range of cycles. Normally,this range is determined by users 'experience. And a large range of common cycle time,e. g. [30,200] is chosen,which requires long computation time. This study considers that the optimal common cycle time ranges between the minimal and maximal value of intersections' individual optimal cycle time. It is proved mathematically from the convexity condition,that the delay of the network and each individual intersection are convex functions of the cycle time according to Webster delay model. Finally,2 000 random cases for the network composed of two intersections and of eight intersections are created to underline the proposed conclusions. The results of all cases confirm the validity,and show up to 90% improvement in computation time to compare with experience range. The signal optimization tool,Synchro,is also used to validate the conclusion by 50 random cases. The results confirm reliability further.
文摘Path marginal cost (PMC) is the change in totaltravel cost for flow on the network that arises when timedependentpath flow changes by 1 unit. Because it is hardto obtain the marginal cost on all the links, the local PMC,considering marginal cost of partial links, is normallycalculated to approximate the global PMC. When analyzingthe marginal cost at a congested diverge intersection, ajump-point phenomenon may occur. It manifests as alikelihood that a vehicle may unsteadily lift up (down) inthe cumulative flow curve of the downstream links. Previously,the jump-point caused delay was ignored whencalculating the local PMC. This article proposes an analyticalmethod to solve this delay which can contribute toobtaining a more accurate local PMC. Next to that, we usea simple case to calculate the previously local PMC and themodified one. The test shows a large gap between them,which means that this delay should not be omitted in thelocal PMC calculation.
基金Project supported by the Natural Science Foundation of Zhejiang Province,China(Grant No.LY20G010004)the Program of Humanities and Social Science of Education Ministry of China(Grant No.20YJA630008)+1 种基金the National Key Research and Development Program of China–Traffic Modeling,Surveillance and Control with Connected&Automated Vehicles(Grant No.2017YFE9134700)the K.C.Wong Magna Fund in Ningbo University,China。
文摘An extended car-following model with multiple delays is constructed to describe driver's driving behavior.Through stability analysis,the stability condition of this uncontrolled model is given.To dampen the negative impact of the driver's multiple delays(i.e.,stability condition is not satisfied),a novel control strategy is proposed to assist the driver in adjusting vehicle operation.The control strategy consists of two parts:the design of control term as well as the design of the parameters in the term.Bifurcation analysis is performed to illustrate the necessity of the design of parameters in control terms.In the course of the design of parameters in the control term,we improve the definite integral stability method to reduce the iterations by incorporating the characteristics of bifurcation,which can determine the appropriate parameters in the control terms more quickly.Finally,in the case study,we validate the control strategy by utilizing measured data and configuring scenario,which is closer to the actual traffic.The results of validation show that the control strategy can effectively stabilize the unstable traffic flow caused by driver's delays.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11072117 and 61074142)the Natural Science Foundation of Zhejiang Province,China(Grant No.Y6110007)+3 种基金Scientific Research Fund of Zhejiang Provincial Education Department,China(Grant No.Z201119278)the Natural Science Foundation of Ningbo City(Grant Nos.2012A610152 and 2012A610038)the Disciplinary Project of Ningbo City,China(Grant No.SZXL1067)K.C.Wong Magna Fund in Ningbo University
文摘The present paper deals with the numerical solution of the coupled Schrodinger-KdV equations using the elementfree Galerkin (EFG) method which is based on the moving least-square approximation. Instead of traditional mesh oriented methods such as the finite difference method (FDM) and the finite element method (FEM), this method needs only scattered nodes in the domain. For this scheme, a variational method is used to obtain discrete equations and the essential boundary conditions are enforced by the penalty method. In numerical experiments, the results are presented and compared with the findings of the finite element method, the radial basis functions method, and an analytical solution to confirm the good accuracy of the presented scheme.
基金the National Natural Science Foundation of China(Grant Nos.11072117 and 61074142)the Natural Science Foundation of Zhejiang Province,China(Grant No.Y6110007)+3 种基金the Scientific Research Fund of Zhejiang Provincial Education Department,China(Grant No.Z201119278)the Natural Science Foundation of Ningbo,China(Grant Nos.2012A610152 and 2012A610038)the K.C.Wong Magna Fund in Ningbo University,Chinathe Research Grant Council,Government of the Hong Kong Administrative Region,China(Grant Nos.CityU9041370 and CityU9041499)
文摘A thermodynamic theory is formulated to describe the phase transition and critical phenomena in pedestrian flow. Based on the extended lattice hydrodynamic pedestrian model taking the interaction of the next-nearest-neighbor persons into account, the time-dependent Ginzburg-Landau (TDGL) equation is derived to describe the pedestrian flow near the critical point through the nonlinear analysis method. The corresponding two solutions, the uniform and the kink solutions, are given. The coexisting curve, spinodal line, and critical point are obtained by the first and second derivatives of the thermodynamic potential.
基金supported by the Program of Humanities and Social Science of Education Ministry of China(Grant No.20YJA630008)the Ningbo Natural Science Foundation of China(Grant No.202003N4142)+1 种基金the Natural Science Foundation of Zhejiang Province,China(Grant No.LY20G010004)the K.C.Wong Magna Fund in Ningbo University,China.
文摘Accurate and real-time passenger flow prediction of rail transit is an important part of intelligent transportation systems(ITS).According to previous studies,it is found that the prediction effect of a single model is not good for datasets with large changes in passenger flow characteristics and the deep learning model with added influencing factors has better prediction accuracy.In order to provide persuasive passenger flow forecast data for ITS,a deep learning model considering the influencing factors is proposed in this paper.In view of the lack of objective analysis on the selection of influencing factors by predecessors,this paper uses analytic hierarchy processes(AHP)and one-way ANOVA analysis to scientifically select the factor of time characteristics,which classifies and gives weight to the hourly passenger flow through Duncan test.Then,combining the time weight,BILSTM based model considering the hourly travel characteristics factors is proposed.The model performance is verified through the inbound passenger flow of Ningbo rail transit.The proposed model is compared with many current mainstream deep learning algorithms,the effectiveness of the BILSTM model considering influencing factors is validated.Through comparison and analysis with various evaluation indicators and other deep learning models,the results show that the R2 score of the BILSTM model considering influencing factors reaches 0.968,and the MAE value of the BILSTM model without adding influencing factors decreases by 45.61%.
基金Project supported by the National Natural Science Foundation of China(Grant No.11072117)the Natural Science Foundation of Ningbo City,China(GrantNo.2013A610103)+2 种基金the Natural Science Foundation of Zhejiang Province,China(Grant No.Y6090131)the Disciplinary Project of Ningbo City,China(GrantNo.SZXL1067)the K.C.Wong Magna Fund in Ningbo University,China
文摘Fractional diffusion equations have been the focus of modeling problems in hydrology, biology, viscoelasticity, physics, engineering, and other areas of applications. In this paper, a meshfree method based on the moving Kriging inter- polation is developed for a two-dimensional time-fractional diffusion equation. The shape function and its derivatives are obtained by the moving Kriging interpolation technique. For possessing the Kronecker delta property, this technique is very efficient in imposing the essential boundary conditions. The governing time-fractional diffusion equations are transformed into a standard weak formulation by the Galerkin method. It is then discretized into a meshfree system of time-dependent equations, which are solved by the standard central difference method. Numerical examples illustrating the applicability and effectiveness of the proposed method are presented and discussed in detail.