期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Structural Optimization of Concrete Slab Frame Bridges Considering Investment Cost
1
作者 Majid Solat Yavari Costin Pacoste Raid Karoumi 《Journal of Civil Engineering and Architecture》 2016年第9期982-994,共13页
The present study investigates computer-antomated design and structural optimization of concrete slab frame bridges considering investment cost based on a complete 3D model. Thus, a computer code with several modules ... The present study investigates computer-antomated design and structural optimization of concrete slab frame bridges considering investment cost based on a complete 3D model. Thus, a computer code with several modules has been developed to produce parametric models of slab frame bridges. Design loads and load combinations are based on the Eurocode design standard and the Swedish design standard for bridges. The necessary reinforcement diagrams to satisfy the ultimate and serviceability limit states, including fatigue checks for the whole bridge, are calculated according to the aforementioned standards. Optimization techniques based on the genetic algorithm and the pattern search method are applied. A case study is presented to highlight the efficiency of the applied optimization algorithms. This methodology has been applied in the design process for the time-effective, material-efficient, and optimal design of concrete slab frame bridges. 展开更多
关键词 Slab frame bridge structural design structural optimization genetic algorithm pattern search method.
在线阅读 下载PDF
Structural Analysis of a RC Shear Wall by Use of a Truss Model
2
作者 Panagis G. Papadopoulos Periklis E. Lamprou 《Open Journal of Civil Engineering》 CAS 2022年第3期320-352,共33页
Purpose of present work is to develop a reliable and simple method for structural analysis of RC Shear Walls. The shear wall is simulated by a truss model as the bar of a truss is the simplest finite element. An itera... Purpose of present work is to develop a reliable and simple method for structural analysis of RC Shear Walls. The shear wall is simulated by a truss model as the bar of a truss is the simplest finite element. An iterative method is used. Initially, there are only concrete bars. Repeated structural analyses are performed. After each structural analysis, every concrete bar exceeding tensile strength is replaced by a steel bar. For every concrete bar exceeding compressive strength, first its section area is increased. If this is not enough, a steel bar is placed at the side of it. For every steel bar exceeding tensile or compressive strength, its section area is increased. After the end of every structural analysis, if all concrete and steel bars fall within tensile and compressive strengths, the output data are written and the analysis is terminated. Otherwise, the structural analysis is repeated. As all the necessary conditions (static, elastic, linearized geometric) are satisfied and the stresses of ALL concrete and steel bars fall within the tensile and compressive strengths, the results are acceptable. Usually, the proposed method exhibits a fast convergence in 4 - 5 repeats of structural analysis of the RC Shear Wall. 展开更多
关键词 Reinforced Concrete Shear Wall Structural Analysis Truss Model Iterative Method Computer Program Boundary Columns and Beam Grid of Horizontal and Diagonal Reinforcing Steel Bars
在线阅读 下载PDF
Inelastic Nonlinear Pushover Analysis of Fixed Jacket-Type Offshore Platform with Different Bracing Systems Considering Soil-Structure Interaction 被引量:2
3
作者 S. Ishwarya M. Arockiasamy R. Senthil 《Journal of Shipping and Ocean Engineering》 2016年第4期241-254,共14页
In this study, inelastic nonlinear pushover analysis is performed on a 3-D model of a jacket-type offshore platform for the North Sea conditions. The structure' is modelled, analyzed and designed using finite element... In this study, inelastic nonlinear pushover analysis is performed on a 3-D model of a jacket-type offshore platform for the North Sea conditions. The structure' is modelled, analyzed and designed using finite element software SACS (structural analysis computer system). The behavior of jackets with different bracing systems under pushover analysis is examined. Further, by varying the leg batter values of the platform, weight optimization is carried-out. Soil-structure interaction effect is considered in the analyses and the results are compared with the hypothetical fixed-support end condition. Static and dynamic pushover analyses are performed by using wave and seismic loads respectively. From the analyses, it is found that the optimum leg batter varies between 15 to 16 and 2% of weight saving is achieved. Moreover, it has been observed that the type of bracing does not play a major role in the seismic design of jacket platform considering the soil-structure interaction. 展开更多
关键词 Fixed offshore jacket platform pushover analysis seismic analysis leg batter optimization SACS.
在线阅读 下载PDF
Modeling mass transfer of CO_2 in brine at high pressures by chemical potential gradient 被引量:1
4
作者 JI YuanHui JI XiaoYan +1 位作者 LU XiaoHua TU YongMing 《Science China Chemistry》 SCIE EI CAS 2013年第6期821-830,共10页
To investigate long-term CO2 behavior in geological formations and quantification of possible CO2 leaks, it is crucial to inves- tigate the potential mobility of CO2 dissolved in brines over a wide range of spatial an... To investigate long-term CO2 behavior in geological formations and quantification of possible CO2 leaks, it is crucial to inves- tigate the potential mobility of CO2 dissolved in brines over a wide range of spatial and temporal scales and density distribu- tions in geological media. In this work, the mass transfer of aqueous CO2 in brines has been investigated by means of a chemi- cal potential gradient model based on non-equilibrium thermodynamics in which the statistical associating fluid theory equa- tion of state was used to calculate the fugacity coefficient of CO2 in brine. The investigation shows that the interracial concen- tration of aqueous CO2 and the corresponding density both increase with increasing pressure and decreasing temperature; the effective diffusion coefficients decrease initially and then increase with increasing pressure; and the density of the CO2-disolved brines increases with decreasing CO2 pressure in the CO2 dissolution process. The aqueous CO2 concentration profiles obtained by the chemical potential gradient model are considerably different from those obtained by the concentration gradient model, which shows the importance of considering non-ideality, especially when the pressure is high. 展开更多
关键词 C02 geological sequestration DISSOLUTION non-equilibrium thermodynamics mass transport DIFFUSION DENSITY SAFTEoS
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部