In LEO satellite communication networks,the number of satellites has increased sharply, the relative velocity of satellites is very fast, then electronic signal aliasing occurs from time to time. Those aliasing signal...In LEO satellite communication networks,the number of satellites has increased sharply, the relative velocity of satellites is very fast, then electronic signal aliasing occurs from time to time. Those aliasing signals make the receiving ability of the signal receiver worse, the signal processing ability weaker,and the anti-interference ability of the communication system lower. Aiming at the above problems, to save communication resources and improve communication efficiency, and considering the irregularity of interference signals, the underdetermined blind separation technology can effectively deal with the problem of interference sensing and signal reconstruction in this scenario. In order to improve the stability of source signal separation and the security of information transmission, a greedy optimization algorithm can be executed. At the same time, to improve network information transmission efficiency and prevent algorithms from getting trapped in local optima, delete low-energy points during each iteration process. Ultimately, simulation experiments validate that the algorithm presented in this paper enhances both the transmission efficiency of the network transmission system and the security of the communication system, achieving the process of interference sensing and signal reconstruction in the LEO satellite communication system.展开更多
In mega-constellation Communication Systems, efficient routing algorithms and data transmission technologies are employed to ensure fast and reliable data transfer. However, the limited computational resources of sate...In mega-constellation Communication Systems, efficient routing algorithms and data transmission technologies are employed to ensure fast and reliable data transfer. However, the limited computational resources of satellites necessitate the use of edge computing to enhance secure communication.While edge computing reduces the burden on cloud computing, it introduces security and reliability challenges in open satellite communication channels. To address these challenges, we propose a blockchain architecture specifically designed for edge computing in mega-constellation communication systems. This architecture narrows down the consensus scope of the blockchain to meet the requirements of edge computing while ensuring comprehensive log storage across the network. Additionally, we introduce a reputation management mechanism for nodes within the blockchain, evaluating their trustworthiness, workload, and efficiency. Nodes with higher reputation scores are selected to participate in tasks and are appropriately incentivized. Simulation results demonstrate that our approach achieves a task result reliability of 95% while improving computational speed.展开更多
Organic electrochemical transistors(OECTs) exhibit significant potential for applications in healthcare and human-machine interfaces, due to their tunable synthesis, facile deposition, and excellent biocompatibility. ...Organic electrochemical transistors(OECTs) exhibit significant potential for applications in healthcare and human-machine interfaces, due to their tunable synthesis, facile deposition, and excellent biocompatibility. Expanding OECTs to the fexible devices will significantly facilitate stable contact with the skin and enable more possible bioelectronic applications. In this work,we summarize the device physics of fexible OECTs, aiming to offer a foundational understanding and guidelines for material selection and device architecture. Particular attention is paid to the advanced manufacturing approaches, including photolithography and printing techniques, which establish a robust foundation for the commercialization and large-scale fabrication. And abundantly demonstrated examples ranging from biosensors, artificial synapses/neurons, to bioinspired nervous systems are summarized to highlight the considerable prospects of smart healthcare. In the end, the challenges and opportunities are proposed for fexible OECTs. The purpose of this review is not only to elaborate on the basic design principles of fexible OECTs, but also to act as a roadmap for further exploration of wearable OECTs in advanced bio-applications.展开更多
Aiming to solve the bottleneck problem of electromagnetic scattering simulation in the scenes of extremely large-scale seas and ships,a high-frequency method by using graphics processing unit(GPU)parallel acceleration...Aiming to solve the bottleneck problem of electromagnetic scattering simulation in the scenes of extremely large-scale seas and ships,a high-frequency method by using graphics processing unit(GPU)parallel acceleration technique is proposed.For the implementation of different electromagnetic methods of physical optics(PO),shooting and bouncing ray(SBR),and physical theory of diffraction(PTD),a parallel computing scheme based on the CPU-GPU parallel computing scheme is realized to balance computing tasks.Finally,a multi-GPU framework is further proposed to solve the computational difficulty caused by the massive number of ray tubes in the ray tracing process.By using the established simulation platform,signals of ships at different seas are simulated and their images are achieved as well.It is shown that the higher sea states degrade the averaged peak signal-to-noise ratio(PSNR)of radar image.展开更多
Addressing the challenges of passive Radio Frequency Identification(RFID)indoor localization technology in Non-Line-of-Sight(NLoS)and multipath environments,this paper presents an innovative approach by introducing a ...Addressing the challenges of passive Radio Frequency Identification(RFID)indoor localization technology in Non-Line-of-Sight(NLoS)and multipath environments,this paper presents an innovative approach by introducing a combined technology integrating an improved Kalman Filter with Space Domain Phase Difference of Arrival(SD-PDOA)and Received Signal Strength Indicator(RSSI).This methodology utilizes the distinct channel characteristics in multipath and NLoS contexts to effectively filter out interference and accurately extract localization information,thereby facilitating high precision and stability in passive RFID localization.The efficacy of this approach is demonstrated through detailed simulations and empirical tests conducted on a custom-built experimental platform consisting of passive RFID tags and an R420 reader.The findings are significant:in NLoS conditions,the four-antenna localization system achieved a notable localization accuracy of 0.25 m at a distance of 5 m.In complex multipath environments,this system achieved a localization accuracy of approximately 0.5 m at a distance of 5 m.When compared to conventional passive localization methods,our proposed solution exhibits a substantial improvement in indoor localization accuracy under NLoS and multipath conditions.This research provides a robust and effective technical solution for high-precision passive indoor localization in the Internet of Things(IoT)system,marking a significant advancement in the field.展开更多
Microglial activation that occurs rapidly after closed head injury may play important and complex roles in neuroinflammation-associated neuronal damage and repair.We previously reported that induced neural stem cells ...Microglial activation that occurs rapidly after closed head injury may play important and complex roles in neuroinflammation-associated neuronal damage and repair.We previously reported that induced neural stem cells can modulate the behavior of activated microglia via CXCL12/CXCR4 signaling,influencing their activation such that they can promote neurological recovery.However,the mechanism of CXCR4 upregulation in induced neural stem cells remains unclear.In this study,we found that nuclear factor-κB activation induced by closed head injury mouse serum in microglia promoted CXCL12 and tumor necrosis factor-αexpression but suppressed insulin-like growth factor-1 expression.However,recombinant complement receptor 2-conjugated Crry(CR2-Crry)reduced the effects of closed head injury mouse serum-induced nuclear factor-κB activation in microglia and the levels of activated microglia,CXCL12,and tumor necrosis factor-α.Additionally,we observed that,in response to stimulation(including stimulation by CXCL12 secreted by activated microglia),CXCR4 and Crry levels can be upregulated in induced neural stem cells via the interplay among CXCL12/CXCR4,Crry,and Akt signaling to modulate microglial activation.In agreement with these in vitro experimental results,we found that Akt activation enhanced the immunoregulatory effects of induced neural stem cell grafts on microglial activation,leading to the promotion of neurological recovery via insulin-like growth factor-1 secretion and the neuroprotective effects of induced neural stem cell grafts through CXCR4 and Crry upregulation in the injured cortices of closed head injury mice.Notably,these beneficial effects of Akt activation in induced neural stem cells were positively correlated with the therapeutic effects of induced neural stem cells on neuronal injury,cerebral edema,and neurological disorders post–closed head injury.In conclusion,our findings reveal that Akt activation may enhance the immunoregulatory effects of induced neural stem cells on microglial activation via upregulation of CXCR4 and Crry,thereby promoting induced neural stem cell–mediated improvement of neuronal injury,cerebral edema,and neurological disorders following closed head injury.展开更多
Z-curve’s encoding and decoding algorithms are primely important in many Z-curve-based applications.The bit interleaving algorithm is the current state-of-the-art algorithm for encoding and decoding Z-curve.Although ...Z-curve’s encoding and decoding algorithms are primely important in many Z-curve-based applications.The bit interleaving algorithm is the current state-of-the-art algorithm for encoding and decoding Z-curve.Although simple,its efficiency is hindered by the step-by-step coordinate shifting and bitwise operations.To tackle this problem,we first propose the efficient encoding algorithm LTFe and the corresponding decoding algorithm LTFd,which adopt two optimization methods to boost the algorithm’s efficiency:1)we design efficient lookup tables(LT)that convert encoding and decoding operations into table-lookup operations;2)we design a bit detection mechanism that skips partial order of a coordinate or a Z-value with consecutive 0s in the front,avoiding unnecessary iterative computations.We propose order-parallel and point-parallel OpenMP-based algorithms to exploit the modern multi-core hardware.Experimental results on discrete,skewed,and real datasets indicate that our point-parallel algorithms can be up to 12.6×faster than the existing algorithms.展开更多
A P-band polarimetric synthetic aperture radar(PolSAR)sensor has deep penetration ability into and through the vegetation canopies in forested environments.Thus,the sensor is of great potential to accurately assess fo...A P-band polarimetric synthetic aperture radar(PolSAR)sensor has deep penetration ability into and through the vegetation canopies in forested environments.Thus,the sensor is of great potential to accurately assess forest parameters such as coverage,stand density,and tree height.Unfortunately,the radar backscatter from complex terrain can adversely impact the backscatter from trees or forests,and forest parameters assessed can be erroneous.Thus,reducing the topographic impact is an urgent must.In this study,a topographic compensation algorithm has been studied.To assess the algorithm’s validity and effectiveness,we applied it to P-band PolSAR datasets in four forested areas in the US.Trees in the forest stands have diverse species,and the topographic conditions of the terrain differ.Significant topographic impact on the P-band PolSAR data exists before the topographic compensation algorithm.After the algorithm,the impact decreases noticeably qualitatively and quantitatively.The algorithm is valid and effective in reducing the topographic influence on the PolSAR data and,consequently,provides a better chance of retrieving accurate forest parameters.展开更多
How to ensure the security of device access is a common concern in the Internet of Things(IoT)scenario with extremely high device connection density.To achieve efficient and secure network access for IoT devices with ...How to ensure the security of device access is a common concern in the Internet of Things(IoT)scenario with extremely high device connection density.To achieve efficient and secure network access for IoT devices with constrained resources,this paper proposes a lightweight physical-layer authentication protocol based on Physical Unclonable Function(PUF)and channel pre-equalization.PUF is employed as a secret carrier to provide authentication credentials for devices due to its hardware-based uniqueness and unclonable property.Meanwhile,the short-term reciprocity and spatio-temporal uniqueness of wireless channels are utilized to attach an authentication factor related to the spatio-temporal position of devices and to secure the transmission of authentication messages.The proposed protocol is analyzed formally and informally to prove its correctness and security against typical attacks.Simulation results show its robustness in various radio environments.Moreover,we illustrate the advantages of our protocol in terms of security features and complexity through performance comparison with existing authentication schemes.展开更多
BACKGROUND Hypertrophic cardiomyopathy(HCM)is one of the most prevalent inherited myocardial disorders and is charac-terized by considerable genetic and phenotypic heterogeneity.A subset of patients with HCM progress ...BACKGROUND Hypertrophic cardiomyopathy(HCM)is one of the most prevalent inherited myocardial disorders and is charac-terized by considerable genetic and phenotypic heterogeneity.A subset of patients with HCM progress to a dilated phase of HCM(DPHCM),which is associated with a poor prognosis;however,the underlying pathogenesis remains inadequately understood.CASE SUMMARY In this study,we present a case involving a pedigree with familial DPHCM and conduct a retrospective review of patients with DPHCM with identified gene mutations.Through panel sequencing targeting the coding regions of 312 genes associated with inherited cardiomyopathy,a heterozygous missense mutation(c.746G>A,p.Arg249Glu)in the MYH7 gene was identified in the proband(III-5).Sanger sequencing subsequently confirmed this pathogenic mutation in three additional family members(II-4,III-4,and IV-3).A total of 26 well-documented patients with DPHCM were identified in the literature.Patients with DPHCM are commonly middle-aged and male.The mean age of patients with DPHCM was 53.43±12.79 years.Heart failure,dyspnoea,and atrial fibrillation were the most prevalent symptoms observed,accompanied by an average left ventricular end-diastolic size of 58.62 mm.CONCLUSION Our findings corroborate the pathogenicity of the MYH7(c.746G>A,p.Arg249Glu)mutation for DPHCM and suggest that the Arg249Gln mutation may be responsible for high mortality.展开更多
The integration of artificial intelligence(AI)technology,particularly large language models(LLMs),has become essential across various sectors due to their advanced language comprehension and generation capabilities.De...The integration of artificial intelligence(AI)technology,particularly large language models(LLMs),has become essential across various sectors due to their advanced language comprehension and generation capabilities.Despite their transformative impact in fields such as machine translation and intelligent dialogue systems,LLMs face significant challenges.These challenges include safety,security,and privacy concerns that undermine their trustworthiness and effectiveness,such as hallucinations,backdoor attacks,and privacy leakage.Previous works often conflated safety issues with security concerns.In contrast,our study provides clearer and more reasonable definitions for safety,security,and privacy within the context of LLMs.Building on these definitions,we provide a comprehensive overview of the vulnerabilities and defense mechanisms related to safety,security,and privacy in LLMs.Additionally,we explore the unique research challenges posed by LLMs and suggest potential avenues for future research,aiming to enhance the robustness and reliability of LLMs in the face of emerging threats.展开更多
To guarantee secure communication against eavesdropping and malicious attack,an artificial noise(AN)-aided frequency-hopping(FH)architecture is adopted in this article.But the inevitable time misalignment between the ...To guarantee secure communication against eavesdropping and malicious attack,an artificial noise(AN)-aided frequency-hopping(FH)architecture is adopted in this article.But the inevitable time misalignment between the received signal and locally reconstructed AN will deteriorate the AN cancellation performance,yielding significant secrecy degradation at the FH receiver.In view of this,first,the AN cancellation performance under time misalignment is evaluated via signal to AN-plus-noise ratio,and the system secrecy is analyzed via secrecy rate.Then,to mitigate the performance degradation raised by time misalignment,the transmitting power allocation scheme for AN and confidential signal(CS)is optimized,and the optimal hopping period is designed.Notably,the obtained conclusions in both the performance evaluation and transmitter optimization sections hold no matter whether the eavesdropper can realize FH synchronization or not.Simulations verify that time misalignment will raise non-negligible performance degradation.Besides,the power ratio of AN to CS should decrease as time misalignment increases,and for perfect time synchronization,the transmitting power of AN and CS should be equivalent.In addition,a longer hopping period is preferred for secrecy enhancement when time misalignment gets exacerbated.展开更多
Shielding materials are critical for downhole pulsed neutron tool design because they directly influence the accuracy of formation measurements.A well-designed shield configuration ensures that the response of the too...Shielding materials are critical for downhole pulsed neutron tool design because they directly influence the accuracy of formation measurements.A well-designed shield configuration ensures that the response of the tool is maximally representative of the formation without being affected by the tool and borehole environment.This study investigated the effects of boron-containing materials on neutron and gamma detectors based on a newly designed logging-while-drilling tool that is currently undergoing manufacturing.As the boron content increased,the ability to absorb thermal neutrons increased significantly.Through simulation,it was proven that boron carbide(B_(4)C)can be used as an effective boron shielding material for thermal neutrons,and is therefore employed in this work.To shield against thermal neutrons migrating from the mud pipes,the optimal shielding thicknesses for the near-and far-neutron detectors were determined to be 5 and 4 mm.At a porosity of 25 p.u.,near-neutron sensitivity exhibited a 5.6%increase.Furthermore,to shield the capture gamma generated by thermal neutrons once they enter the tool from the mud pipe and formation,internal and external shields for the gamma detector were evaluated.The results show that the internal shield requires a boron content of 75%,whereas the external shield has a thickness of 14.2 mm thickness and a boron content of 25%to minimize the tool effect.展开更多
In reward-based crowdfunding, projects are to disclose the operational risks and mitigation strategies for delivering the physical rewards during the funding phase. However, limited knowledge exists regarding projects...In reward-based crowdfunding, projects are to disclose the operational risks and mitigation strategies for delivering the physical rewards during the funding phase. However, limited knowledge exists regarding projects’ operational risks and mitigation strategies during the funding phase. In contributing to the literature, the study uses data on Kickstarter.com and conducts a content analysis to explore themes and their relationships. The results reveal various operational risks and associated mitigation strategies. Among the identified themes, product-related, contract manufacturers, and supply markets are the most expected risks, while outsourced production and proactive sourcing are the popular mitigation strategies. Also, the finding reveals that proactive sourcing and outsourced production, in-house production and post-campaign sourcing, contract manufacturer risk, and project internal risk are themes forming clusters. The results extend crowdfunding risk disclosure literature and set the tone for future research in crowdfunding operational risk management. Finally, other business implications are drawn for crowdfunding practitioners.展开更多
Hepatectomy is a curative treatment for hepatic alveolar echinococcosis(HAE)[1,2].The prognosis of HAE is similar to that of liver tumors with a mortality of over 90%in untreated cases within 10–15 years after diagno...Hepatectomy is a curative treatment for hepatic alveolar echinococcosis(HAE)[1,2].The prognosis of HAE is similar to that of liver tumors with a mortality of over 90%in untreated cases within 10–15 years after diagnosis[3,4].Advanced stages are characterized by extensive intrahepatic lesions,invasion of the inferior vena cava or hepatic hilum,extended invasion of the diaphragm and retroperitoneal space,and distant metastasis[5],all of which make hepatectomy challenging.展开更多
BACKGROUND Acute appendicitis,a common condition with a higher prevalence among men,has shown an increasing incidence in recent years owing to lifestyle changes.It is characterized by right lower quadrant abdominal pa...BACKGROUND Acute appendicitis,a common condition with a higher prevalence among men,has shown an increasing incidence in recent years owing to lifestyle changes.It is characterized by right lower quadrant abdominal pain,rebound tenderness,and rapid onset.Its pathogenesis is complex and potentially linked to infection,environment,and genetics.Timely intervention is crucial to prevent complications.While surgery is the primary treatment,it carries risks,including postoperative infections that may necessitate re-operation.Gram-negative bacteria release endotoxin(ETX),which induces inflammation and is recognized by toll-like receptor 4(TLR4).This study evaluated ETX and TLR4 levels in patients with acute appendicitis to assess the risk of postoperative incision infections,aiding in prevention and treatment.AIM To explore ETX and TLR4 expression in the blood of patients with acute appendicitis and its association with in postoperative incision infection.METHODS A total of 153 patients with acute appendicitis treated at our hospital between April 2022 and March 2024(n=153)were included in the study.Patients were categorized into infected(n=36)and uninfected(n=117)groups according to the development of postoperative incision infections.General characteristics and blood levels of ETX and TLR4 were compared,and the factors influencing postoperative infection were identified using multivariate logistic regression.ETX and TLR4 predictive values were analyzed using receiver operating characteristic curves.RESULTS No statistically significant differences were observed between the two groups in terms of sex,age,or other general characteristics(P>0.05).Compared to the uninfected group,the infected group had a higher proportion of patients with suppurative or gangrenous appendicitis,longer surgical times,longer incision lengths,and elevated ETX and TLR4 levels(P<0.05).Multivariate logistic regression analysis identified pathological type,surgical method,surgical time,and incision length as factors influencing postoperative incision infection in acute appendicitis.Receiver operating characteristic curve analysis revealed that both ETX and TLR4 levels were predictive factors for postoperative incision infection,with higher prediction efficiency when combined.CONCLUSION Pathological type,surgical method,surgical time,and incision length significantly influence postoperative incision infection risk in patients with acute appendicitis.Elevated ETX and TLR4 levels serve as valuable predictors of post-appendectomy infections.展开更多
Objective:To explore symptom experiences and self-coping patterns during the early and late stages of chemotherapy in these patients to provide a basis for developing targeted symptom management strategies.Methods:A t...Objective:To explore symptom experiences and self-coping patterns during the early and late stages of chemotherapy in these patients to provide a basis for developing targeted symptom management strategies.Methods:A total of 27 patients with pancreatic cancer undergoing chemotherapy at two medical institutions were recruited between November 2023 and August 2024.Semi-structured interviews were conducted in person or over the phone.Data were analyzed using traditional content and thematic analyses.Results:Three themes were identified:symptom experience,self-coping patterns,and existing obstacles.During the early stages of chemotherapy,patients reported a higher frequency of unpleasant symptoms and recognized these symptoms earlier in the treatment course.Patients in the early stages primarily relied on external support to cope with symptoms,while those in the later stages adopted self-care strategies.Several challenges related to unpleasant symptoms were observed,which appeared to correlate with the self-coping patterns employed.Conclusion:Patients with pancreatic cancer undergoing chemotherapy experience a complex and diverse range of symptoms,with varying coping patterns at different stages of treatment.Symptom management during chemotherapy presents significant challenges.Healthcare providers should improve the ongoing monitoring of symptoms post-chemotherapy.By linking patients’symptom experiences and self-coping patterns at different stages of chemotherapy to their specific challenges,personalized symptom management strategies can be developed to enhance care quality.展开更多
BACKGROUND Periodontitis,when exacerbated by diabetes,is characterized by increased M1 macrophage polarization and decreased M2 polarization.O-linkedβ-N-acetylglucosamine(O-GlcNAcylation),catalyzed by O-GlcNAc transf...BACKGROUND Periodontitis,when exacerbated by diabetes,is characterized by increased M1 macrophage polarization and decreased M2 polarization.O-linkedβ-N-acetylglucosamine(O-GlcNAcylation),catalyzed by O-GlcNAc transferase(OGT),promotes inflammatory responses in diabetic periodontitis(DP).Additionally,p38 mitogen-activated protein kinase regulates macrophage polarization.However,the interplay between OGT,macrophage polarization,and p38 signaling in the progression of DP remains unexplored.AIM To investigate the effect of OGT on macrophage polarization in DP and its role in mediating O-GlcNAcylation of p38.METHODS For in vivo experiments,mice were divided into four groups:Control,DP model,model+short hairpin(sh)RNAnegative control,and model+sh-OGT.Diabetes was induced by streptozotocin,followed by ligation and lipopolysaccharide(LPS)administration to induce periodontitis.The impact of OGT was assessed by injecting sh-OGT lentivirus.Maxillary bone destruction was evaluated using micro-computed tomography analysis and tartrateresistant acid phosphatase staining,while macrophage polarization was determined through quantitative real-time polymerase chain reaction(qPCR)and immunohistochemistry.For in vitro experiments,RAW264.7 cells were treated with LPS and high glucose(HG)(25 mmol/L D-glucose)to establish a cell model of DP.OGT was inhibited by OGT inhibitor(OSMI4)treatment and knocked down by sh-OGT transfection.M1/M2 polarization was analyzed using qPCR,immunofluorescence,and flow cytometry.Levels of O-GlcNAcylation were measured using immunoprecipitation and western blotting.RESULTS Our results demonstrated that M1 macrophage polarization led to maxillary bone loss in DP mice,associated with elevated O-GlcNAcylation and OGT levels.Knockdown of OGT promoted the shift from M1 to M2 macrophage polarization in both mouse periodontal tissues and LPS+HG-induced RAW264.7 cells.Furthermore,LPS+HG enhanced the O-GlcNAcylation of p38 in RAW264.7 cells.OGT interacted with p38 to promote its O-GlcNAcylation at residues A28,T241,and T347,as well as its phosphorylation at residue Y221.CONCLUSION Inhibition of OGT-mediated p38 O-GlcNAcylation deactivates the p38 pathway by suppressing its self-phosphorylation,thereby promoting M1 to M2 macrophage polarization and mitigating DP.These findings suggested that modulating macrophage polarization through regulation of O-GlcNAcylation may represent a novel therapeutic strategy for treating DP.展开更多
With the increasing maritime activities and the rapidly developing maritime economy, the fifth-generation(5G) mobile communication system is expected to be deployed at the ocean. New technologies need to be explored t...With the increasing maritime activities and the rapidly developing maritime economy, the fifth-generation(5G) mobile communication system is expected to be deployed at the ocean. New technologies need to be explored to meet the requirements of ultra-reliable and low latency communications(URLLC) in the maritime communication network(MCN). Mobile edge computing(MEC) can achieve high energy efficiency in MCN at the cost of suffering from high control plane latency and low reliability. In terms of this issue, the mobile edge communications, computing, and caching(MEC3) technology is proposed to sink mobile computing, network control, and storage to the edge of the network. New methods that enable resource-efficient configurations and reduce redundant data transmissions can enable the reliable implementation of computing-intension and latency-sensitive applications. The key technologies of MEC3 to enable URLLC are analyzed and optimized in MCN. The best response-based offloading algorithm(BROA) is adopted to optimize task offloading. The simulation results show that the task latency can be decreased by 26.5’ ms, and the energy consumption in terminal users can be reduced to 66.6%.展开更多
To optimize the electronic structure of photocatalyst,a facile one‐step approach is developed for the simultaneous realization of Zn‐doping and surface oxygen vacancies(SOVs)formation on SnO_(2).The Zn‐doped SnO_(2...To optimize the electronic structure of photocatalyst,a facile one‐step approach is developed for the simultaneous realization of Zn‐doping and surface oxygen vacancies(SOVs)formation on SnO_(2).The Zn‐doped SnO_(2)with abundant SOVs exhibits efficient and stable performance for photocatalytic degradation of toluene under both low and high relative humidity.Experimental and theoretical calculations results show that the synergistic effects of Zn‐doping and SOVs on SnO_(2)can considerably boost the charge transfer and separation efficiency.Utilizing the in situ DRIFTS and theoretical calculations methods,it is revealed that the benzene ring of toluene is opened at benzoic acid on the SnO_(2)surface and selectively at benzaldehyde on the Zn‐doped SnO_(2)surface.This implies that Zn‐doped SnO_(2)photocatalysts shorten the pathway of toluene degradation,and toxic intermediates can be significantly inhibited.This work could provide a promising and sustainable route for safe and efficient removal of aromatic VOCs with photocatalytic technology.展开更多
基金supported by National Natural Science Foundation of China (62171390)Central Universities of Southwest Minzu University (ZYN2022032,2023NYXXS034)the State Scholarship Fund of the China Scholarship Council (NO.202008510081)。
文摘In LEO satellite communication networks,the number of satellites has increased sharply, the relative velocity of satellites is very fast, then electronic signal aliasing occurs from time to time. Those aliasing signals make the receiving ability of the signal receiver worse, the signal processing ability weaker,and the anti-interference ability of the communication system lower. Aiming at the above problems, to save communication resources and improve communication efficiency, and considering the irregularity of interference signals, the underdetermined blind separation technology can effectively deal with the problem of interference sensing and signal reconstruction in this scenario. In order to improve the stability of source signal separation and the security of information transmission, a greedy optimization algorithm can be executed. At the same time, to improve network information transmission efficiency and prevent algorithms from getting trapped in local optima, delete low-energy points during each iteration process. Ultimately, simulation experiments validate that the algorithm presented in this paper enhances both the transmission efficiency of the network transmission system and the security of the communication system, achieving the process of interference sensing and signal reconstruction in the LEO satellite communication system.
基金supported in part by the National Natural Science Foundation of China under Grant No.U2268204,62172061 and 61871422National Key R&D Program of China under Grant No.2020YFB1711800 and 2020YFB1707900+2 种基金the Science and Technology Project of Sichuan Province under Grant No.2023ZHCG0014,2023ZHCG0011,2022YFG0155,2022YFG0157,2021GFW019,2021YFG0152,2021YFG0025,2020YFG0322Central Universities of Southwest Minzu University under Grant No.ZYN2022032,2023NYXXS034the State Scholarship Fund of the China Scholarship Council under Grant No.202008510081。
文摘In mega-constellation Communication Systems, efficient routing algorithms and data transmission technologies are employed to ensure fast and reliable data transfer. However, the limited computational resources of satellites necessitate the use of edge computing to enhance secure communication.While edge computing reduces the burden on cloud computing, it introduces security and reliability challenges in open satellite communication channels. To address these challenges, we propose a blockchain architecture specifically designed for edge computing in mega-constellation communication systems. This architecture narrows down the consensus scope of the blockchain to meet the requirements of edge computing while ensuring comprehensive log storage across the network. Additionally, we introduce a reputation management mechanism for nodes within the blockchain, evaluating their trustworthiness, workload, and efficiency. Nodes with higher reputation scores are selected to participate in tasks and are appropriately incentivized. Simulation results demonstrate that our approach achieves a task result reliability of 95% while improving computational speed.
基金sponsored by the Regional Joint Fund of the National Science Foundation of China via Grant No. U21A20492the National Natural Science Foundation of China (NSFC) via Grant No. 62275041+2 种基金the Sichuan Science and Technology Program via Grant Nos. 2022YFH0081, 2022YFG0012 and 2022YFG0013the Sichuan Youth Software Innovation Project Funding via Grant No. MZGC20230068the Sichuan Province Key Laboratory of Display Science and Technology。
文摘Organic electrochemical transistors(OECTs) exhibit significant potential for applications in healthcare and human-machine interfaces, due to their tunable synthesis, facile deposition, and excellent biocompatibility. Expanding OECTs to the fexible devices will significantly facilitate stable contact with the skin and enable more possible bioelectronic applications. In this work,we summarize the device physics of fexible OECTs, aiming to offer a foundational understanding and guidelines for material selection and device architecture. Particular attention is paid to the advanced manufacturing approaches, including photolithography and printing techniques, which establish a robust foundation for the commercialization and large-scale fabrication. And abundantly demonstrated examples ranging from biosensors, artificial synapses/neurons, to bioinspired nervous systems are summarized to highlight the considerable prospects of smart healthcare. In the end, the challenges and opportunities are proposed for fexible OECTs. The purpose of this review is not only to elaborate on the basic design principles of fexible OECTs, but also to act as a roadmap for further exploration of wearable OECTs in advanced bio-applications.
基金supported by the Opening Foundation of the Agile and Intelligence Computing Key Laboratory of Sichuan Province under Grant No.H23004the Chengdu Municipal Science and Technology Bureau Technological Innovation R&D Project(Key Project)under Grant No.2024-YF08-00106-GX.
文摘Aiming to solve the bottleneck problem of electromagnetic scattering simulation in the scenes of extremely large-scale seas and ships,a high-frequency method by using graphics processing unit(GPU)parallel acceleration technique is proposed.For the implementation of different electromagnetic methods of physical optics(PO),shooting and bouncing ray(SBR),and physical theory of diffraction(PTD),a parallel computing scheme based on the CPU-GPU parallel computing scheme is realized to balance computing tasks.Finally,a multi-GPU framework is further proposed to solve the computational difficulty caused by the massive number of ray tubes in the ray tracing process.By using the established simulation platform,signals of ships at different seas are simulated and their images are achieved as well.It is shown that the higher sea states degrade the averaged peak signal-to-noise ratio(PSNR)of radar image.
基金supported in part by the Joint Project of National Natural Science Foundation of China(U22B2004,62371106)in part by China Mobile Research Institute&X-NET(Project Number:2022H002)+6 种基金in part by the Pre-Research Project(31513070501)in part by National Key R&D Program(2018AAA0103203)in part by Guangdong Provincial Research and Development Plan in Key Areas(2019B010141001)in part by Sichuan Provincial Science and Technology Planning Program of China(2022YFG0230,2023YFG0040)in part by the Fundamental Enhancement Program Technology Area Fund(2021-JCJQ-JJ-0667)in part by the Joint Fund of ZF and Ministry of Education(8091B022126)in part by Innovation Ability Construction Project for Sichuan Provincial Engineering Research Center of Communication Technology for Intelligent IoT(2303-510109-04-03-318020).
文摘Addressing the challenges of passive Radio Frequency Identification(RFID)indoor localization technology in Non-Line-of-Sight(NLoS)and multipath environments,this paper presents an innovative approach by introducing a combined technology integrating an improved Kalman Filter with Space Domain Phase Difference of Arrival(SD-PDOA)and Received Signal Strength Indicator(RSSI).This methodology utilizes the distinct channel characteristics in multipath and NLoS contexts to effectively filter out interference and accurately extract localization information,thereby facilitating high precision and stability in passive RFID localization.The efficacy of this approach is demonstrated through detailed simulations and empirical tests conducted on a custom-built experimental platform consisting of passive RFID tags and an R420 reader.The findings are significant:in NLoS conditions,the four-antenna localization system achieved a notable localization accuracy of 0.25 m at a distance of 5 m.In complex multipath environments,this system achieved a localization accuracy of approximately 0.5 m at a distance of 5 m.When compared to conventional passive localization methods,our proposed solution exhibits a substantial improvement in indoor localization accuracy under NLoS and multipath conditions.This research provides a robust and effective technical solution for high-precision passive indoor localization in the Internet of Things(IoT)system,marking a significant advancement in the field.
基金supported by the National Natural Science Foundation of China,Nos.82271397(to MG),82001293(to MG),82171355(to RX),81971295(to RX),and 81671189(to RX)。
文摘Microglial activation that occurs rapidly after closed head injury may play important and complex roles in neuroinflammation-associated neuronal damage and repair.We previously reported that induced neural stem cells can modulate the behavior of activated microglia via CXCL12/CXCR4 signaling,influencing their activation such that they can promote neurological recovery.However,the mechanism of CXCR4 upregulation in induced neural stem cells remains unclear.In this study,we found that nuclear factor-κB activation induced by closed head injury mouse serum in microglia promoted CXCL12 and tumor necrosis factor-αexpression but suppressed insulin-like growth factor-1 expression.However,recombinant complement receptor 2-conjugated Crry(CR2-Crry)reduced the effects of closed head injury mouse serum-induced nuclear factor-κB activation in microglia and the levels of activated microglia,CXCL12,and tumor necrosis factor-α.Additionally,we observed that,in response to stimulation(including stimulation by CXCL12 secreted by activated microglia),CXCR4 and Crry levels can be upregulated in induced neural stem cells via the interplay among CXCL12/CXCR4,Crry,and Akt signaling to modulate microglial activation.In agreement with these in vitro experimental results,we found that Akt activation enhanced the immunoregulatory effects of induced neural stem cell grafts on microglial activation,leading to the promotion of neurological recovery via insulin-like growth factor-1 secretion and the neuroprotective effects of induced neural stem cell grafts through CXCR4 and Crry upregulation in the injured cortices of closed head injury mice.Notably,these beneficial effects of Akt activation in induced neural stem cells were positively correlated with the therapeutic effects of induced neural stem cells on neuronal injury,cerebral edema,and neurological disorders post–closed head injury.In conclusion,our findings reveal that Akt activation may enhance the immunoregulatory effects of induced neural stem cells on microglial activation via upregulation of CXCR4 and Crry,thereby promoting induced neural stem cell–mediated improvement of neuronal injury,cerebral edema,and neurological disorders following closed head injury.
基金funded by the Key Project of the Open Fund for Computer Technology Applications in Yunnan under Grant no.CB23031D025A.
文摘Z-curve’s encoding and decoding algorithms are primely important in many Z-curve-based applications.The bit interleaving algorithm is the current state-of-the-art algorithm for encoding and decoding Z-curve.Although simple,its efficiency is hindered by the step-by-step coordinate shifting and bitwise operations.To tackle this problem,we first propose the efficient encoding algorithm LTFe and the corresponding decoding algorithm LTFd,which adopt two optimization methods to boost the algorithm’s efficiency:1)we design efficient lookup tables(LT)that convert encoding and decoding operations into table-lookup operations;2)we design a bit detection mechanism that skips partial order of a coordinate or a Z-value with consecutive 0s in the front,avoiding unnecessary iterative computations.We propose order-parallel and point-parallel OpenMP-based algorithms to exploit the modern multi-core hardware.Experimental results on discrete,skewed,and real datasets indicate that our point-parallel algorithms can be up to 12.6×faster than the existing algorithms.
基金supported by the National Natural Science Foundation of China under Grants No.41771401 and No.42350710201.
文摘A P-band polarimetric synthetic aperture radar(PolSAR)sensor has deep penetration ability into and through the vegetation canopies in forested environments.Thus,the sensor is of great potential to accurately assess forest parameters such as coverage,stand density,and tree height.Unfortunately,the radar backscatter from complex terrain can adversely impact the backscatter from trees or forests,and forest parameters assessed can be erroneous.Thus,reducing the topographic impact is an urgent must.In this study,a topographic compensation algorithm has been studied.To assess the algorithm’s validity and effectiveness,we applied it to P-band PolSAR datasets in four forested areas in the US.Trees in the forest stands have diverse species,and the topographic conditions of the terrain differ.Significant topographic impact on the P-band PolSAR data exists before the topographic compensation algorithm.After the algorithm,the impact decreases noticeably qualitatively and quantitatively.The algorithm is valid and effective in reducing the topographic influence on the PolSAR data and,consequently,provides a better chance of retrieving accurate forest parameters.
基金supported by National Natural Science Foundation of China(No.61931020,No.U19B2024 and No.62371462).
文摘How to ensure the security of device access is a common concern in the Internet of Things(IoT)scenario with extremely high device connection density.To achieve efficient and secure network access for IoT devices with constrained resources,this paper proposes a lightweight physical-layer authentication protocol based on Physical Unclonable Function(PUF)and channel pre-equalization.PUF is employed as a secret carrier to provide authentication credentials for devices due to its hardware-based uniqueness and unclonable property.Meanwhile,the short-term reciprocity and spatio-temporal uniqueness of wireless channels are utilized to attach an authentication factor related to the spatio-temporal position of devices and to secure the transmission of authentication messages.The proposed protocol is analyzed formally and informally to prove its correctness and security against typical attacks.Simulation results show its robustness in various radio environments.Moreover,we illustrate the advantages of our protocol in terms of security features and complexity through performance comparison with existing authentication schemes.
基金Supported by National Natural Science Foundation of China,No.81770379.
文摘BACKGROUND Hypertrophic cardiomyopathy(HCM)is one of the most prevalent inherited myocardial disorders and is charac-terized by considerable genetic and phenotypic heterogeneity.A subset of patients with HCM progress to a dilated phase of HCM(DPHCM),which is associated with a poor prognosis;however,the underlying pathogenesis remains inadequately understood.CASE SUMMARY In this study,we present a case involving a pedigree with familial DPHCM and conduct a retrospective review of patients with DPHCM with identified gene mutations.Through panel sequencing targeting the coding regions of 312 genes associated with inherited cardiomyopathy,a heterozygous missense mutation(c.746G>A,p.Arg249Glu)in the MYH7 gene was identified in the proband(III-5).Sanger sequencing subsequently confirmed this pathogenic mutation in three additional family members(II-4,III-4,and IV-3).A total of 26 well-documented patients with DPHCM were identified in the literature.Patients with DPHCM are commonly middle-aged and male.The mean age of patients with DPHCM was 53.43±12.79 years.Heart failure,dyspnoea,and atrial fibrillation were the most prevalent symptoms observed,accompanied by an average left ventricular end-diastolic size of 58.62 mm.CONCLUSION Our findings corroborate the pathogenicity of the MYH7(c.746G>A,p.Arg249Glu)mutation for DPHCM and suggest that the Arg249Gln mutation may be responsible for high mortality.
基金supported by the National Key R&D Program of China under Grant No.2022YFB3103500the National Natural Science Foundation of China under Grants No.62402087 and No.62020106013+3 种基金the Sichuan Science and Technology Program under Grant No.2023ZYD0142the Chengdu Science and Technology Program under Grant No.2023-XT00-00002-GXthe Fundamental Research Funds for Chinese Central Universities under Grants No.ZYGX2020ZB027 and No.Y030232063003002the Postdoctoral Innovation Talents Support Program under Grant No.BX20230060.
文摘The integration of artificial intelligence(AI)technology,particularly large language models(LLMs),has become essential across various sectors due to their advanced language comprehension and generation capabilities.Despite their transformative impact in fields such as machine translation and intelligent dialogue systems,LLMs face significant challenges.These challenges include safety,security,and privacy concerns that undermine their trustworthiness and effectiveness,such as hallucinations,backdoor attacks,and privacy leakage.Previous works often conflated safety issues with security concerns.In contrast,our study provides clearer and more reasonable definitions for safety,security,and privacy within the context of LLMs.Building on these definitions,we provide a comprehensive overview of the vulnerabilities and defense mechanisms related to safety,security,and privacy in LLMs.Additionally,we explore the unique research challenges posed by LLMs and suggest potential avenues for future research,aiming to enhance the robustness and reliability of LLMs in the face of emerging threats.
基金supported in part by the National Natural Science Foundation of China under Grant 62071094in part by the National Key Laboratory of Wireless Communications Foundation under Grant IFN202402in part by the Postdoctoral Fellowship Program(Grade C)of China Postdoctoral Science Foundation under Grant GZC20240217.
文摘To guarantee secure communication against eavesdropping and malicious attack,an artificial noise(AN)-aided frequency-hopping(FH)architecture is adopted in this article.But the inevitable time misalignment between the received signal and locally reconstructed AN will deteriorate the AN cancellation performance,yielding significant secrecy degradation at the FH receiver.In view of this,first,the AN cancellation performance under time misalignment is evaluated via signal to AN-plus-noise ratio,and the system secrecy is analyzed via secrecy rate.Then,to mitigate the performance degradation raised by time misalignment,the transmitting power allocation scheme for AN and confidential signal(CS)is optimized,and the optimal hopping period is designed.Notably,the obtained conclusions in both the performance evaluation and transmitter optimization sections hold no matter whether the eavesdropper can realize FH synchronization or not.Simulations verify that time misalignment will raise non-negligible performance degradation.Besides,the power ratio of AN to CS should decrease as time misalignment increases,and for perfect time synchronization,the transmitting power of AN and CS should be equivalent.In addition,a longer hopping period is preferred for secrecy enhancement when time misalignment gets exacerbated.
基金supported by the Natural Science Foundation of China(Nos.U23B20151 and 52171253).
文摘Shielding materials are critical for downhole pulsed neutron tool design because they directly influence the accuracy of formation measurements.A well-designed shield configuration ensures that the response of the tool is maximally representative of the formation without being affected by the tool and borehole environment.This study investigated the effects of boron-containing materials on neutron and gamma detectors based on a newly designed logging-while-drilling tool that is currently undergoing manufacturing.As the boron content increased,the ability to absorb thermal neutrons increased significantly.Through simulation,it was proven that boron carbide(B_(4)C)can be used as an effective boron shielding material for thermal neutrons,and is therefore employed in this work.To shield against thermal neutrons migrating from the mud pipes,the optimal shielding thicknesses for the near-and far-neutron detectors were determined to be 5 and 4 mm.At a porosity of 25 p.u.,near-neutron sensitivity exhibited a 5.6%increase.Furthermore,to shield the capture gamma generated by thermal neutrons once they enter the tool from the mud pipe and formation,internal and external shields for the gamma detector were evaluated.The results show that the internal shield requires a boron content of 75%,whereas the external shield has a thickness of 14.2 mm thickness and a boron content of 25%to minimize the tool effect.
文摘In reward-based crowdfunding, projects are to disclose the operational risks and mitigation strategies for delivering the physical rewards during the funding phase. However, limited knowledge exists regarding projects’ operational risks and mitigation strategies during the funding phase. In contributing to the literature, the study uses data on Kickstarter.com and conducts a content analysis to explore themes and their relationships. The results reveal various operational risks and associated mitigation strategies. Among the identified themes, product-related, contract manufacturers, and supply markets are the most expected risks, while outsourced production and proactive sourcing are the popular mitigation strategies. Also, the finding reveals that proactive sourcing and outsourced production, in-house production and post-campaign sourcing, contract manufacturer risk, and project internal risk are themes forming clusters. The results extend crowdfunding risk disclosure literature and set the tone for future research in crowdfunding operational risk management. Finally, other business implications are drawn for crowdfunding practitioners.
基金supported by grants from the National Nat-ural Science Foundation of China(81,302,161 and 82,003,103)the Science and Technology Department of Sichuan Province(2021YFS0375 and 2020YJ0450)。
文摘Hepatectomy is a curative treatment for hepatic alveolar echinococcosis(HAE)[1,2].The prognosis of HAE is similar to that of liver tumors with a mortality of over 90%in untreated cases within 10–15 years after diagnosis[3,4].Advanced stages are characterized by extensive intrahepatic lesions,invasion of the inferior vena cava or hepatic hilum,extended invasion of the diaphragm and retroperitoneal space,and distant metastasis[5],all of which make hepatectomy challenging.
文摘BACKGROUND Acute appendicitis,a common condition with a higher prevalence among men,has shown an increasing incidence in recent years owing to lifestyle changes.It is characterized by right lower quadrant abdominal pain,rebound tenderness,and rapid onset.Its pathogenesis is complex and potentially linked to infection,environment,and genetics.Timely intervention is crucial to prevent complications.While surgery is the primary treatment,it carries risks,including postoperative infections that may necessitate re-operation.Gram-negative bacteria release endotoxin(ETX),which induces inflammation and is recognized by toll-like receptor 4(TLR4).This study evaluated ETX and TLR4 levels in patients with acute appendicitis to assess the risk of postoperative incision infections,aiding in prevention and treatment.AIM To explore ETX and TLR4 expression in the blood of patients with acute appendicitis and its association with in postoperative incision infection.METHODS A total of 153 patients with acute appendicitis treated at our hospital between April 2022 and March 2024(n=153)were included in the study.Patients were categorized into infected(n=36)and uninfected(n=117)groups according to the development of postoperative incision infections.General characteristics and blood levels of ETX and TLR4 were compared,and the factors influencing postoperative infection were identified using multivariate logistic regression.ETX and TLR4 predictive values were analyzed using receiver operating characteristic curves.RESULTS No statistically significant differences were observed between the two groups in terms of sex,age,or other general characteristics(P>0.05).Compared to the uninfected group,the infected group had a higher proportion of patients with suppurative or gangrenous appendicitis,longer surgical times,longer incision lengths,and elevated ETX and TLR4 levels(P<0.05).Multivariate logistic regression analysis identified pathological type,surgical method,surgical time,and incision length as factors influencing postoperative incision infection in acute appendicitis.Receiver operating characteristic curve analysis revealed that both ETX and TLR4 levels were predictive factors for postoperative incision infection,with higher prediction efficiency when combined.CONCLUSION Pathological type,surgical method,surgical time,and incision length significantly influence postoperative incision infection risk in patients with acute appendicitis.Elevated ETX and TLR4 levels serve as valuable predictors of post-appendectomy infections.
基金supported by the State Key Laboratory of Ultrasonic Medical Engineering/the Chongqing Science and Technology Bureau(Project No.2022KFKT7011)the Postdoctoral Fellowship Program of CPSF(GZC20233357)+1 种基金the Health Commission of Sichuan Province Medical Science and Technology Program(24QNMP007)the Medical Research Program of Health Commission of Chengdu(2023535).
文摘Objective:To explore symptom experiences and self-coping patterns during the early and late stages of chemotherapy in these patients to provide a basis for developing targeted symptom management strategies.Methods:A total of 27 patients with pancreatic cancer undergoing chemotherapy at two medical institutions were recruited between November 2023 and August 2024.Semi-structured interviews were conducted in person or over the phone.Data were analyzed using traditional content and thematic analyses.Results:Three themes were identified:symptom experience,self-coping patterns,and existing obstacles.During the early stages of chemotherapy,patients reported a higher frequency of unpleasant symptoms and recognized these symptoms earlier in the treatment course.Patients in the early stages primarily relied on external support to cope with symptoms,while those in the later stages adopted self-care strategies.Several challenges related to unpleasant symptoms were observed,which appeared to correlate with the self-coping patterns employed.Conclusion:Patients with pancreatic cancer undergoing chemotherapy experience a complex and diverse range of symptoms,with varying coping patterns at different stages of treatment.Symptom management during chemotherapy presents significant challenges.Healthcare providers should improve the ongoing monitoring of symptoms post-chemotherapy.By linking patients’symptom experiences and self-coping patterns at different stages of chemotherapy to their specific challenges,personalized symptom management strategies can be developed to enhance care quality.
基金Supported by the National Natural Science Foundation of China,No.81973684Natural Science Foundation of Sichuan Province,No.2023NSFSC1760Youth Talent Fund of Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital,No.2021QN09。
文摘BACKGROUND Periodontitis,when exacerbated by diabetes,is characterized by increased M1 macrophage polarization and decreased M2 polarization.O-linkedβ-N-acetylglucosamine(O-GlcNAcylation),catalyzed by O-GlcNAc transferase(OGT),promotes inflammatory responses in diabetic periodontitis(DP).Additionally,p38 mitogen-activated protein kinase regulates macrophage polarization.However,the interplay between OGT,macrophage polarization,and p38 signaling in the progression of DP remains unexplored.AIM To investigate the effect of OGT on macrophage polarization in DP and its role in mediating O-GlcNAcylation of p38.METHODS For in vivo experiments,mice were divided into four groups:Control,DP model,model+short hairpin(sh)RNAnegative control,and model+sh-OGT.Diabetes was induced by streptozotocin,followed by ligation and lipopolysaccharide(LPS)administration to induce periodontitis.The impact of OGT was assessed by injecting sh-OGT lentivirus.Maxillary bone destruction was evaluated using micro-computed tomography analysis and tartrateresistant acid phosphatase staining,while macrophage polarization was determined through quantitative real-time polymerase chain reaction(qPCR)and immunohistochemistry.For in vitro experiments,RAW264.7 cells were treated with LPS and high glucose(HG)(25 mmol/L D-glucose)to establish a cell model of DP.OGT was inhibited by OGT inhibitor(OSMI4)treatment and knocked down by sh-OGT transfection.M1/M2 polarization was analyzed using qPCR,immunofluorescence,and flow cytometry.Levels of O-GlcNAcylation were measured using immunoprecipitation and western blotting.RESULTS Our results demonstrated that M1 macrophage polarization led to maxillary bone loss in DP mice,associated with elevated O-GlcNAcylation and OGT levels.Knockdown of OGT promoted the shift from M1 to M2 macrophage polarization in both mouse periodontal tissues and LPS+HG-induced RAW264.7 cells.Furthermore,LPS+HG enhanced the O-GlcNAcylation of p38 in RAW264.7 cells.OGT interacted with p38 to promote its O-GlcNAcylation at residues A28,T241,and T347,as well as its phosphorylation at residue Y221.CONCLUSION Inhibition of OGT-mediated p38 O-GlcNAcylation deactivates the p38 pathway by suppressing its self-phosphorylation,thereby promoting M1 to M2 macrophage polarization and mitigating DP.These findings suggested that modulating macrophage polarization through regulation of O-GlcNAcylation may represent a novel therapeutic strategy for treating DP.
基金the National S&T Major Project (No. 2018ZX03001011)the National Key R&D Program(No.2018YFB1801102)+1 种基金the National Natural Science Foundation of China (No. 61671072)the Beijing Natural Science Foundation (No. L192025)
文摘With the increasing maritime activities and the rapidly developing maritime economy, the fifth-generation(5G) mobile communication system is expected to be deployed at the ocean. New technologies need to be explored to meet the requirements of ultra-reliable and low latency communications(URLLC) in the maritime communication network(MCN). Mobile edge computing(MEC) can achieve high energy efficiency in MCN at the cost of suffering from high control plane latency and low reliability. In terms of this issue, the mobile edge communications, computing, and caching(MEC3) technology is proposed to sink mobile computing, network control, and storage to the edge of the network. New methods that enable resource-efficient configurations and reduce redundant data transmissions can enable the reliable implementation of computing-intension and latency-sensitive applications. The key technologies of MEC3 to enable URLLC are analyzed and optimized in MCN. The best response-based offloading algorithm(BROA) is adopted to optimize task offloading. The simulation results show that the task latency can be decreased by 26.5’ ms, and the energy consumption in terminal users can be reduced to 66.6%.
文摘To optimize the electronic structure of photocatalyst,a facile one‐step approach is developed for the simultaneous realization of Zn‐doping and surface oxygen vacancies(SOVs)formation on SnO_(2).The Zn‐doped SnO_(2)with abundant SOVs exhibits efficient and stable performance for photocatalytic degradation of toluene under both low and high relative humidity.Experimental and theoretical calculations results show that the synergistic effects of Zn‐doping and SOVs on SnO_(2)can considerably boost the charge transfer and separation efficiency.Utilizing the in situ DRIFTS and theoretical calculations methods,it is revealed that the benzene ring of toluene is opened at benzoic acid on the SnO_(2)surface and selectively at benzaldehyde on the Zn‐doped SnO_(2)surface.This implies that Zn‐doped SnO_(2)photocatalysts shorten the pathway of toluene degradation,and toxic intermediates can be significantly inhibited.This work could provide a promising and sustainable route for safe and efficient removal of aromatic VOCs with photocatalytic technology.