期刊文献+
共找到10篇文章
< 1 >
每页显示 20 50 100
Energy Analysis and Exergy Utilization in the Residential Sector of Cameroon 被引量:1
1
作者 Talla Konchou Franck Armel Aloyem Kazé Claude Vidal Tchinda René 《Energy and Power Engineering》 2015年第3期93-104,共12页
In this paper, we present an analysis of energy and exergy utilization in the residential sector of Cameroon by considering the sectoral energy and exergy flows for the years of 2001-2010. Exergy analysis of Cameroon ... In this paper, we present an analysis of energy and exergy utilization in the residential sector of Cameroon by considering the sectoral energy and exergy flows for the years of 2001-2010. Exergy analysis of Cameroon residential sector utilisation indicates a less efficient picture than that obtained by the energy analysis. Cooking stands out as the most inefficient end use in the Cameroon’s residential sector. In 2010, the energy and exergy efficiency are determined and were respectively 58.74% and 22.63%. Energy and exergy flows diagrams for the overall efficiencies of Cameroon residential sector are illustrated and a comparison with the residential sector of other countries is also done. To carry out this study, a survey of 250 households was conducted and the sharing of the end uses of energy was done and data were gathered. 展开更多
关键词 EXERGY EFFICIENCY Energy FLOW RESIDENTIAL SECTOR
在线阅读 下载PDF
Impact of Sustainable Electricity for Cameroonian Population through Energy Efficiency and Renewable Energies
2
作者 Fotsing Metegam Isabelle Flora Njomo Donatien +2 位作者 Njomo Donatien René Tchinda Oumarou Hamandjoda 《Journal of Power and Energy Engineering》 2019年第9期11-51,共41页
Access to electricity and a reliable supply of energy are essential elements of local economic development and poverty reduction. To address these challenges, appropriate policies and mechanisms at the national and re... Access to electricity and a reliable supply of energy are essential elements of local economic development and poverty reduction. To address these challenges, appropriate policies and mechanisms at the national and regional levels need to be implemented. In this study, we used Johanson cointegration and Granger causality techniques to examine the different cointegration and causal relationships that exist between the growth of electricity consumption (CE) and socio-economic parameters (GDP, tertiary GDP, GDP per capita, number of households, number of subscribers and population) in Cameroon during the period from 1975 to 2011. The results from the software Eviews 7.2 show that there are cointegration relationships between electricity consumption and socio-economic indicators (LGDPH, LPO and LS) thus reflecting the long-term relationship between socio-economic growth and electricity consumption (CE). Consumption growth could, therefore, follow socio-economic growth. In addition, the analysis of the Granger causality test results reveals that there is a unidirectional causal relationship of macroeconomic indicators towards electricity consumption. That is, LGDPG to LCE, LGDPH to LCE, and LGDPT to LCE. There is also a unidirectional relationship between LCE and the demographic indicators that is the relationship of LCE to LS (number of subscribers). We can, therefore, conclude that the indicators that have a better influence on electricity consumption are the overall GDP for the macroeconomic indicators and the population for the socio-demographic indicators respectively. In addition, the analysis of renewable energy potential (EnRs) shows us that Cameroon enjoys good irradiation throughout its territory, hence its high solar potential. The wind speed is unevenly distributed over the territory, it has an average speed in the region of the very north of the country, but a low speed in the rest of the territory, which justifies the low wind potential in the country. We also noticed that the forest is concentrated in the southernmost part of the country, mainly in the eastern and southern regions. After study, we concluded that it is possible to truncate thermal power plants with renewable energy plants. We proposed to trade the thermal power stations of additions by biomass plants. We also offer hybrid solar-biomass power plants for isolated power plants;and solar-wind hybrid power plants for the Far North region of the country, given its strong wind power potential. We also identified the sources of over-consumption and estimated the amount of energy that could be saved by developing an energy efficiency plan (10%) with the standard scenario that would take into account good energy-saving practices. We then estimated at 336,938 Kg the gain in CO2 emissions if we exchanged the thermal power stations into EnRs. Recommendations are then suggested for the successful implementation of an energy efficiency plan and implementation of renewable energy in Cameroon. 展开更多
关键词 ENERGY Efficiency RENEWABLE ENERGY COINTEGRATION CAUSALITY FOSSIL Fuels Mini-Grids
在线阅读 下载PDF
Two-Stream Approximation to the Radiative Transfer Equation:A New Improvement and Comparative Accuracy with Existing Methods
3
作者 F.Momo TEMGOUA L.Akana NGUIMDO DNJOMO 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2024年第2期278-292,共15页
Mathematical modeling of the interaction between solar radiation and the Earth's atmosphere is formalized by the radiative transfer equation(RTE), whose resolution calls for two-stream approximations among other m... Mathematical modeling of the interaction between solar radiation and the Earth's atmosphere is formalized by the radiative transfer equation(RTE), whose resolution calls for two-stream approximations among other methods. This paper proposes a new two-stream approximation of the RTE with the development of the phase function and the intensity into a third-order series of Legendre polynomials. This new approach, which adds one more term in the expression of the intensity and the phase function, allows in the conditions of a plane parallel atmosphere a new mathematical formulation of γparameters. It is then compared to the Eddington, Hemispheric Constant, Quadrature, Combined Delta Function and Modified Eddington, and second-order approximation methods with reference to the Discrete Ordinate(Disort) method(δ –128 streams), considered as the most precise. This work also determines the conversion function of the proposed New Method using the fundamental definition of two-stream approximation(F-TSA) developed in a previous work. Notably,New Method has generally better precision compared to the second-order approximation and Hemispheric Constant methods. Compared to the Quadrature and Eddington methods, New Method shows very good precision for wide domains of the zenith angle μ 0, but tends to deviate from the Disort method with the zenith angle, especially for high values of optical thickness. In spite of this divergence in reflectance for high values of optical thickness, very strong correlation with the Disort method(R ≈ 1) was obtained for most cases of optical thickness in this study. An analysis of the Legendre polynomial series for simple functions shows that the high precision is due to the fact that the approximated functions ameliorate the accuracy when the order of approximation increases, although it has been proven that there is a limit order depending on the function from which the precision is lost. This observation indicates that increasing the order of approximation of the phase function of the RTE leads to a better precision in flux calculations. However, this approach may be limited to a certain order that has not been studied in this paper. 展开更多
关键词 Radiative Transfer Equation two-stream method Legendre polynomial optical thickness moments of specific intensity conversion function TRANSMITTANCE reflectance
在线阅读 下载PDF
Estimation of Direct Solar Radiation of Chad 被引量:2
4
作者 Mahamat Hassane Babikir Donatien Njomo +2 位作者 Mahmoud Y. Khayal Hermann D. Temene Djampou T. Joel 《Energy and Power Engineering》 2018年第5期212-225,共14页
The aim of this paper is to estimate the direct solar radiation on a horizontal plane in five regions of Chad using the Liu and Jordan’s model in view of the installation of a thermo-solar power plant. For this purpo... The aim of this paper is to estimate the direct solar radiation on a horizontal plane in five regions of Chad using the Liu and Jordan’s model in view of the installation of a thermo-solar power plant. For this purpose, the HelioClim-3 Data Base of Solar Irradiance V5’s is used. All the results presented in this paper were obtained using Microsoft Excel software 2015. These results show that compared to the other regions considered for this study, the direct solar radiation on a horizontal plane in Moundou is less. 展开更多
关键词 DIRECT SOLAR RADIATION Inclined PLANE EXCEL HelioClim-3 CHAD
在线阅读 下载PDF
Thermomechanical Characterisation of Compressed Clay Bricks Reinforced by Thatch Fibres for the Optimal Use in Building 被引量:1
5
作者 Madeleine Nitcheu Pierre Meukam +1 位作者 Jean Claude Damfeu Donatien Njomo 《Materials Sciences and Applications》 2018年第12期913-935,共23页
Thatch fibres grow in large quantity in the Adamawa region of Cameroon. During the long dry season, these fibres cause numerous fire incidents, which not only devastate large areas of cash crops, but also contribute t... Thatch fibres grow in large quantity in the Adamawa region of Cameroon. During the long dry season, these fibres cause numerous fire incidents, which not only devastate large areas of cash crops, but also contribute to increase emissions of greenhouse gases into the atmosphere. This article aims to show how fibres could be used with compressed clay bricks to manufacture an insulating material used in building. Four fibre contents 1%, 2%, 3% and 4% made up the sample studied. The asymmetric hot plate methodology was used to determine the thermophysical properties of these composite materials. The volumetric heat capacity and the thermal effusivity of these materials were estimated. These two parametres were used to determine their apparent thermal conductivities. The results obtained show that the thermal conductivity decreases as the volume of fibres in the mixture increases. It is 0.689 W·m-1·K-1 for simple compressed clay bricks and 0.510 W·m-1·K-1 for a dosage at 3% of thatch fibres. In a bit to validate the results of the pilot study of the apparent thermal conductivity, the heat mass capacity of this composite material was achieved through the use of the dehydration method. The relative difference obtained with the results of the volumetric heat capacity carried out with these two methods was good. All results showed that the use of fibres in compressed laterite brick gives a more insulating composite material that respects Civil Engineering Norms. 展开更多
关键词 THATCH Fibres CLAY BRICKS THERMO Mechanical Properties Transient METHOD MIXING METHOD
在线阅读 下载PDF
Two-Dimension Numerical Simulation of Parabolic Trough Solar Collector: Far North Region of Cameroon
6
作者 Charlain-Joel Ngangoum Keou Donatien Njomo +2 位作者 Vincent Sambou A. R. Andrianaharinjaka Finiavana Ahmadou Diaby Tidiane 《Energy and Power Engineering》 2017年第3期147-169,共23页
Cameroon lives in the era of great infrastructures in order to reach the economic emergence by 2035. These infrastructures require a solid framework of energy provisions from many natural energy sources and resources ... Cameroon lives in the era of great infrastructures in order to reach the economic emergence by 2035. These infrastructures require a solid framework of energy provisions from many natural energy sources and resources that the country possesses. Speaking of natural energy resources, the country is particularly gifted by solar energy potential in the far north. This region of the land is densely populated but much of the populations do not have access to electricity since they live in remote areas far from national electricity grid. Solar thermal energy appears then as real potential to fulfill the growing demand of energy and reduce fossil fuel use dependence. Moreover, it would also be a grandiose opportunity for hospitals in these regions to provide hot water for Sterilization. As the design of a solar thermal plant strongly relies on the potential of direct solar irradiance and the performance of a solar parabolic trough collector (PTC) estimated under the local climate conditions, in this paper, we annually compute direct solar radiation based on monthly average Linke turbidity factor and various tracking modes in two chosen sites in the far north region of Cameroon. Also, a detailed two dimensional numerical heat transfer analysis of a PTC has been performed. The receiver has been divided into many control volumes along his length and each of them is a column consisting of glass, vacuum, absorber and fluid along which mass and energy balance have been applied. Direct solar irradiation, ambient temperature optical and thermal analyses of the collector receiver takes into consideration all modes of heat transfer and the nonlinear algebraic equations were solved simultaneously at each instant during a day of computation using Engineering Equation Solver (EES). To validate the numerical results, the model was compared with experimental data obtained from Sandia National Laboratory (SNL). It has shown a great concordance with a maximum relative error value of 0.35% and thermal efficiency range of systems about 66.67% - 73.2%. It has also been found that the one axis polar East-West and horizontal East-West tracking with 96% and 94% of full tracking mode respectively, were most suitable for a parabolic trough collector throughout the whole year in the two towns considered. 展开更多
关键词 Cameroon PARABOLIC TROUGH Tracking MODES RECEIVER Thermal Performance
在线阅读 下载PDF
Optimum Sizing and Economic Analysis of Standalone PV System with a Small Size Grinding Mill
7
作者 Leonard Akana Nguimdo Leon Tientcheu Tassi 《Energy and Power Engineering》 2020年第7期432-444,共13页
<span style="font-family:Verdana;">This work presents the results of the characterization of a standalone photovoltaic system for the electrification of a household located in rural area in the western... <span style="font-family:Verdana;">This work presents the results of the characterization of a standalone photovoltaic system for the electrification of a household located in rural area in the western region of Cameroon: Nziih-Bafou in Dschang (5.35</span><span style="white-space:normal;background-color:#FFFFFF;font-family:Verdana;">°</span><span style="font-family:Verdana;">N, 10.05</span><span style="white-space:normal;background-color:#FFFFFF;font-family:Verdana;">°</span><span style="font-family:Verdana;">E and 1900 m). In order to cope with the</span><span "=""> </span><span style="font-family:Verdana;">maintenance charges and reduce the investment cost, a small mill was added to the appliances of the household for income generation. The assessment of the energy demand was made by taking into account the reactive energy due to the heavy</span><span "=""> </span><span style="font-family:Verdana;">consumption of energy by the mill’s motor, especially during ignition. The sizing of all the system’s components was carried out with the prospect of determining an optimum design in accordance with daily electricity demand, site irradiance profile and climatic conditions. In this context, tilt angles applicable to the PV structure and that allow</span><span "=""> </span><span style="font-family:Verdana;">to receive the maximum irradiance as a function of the periods of the year were determined using the Hay model.</span><span "=""> </span><span style="font-family:Verdana;">This approach provides the system with incident irradiance greater than or at the limit equal to that received by a horizontal surface on the same site</span><span "=""> </span><span style="font-family:Verdana;">compared to the case of a single tilt angle where the irradiance on the inclined plane is often lower than that</span><span "=""> </span><span "=""><span style="font-family:Verdana;">on the horizontal. The economic analysis of the PV system showed an </span><span style="font-family:Verdana;">initial cost of $4448</span></span><span "=""> </span><span style="font-family:Verdana;">and the Life Cost Cycle amounted to $24,495. This</span><span style="font-family:Verdana;"> amount corresponds to a present cost per kilowatt hour of $0.44. The Net Present Value</span><span "=""> </span><span style="font-family:Verdana;">(NPV) of the project ($7793) over its lifetime (20 years)</span><span "=""> </span><span style="font-family:Verdana;">shows a payback period of less than 4 years.</span> 展开更多
关键词 Standalone Photovoltaic System OPTIMIZATION Hay Model Reactive Energy Life Cycle Cost Net Present Value
在线阅读 下载PDF
Selection Wind Farm Sites Based on GIS Using a Boolean Method: Evaluation of the Case of Cameroon
8
作者 Fotsing Metegam Isabelle Flora Njomo Donatien +1 位作者 René Tchinda Oumarou Hamandjoda 《Journal of Power and Energy Engineering》 2021年第1期1-24,共24页
The negative effects of traditional methods of electricity generation on the<span style="font-family:;" "=""><span style="font-family:Verdana;"> environment have created ... The negative effects of traditional methods of electricity generation on the<span style="font-family:;" "=""><span style="font-family:Verdana;"> environment have created the need for strategic planning and development of renewable and sustainable energy systems. This paper presents the analysis of the suitability of wind farm sites using a Boolean decision-making approach </span><span style="font-family:Verdana;">based on geographic information system (GIS) modeling. This analysis is </span><span style="font-family:Verdana;">based on different climatic, geographical, economic and environmental criteria such </span><span style="font-family:Verdana;">as wind resource, slope, accessibility by road, proximity to the electricity</span><span style="font-family:Verdana;"> network and optimal distance from airports. The results of the study show that the most favorable sites are mainly located in the northern part of the country, particularly in the Far North and North regions. There are also favorable </span><span style="font-family:Verdana;">sites in the North-West, South-West, West, Littoral and very little in the</span><span style="font-family:Verdana;"> South while the central and eastern regions are not suitable. This is mainly due to the tropical forest that covers the entire region of East Cameroon and the low wind speed in these regions which is the determining factor for the installation of wind farms. The appropriate land for the installation of wind </span><span style="font-family:Verdana;">farms is </span><span style="font-family:Verdana;">approximately 2.56% corresponding to an area of </span></span><span style="font-family:Verdana;">11</span><span style="font-family:Verdana;">,</span><span style="font-family:Verdana;">602</span><span style="font-family:Verdana;">.494414</span><span style="font-family:;" "=""> </span><span style="font-family:Verdana;">km<span style="white-space:nowrap;"><sup></sup></span><sup></sup></span><span style="font-family:Verdana;"><sup>2</sup><span style="white-space:nowrap;"></span></span><span style="font-family:Verdana;">. Ho</span><span style="font-family:Verdana;">w</span><span style="font-family:Verdana;">ever, when we include the condition that a wind farm must have at least 4</span><span style="font-family:;" "=""> </span><span style="font-family:Verdana;">km<sup></sup></span><span style="font-family:Verdana;"><span style="white-space:normal;font-family:Verdana;"><span style="white-space:nowrap;"><sup></sup></span><sup></sup></span><span style="white-space:normal;font-family:Verdana;"><sup>2</sup><span style="white-space:nowrap;"></span></span></span><span style="font-family:Verdana;"> of surface area, is goes from 2.56% to 2.22% (11</span><span style="font-family:Verdana;">,</span><span style="font-family:Verdana;">602.494414 km<sup></sup></span><span style="font-family:Verdana;"><span style="white-space:normal;font-family:Verdana;"><span style="white-space:nowrap;"><sup></sup></span><sup></sup></span><span style="white-space:normal;font-family:Verdana;"><sup>2</sup><span style="white-space:nowrap;"></span></span></span><span style="font-family:Verdana;"> to</span><span style="font-family:Verdana;"> 10</span><span style="font-family:Verdana;">,</span><span style="font-family:;" "=""><span style="font-family:Verdana;">344.424539 km</span><span style="font-family:Verdana;"><sup></sup></span></span><span style="font-family:Verdana;"><span style="white-space:normal;font-family:Verdana;"><span style="white-space:nowrap;"><sup></sup></span><sup></sup></span><span style="white-space:normal;font-family:Verdana;"><sup>2</sup><span style="white-space:nowrap;"></span></span></span><span style="font-family:Verdana;">);thus a surface reduction of approximately 1258</span><span style="font-family:Verdana;">.</span><span style="font-family:;" "=""><span style="font-family:Verdana;">069875 km</span><span style="font-family:Verdana;"><sup></sup></span></span><span style="font-family:Verdana;"><span style="white-space:normal;font-family:Verdana;"><span style="white-space:nowrap;"><sup></sup></span><sup></sup></span><span style="white-space:normal;font-family:Verdana;"><sup>2</sup><span style="white-space:nowrap;"></span></span></span><span style="font-family:Verdana;">. We can conclude that despite the fact that Cameroon does not have a huge potential for wind energy because of the low wind speed observed in the country, it is still possible to have some favorable sites for the installation of the parks wind. In addition, a study of hybrid solar-wind systems could improve the efficiency of the power plants in Cameroon.</span> 展开更多
关键词 Wind Energy Boolean Method Geographic Information System (GIS) Cameroon Wind Farm
在线阅读 下载PDF
Shortwave Cloud and Aerosol Radiative Forcings and Their Effects on the Vertical Local Heating/Cooling Rates
9
作者 L. Akana Nguimdo D. Njomo 《Atmospheric and Climate Sciences》 2013年第3期337-347,共11页
An analysis of atmospheric SW-radiative forcing and local heating/cooling rate is made using a one year temporal and vertical profiles of aerosol and cloud over Yaoundé (11.51°E, 3.83°N). It appears tha... An analysis of atmospheric SW-radiative forcing and local heating/cooling rate is made using a one year temporal and vertical profiles of aerosol and cloud over Yaoundé (11.51°E, 3.83°N). It appears that the direct influence of aerosols on the surface compared to the TOA can be 3 times larger. Annual mean value obtained at 559 mb altitude is +27.74 W/m2 with range from 0 to +43 W/m2. At 904 mb, we obtained an annual mean of ﹣46.22 W/m2 with range from ﹣65 to ﹣9 W/m2. Frequency distribution indicates that more than 95% of ARF are between +10 and +70 W/m2 at 559 mb (upper limit of UL), and more than 85% of ARF are between ﹣70 and ﹣10 W/m2 at 904 mb (upper limit of PBL). This sign change is explained by the fact that the backscattering peaks at the upper limit of the aerosol PBL layer. The maximum CRF is noted at TOA where it reaches ﹣600 W/m2 based on the time interval and the structure of clouds. The highest values occur between 11.50 and 13.50 LST. Clouds lead to a general heating of the entire atmospheric column with a much greater effect near the surface. Aerosols effect on the heating rate profile show strong cooling during the day for the lower atmosphere, with slight heating at the upper atmosphere. This cooling contribution generally increases from the surface and peacks at the upper boundary of aerosol layer where reflectivity is the most important. Depending on the moment of the day, average heating effect of clouds peacks at surface or within the middle troposphere due to the absorption by clouds particles. Vertical profiles deeply evolve exhibiting differences that exceed ﹣3 K/day according to altitude from one hour to another during a given mean solar day. 展开更多
关键词 Planetary Boundary LAYER Upper LAYER Clear Sky FLUX ALL-SKY FLUX Net DOWNWARD FLUX Radiative FORCING Heating/Cooling Rates
在线阅读 下载PDF
Consideration of some optimization techniques to design a hybrid energy system for a building in Cameroon
10
作者 Djeudjo Temene Hermann Talla Konchou Franck Armel +1 位作者 TCHINDA René NJOMO Donatien 《Energy and Built Environment》 2022年第2期233-249,共17页
To solve the problem energy deficit encountered in developing countries,Hybrid Renewable Energy System(HRES)appears to be a very good solution.The paper presents the optimal design of a hybrid renewable energy system ... To solve the problem energy deficit encountered in developing countries,Hybrid Renewable Energy System(HRES)appears to be a very good solution.The paper presents the optimal design of a hybrid renewable energy system considering the technical i.e Loss of Power Supply Probability(LPSP),economic i.e Cost of Electricity(COE)and Net Present Cost(NPC)and environmental i.e Total Greenhouse gases emission(TGE)aspects using Particle Swarm Optimization(PSO),hybrid Particle Swarm Optimization-Grey Wolf Optimization(PSOGWO),hybrid Grey-Wolf Optimization-Cuckoo Search(GWOCS)and Sine-Cosine Algorithm(SCA)for a Community multimedia center in MAKENENE,Cameroon;where inhabitants have to spend at times 3 to 4 days of blackout.Seven configurations(Scenarios)of hybrid energy systems including PV,WT,Battery and Diesel generator are analyzed considering an average daily energy load of 50.22 kWh with a peak load of 5.6 kW.Four values of the derating factor i.e 0.6,0.7,0.8 and 0.9 are used in this analysis and the best value is 0.9.Scenario 3 with LPSP,COE,NPC,TGE and RF of 0.003%,0.15913$/kWh,46953.0485$,2.3406 kg/year and 99.8%respectively when using GWOCS is found to be the most appropriate for the Community multimedia center.The optimal Scenario is obtained for a system comprising of 18 kW of P_(pv-rated)corresponding to 69 solar panels,3 days of AD corresponding to a total battery capacity of 241 kWh and 1 of N_(dg). 展开更多
关键词 Hybrid renewable energy system Optimization Loss of power Supply probability Cost of electricity Net present cost Emission of greenhouse gases
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部