Single-grain models with different cerium contents or structural parameters have been introduced to investigate the reversal magnetization behaviors in cerium-containing magnets. All the micromagnetic simulations are ...Single-grain models with different cerium contents or structural parameters have been introduced to investigate the reversal magnetization behaviors in cerium-containing magnets. All the micromagnetic simulations are carried out via the object oriented micromagnetic framework(OOMMF). As for single(Nd,Ce)_2 Fe_(14)B type grain, the coercivity decreases monotonously with the increase of the cerium content. Four types of grain structure have been compared: single(Nd,Ce)_2 Fe_(14)B type, core((Nd,Ce)_2 Fe_(14)B)-shell(Nd_2 Fe_(14)B) type with 2 nm thick shell, core(Ce_2 Fe_(14)B)-shell(Nd_2 Fe_(14)B) type, and core(Nd_2 Fe_(14)B)-shell(Ce_2 Fe_(14)B) type. It is found that core((Nd,Ce)_2 Fe_(14)B)-shell(Nd_2 Fe_(14)B)type grain with 2 nm thick shell always presents the largest coercivity under the same total cerium content. Furthermore,the relationship between the coercivity and the shell thickness t in core((Nd,Ce)_2 Fe_(14)B)-shell(Nd_2 Fe_(14)B) type grain has been studied. When the total cerium content is kept at 20.51 at.%, the analyzed results show that as t varies from 1 nm to 7 nm, the coercivity gradually ascends at the beginning, then quickly descends after reaching the maximum value when t = 5 nm. From the perspective of the positions of nucleation points, the reasons why t affects the coercivity are discussed in detail.展开更多
Powder samples with nominal composition La0.6Sr0.1TexMnO3 (x = 0.00, 0.05, 0.10, 0.15, 0.20) were prepared using the sol-gel method with thermal treatment up to 1473 K. On the basis of powder X-ray diffraction (XRD...Powder samples with nominal composition La0.6Sr0.1TexMnO3 (x = 0.00, 0.05, 0.10, 0.15, 0.20) were prepared using the sol-gel method with thermal treatment up to 1473 K. On the basis of powder X-ray diffraction (XRD), thermogravimetric and magnetic measurements, it was found that almost all of the Te and a few of the Mn ions were lost from the samples when they were calcined at 1473 K. The reason for the Te loss and a quantitative phase analysis for the samples calcined at 1473 K are discussed in detail.展开更多
The typical magnetic domains of Sm(CObalFe0.25Cuo.07Zr0.02)7.4 magnets quenched through various heattreatment steps have been revealed by using magnetic force microscopy (MFM). For the specimens in which the nomin...The typical magnetic domains of Sm(CObalFe0.25Cuo.07Zr0.02)7.4 magnets quenched through various heattreatment steps have been revealed by using magnetic force microscopy (MFM). For the specimens in which the nominal c-axis is perpendicular to the imaging plane, the domain configurations change from plate-like for the as-sintered magnet to corrugation and spike-like for the homogenized one, and then to a coarse and finally to a finer domain structure when isothermally aged at 830℃ and then annealed at 400℃. However, only plate-like domains can be detected on the surfaces with the nominal c-axis parallel to the imaging plane. The finer domain (so-called interaction domain) is a characteristic magnetic domain pattern of the SmCo 2:IT-type magnets with high coercivities. Domain walls in a zigzag shape are revealed by means of MFM in final bulk SraCo 2:17-type sintered magnets.展开更多
Nickel particles with submicron size are prepared by using the solvothermal method. These spheres are then coated with a layer of MnO2 using the soft chemical method. The microstructure is characterized by x-ray diffr...Nickel particles with submicron size are prepared by using the solvothermal method. These spheres are then coated with a layer of MnO2 using the soft chemical method. The microstructure is characterized by x-ray diffraction, transmission electron microscopy, and scanning electron microscopy. Energy x-ray dispersive spectrometry and high- resolution images show that the granular composites have a classical core/shell structure with an MnO2 superficial layer, no more than 10 nm in thickness. The hysteresis measurements indicate that these submicron-size Ni composite powders have small remanence and moderate coercivity. The electromagnetic properties of the powders measured by a vector network analyzer in a frequency range of 2-18 GHz are also reported in detail.展开更多
The multicaloric effect refers to the thermal response of a solid material driven by simultaneous or sequential application of more than one type of external field.For practical applications,the multicaloric effect is...The multicaloric effect refers to the thermal response of a solid material driven by simultaneous or sequential application of more than one type of external field.For practical applications,the multicaloric effect is a potentially interesting strategy to improve the efficiency of refrigeration devices.Here,the state of the art in multi-field driven multicaloric effect is reviewed.The phenomenology and fundamental thermodynamics of the multicaloric effect are well established.A number of theoretical and experimental research approaches are covered.At present,the theoretical understanding of the multicaloric effect is thorough.However,due to the limitation of the current experimental technology,the experimental approach is still in progress.All these researches indicated that the thermal response and effective reversibility of multiferroic materials can be improved through multicaloric cycles to overcome the inherent limitations of the physical mechanisms behind single-field-induced caloric effects.Finally,the viewpoint of further developments is presented.展开更多
The substitution of Fe by Co in the 2:14:1 phase is an effective method to increase the Curie temperature and enhance the thermal stability of the Nd-Fe-B magnets.However,the accumulation of Co ele ment at the grain b...The substitution of Fe by Co in the 2:14:1 phase is an effective method to increase the Curie temperature and enhance the thermal stability of the Nd-Fe-B magnets.However,the accumulation of Co ele ment at the grain boundaries(GBs) changes the GBs from nonmagnetic to ferromagnetic and causes the thinlayer GBs to become rare,In this paper,the method of diffusing Tb element was chosen to improve the microstructure and temperature stability of high-Co magnets.Three original sintered Nd_(28.5)Dy_(3)-CO_(x)e_(bal)M_(0.6)B_(i)(x=0,6 wt%,12 wt%;M = Cu,Al,Zr) magnets with different Co contents were diffused with Tb by grain boundary diffusion(GBD).After GBD,high-Co magnets exhibit more continuously distributed thin-layer GBs,and their thermal stability is significantly improved.In high-Co magnets(x=6 wt%),the absolute value of the temperature coefficient of coercivity decreases from 0.603%/K to0.508%/K in the temperature range of 293-413 K,that of remanence decreases from 0.099%/K to 0.091%/K,and the coercivity increases from 18.44 to 25.04 kOe.Transmission electron microscopy(TEM)characterization reveals that there are both the 1:2 phase and the amorphous phase in the high-Co magnet before and after GBD,EDS elemental analysis shows that Tb element is more likely to preferentially replace the rare earth elements in the 2:14:1 main phase than in the 1:2 phase and the amorphous phase.The concentration of Tb at the edge of the main phase is much higher than that in the 1:2phase and amorphous phase,which is beneficial to the improvement of the microstructure.The preferential replacement of Tb elements at the edge of the 2:14:1 phase and thin-layer GBs with a more continuous distribution are synergistically responsible for improving the thermal stability of high-Co magnets.The study indicates that GBD is an effective method to improve the microstructure and thermal stability of high-Co magnets.展开更多
A novel Nd-Fe-B type permanent magnet with excellent thermal stability was designed by Co replacing Fe in the main phase and the grain boundary phase.The remanence and coercivity temperature coefficient reach 0.058%/...A novel Nd-Fe-B type permanent magnet with excellent thermal stability was designed by Co replacing Fe in the main phase and the grain boundary phase.The remanence and coercivity temperature coefficient reach 0.058%/℃and 0.465%/℃in the te mperature range from 25 to 100℃,which are much lower than those of commercial Nd-Fe-B magnet.An enhanced Curie temperature is obtained for the novel magnet due to the Co substitution,which significantly improves the operating temperature.The microstructure result reveals that an amorphous phase exists in the intergranular grains which is probably responsible for the deterioration of intrinsic coercivity.This work can provide a reference for the design and optimization of components of sintered Nd-Fe-B magnets with excellent thermal stability.展开更多
The high-temperature magnetic perfo rmance and micro structure of Sm_(1-x)Gd_(x)(Co_(bal)Fe_(0.09)Cu_(0.09)Zr_(0.025))_(7.2)(x=0.3,0.5) magnets were investigated.With the isothermal aging time decreasing from 11 to 3 ...The high-temperature magnetic perfo rmance and micro structure of Sm_(1-x)Gd_(x)(Co_(bal)Fe_(0.09)Cu_(0.09)Zr_(0.025))_(7.2)(x=0.3,0.5) magnets were investigated.With the isothermal aging time decreasing from 11 to 3 h,the temperature coefficient of intrinsic coercivity in the temperature range of 25-500℃,β_(25-500℃),was optimized from -0,167%/℃ to-0.112%/℃ for x=0.3 magnets.The noticeable enhancement(~33%) of temperature stability is correlated with the increased content of 1:5H cell boundary phase and its relatively high Curie temperature as well.However,for the x=0.5 magnet,it is found that the presence of Sm_(5)Co_(19) phases and wider nanotwin variants hinder the formation of 1:5H cell boundary phase.The insufficient 1:5H is not beneficial to the proper redistribution of Cu in cell boundary,making the x=0.5 magnet difficult to achieve higher temperature stability.Consequently,the approach of adjusting the isothermal aging process can offer guidance for attaining superior magnetic performance in the temperature range from 25 to 500℃ for Gd-substituted Sm_(2)Co_(17)-type magnets.展开更多
Magnetic properties and microstructures of Sm(Co_(bal)Fe_(0.227)Cu_(0.07)Zr_(0.023_)_(7.6) sintered magnets were optimized by sintering treatment. Results show that the knee-point magnetic field, Hknee, is twofold up ...Magnetic properties and microstructures of Sm(Co_(bal)Fe_(0.227)Cu_(0.07)Zr_(0.023_)_(7.6) sintered magnets were optimized by sintering treatment. Results show that the knee-point magnetic field, Hknee, is twofold up and the intrinsic coercivity Hcjincreases by 40%, ranging from 21.64 to 30.39 kOe at the cost of a little decrease of Brfrom 10.84 to 10.31 kGs with sintering temperature decreasing from 1488 to 1473 K. And the average domain width is narrower and more uniform for the specimen sintered at 1473 K than that of the specimen sintered at 1488 K. It is impressive that the density of lamellar phase increases from ~0.050 to ~0.058 nm^(-1) with the sintering temperature decreasing from 1488 to 1473 K. Moreover, the average cellular size is about ~84 nm for the magnets sintered at 1473 K, which is 80% of that of the magnets sintered at 1488 K(~97 nm). And the cell boundary width of the magnets sintered at 1473 K(~7 nm) is only half average width of the magnets sintered at 1488 K(~14 nm). It is found that the Cu content in the cell boundaries is much higher(~17 at%) in the magnets sintered at 1473 K compared to that of the magnets sintered at 1488 K(~10 at%). It can be concluded that smaller cells and narrower cell boundaries together with higher gradient of Cu content are key points for obtaining the optimum Hkneeand Hcj.展开更多
It is confirmed that phase homogenization is very important for improving the magnetic properties of 2:17-type Sm-Co sintered magnets,In this work,the influence of solid solution process on microstructure and magnetic...It is confirmed that phase homogenization is very important for improving the magnetic properties of 2:17-type Sm-Co sintered magnets,In this work,the influence of solid solution process on microstructure and magnetic properties of the Sm(CobalFe0.233Cu0.073Zr0.024)7.6 sintered magnets was systematically studied.With the solid-solution treating duration(tS)increasing from 0 to 4 h,intrinsic coercivity(Hcj)increases from 12.83 to 36.54 kOe,magnetic field at knee-point(Hknee)increases from2.76 to 19.14 kOe,and the maximum energy product increases from 19.79 to 29.48 MGOe.The electron probe microanalyzer results reveal that there mainly exist gray and dark regions besides"white"rare earth-rich phase,and the conte nt of Sm,Fe and Cu elements for the two kinds of regions changes a lot for the specimens,Furthermore,with tS increasing up to 4 h,the elements content deviation between the gray and dark regions becomes small gradually from 3.94 at%to 0.27 at%,7.66 at%to 0.21 at%and 7.27 at%to 0.16 at%for Sm,Fe and Cu elements,respectively.Moreover,transmission electron microscopy results show that the distribution of cell size is much more concentrated for aged specimens when tS is 4 h.It is also found that the Cu concentration at cell boundaries for the 4 h solid-solution treatment case shows relatively higher values and greater concentration gradient(1.94 at%/nm).It is verified that sufficient solution treatment duration is prerequisite to form these homogeneous microstructural features,which are the key points for obtaining both high Hcj and Hknee.展开更多
In this paper, the magnetic Nd-Fe-B particles of different sizes were conducted under vacuum by the hot pressing, then cooled quickly to room temperature. Finally hot deformation was performed to get the anisotropy Nd...In this paper, the magnetic Nd-Fe-B particles of different sizes were conducted under vacuum by the hot pressing, then cooled quickly to room temperature. Finally hot deformation was performed to get the anisotropy Nd-Fe- B magnet at a deformation rate of 70 % in the protection of argon atmosphere. NIM-2000 was used for the measurement of hysteresis loop of the samples. Meanwhile, scanning electron microscopy (SEM) was used to observe the surface morphology of the magnetic particles with different sizes and hot-deformed magnets, energy spectrum analyzer to analyze the composition of magnetic particles. The effect of magnetic particle sizes on the microstructure and magnetic properties of the hot-deformed anisotropic magnet was investigated. Anisotropic hot-deformed magnets produced from the maximum particle size of 200-350 μm have the highest magnetic properties of Br = 1.465 T, Hcj = 1,157 kA.m-1, (Bn)max = 425 kJ.m-3.展开更多
It is confirmed that the solid solution temperature range to obtain optimal magnetic properties is different for the magnets with different Fe contents,and the correlation between magnetic properties and microstructur...It is confirmed that the solid solution temperature range to obtain optimal magnetic properties is different for the magnets with different Fe contents,and the correlation between magnetic properties and microstructures influenced by solid solution temperature(Ts)has been systematically studied.The optimal solid solution temperature range is 1413-1463 K for the Sm(Co_(bal)Fe_(0.213)Cu_(0.073)Zr_(0.024))_(7.6)magnet,which is higher than that of the Sm(Co_(bal)Fe_(0.262)Cu_(0.073)Zr_(0.024))_(7.6)magnet(1403-1453 K),and the optimal T_s range is about 50 K for both of the magnets.The solid solution temperature range shifting toward relatively high temperature is due to the increase in a phase transition temperature.The magnet solution-treated at proper temperature exhibits 1:7 H single phase,and intact cell structure and high Cu concentration(23.12 at%)in the cell boundary are found after aging process,which makes the magnet shows high intrinsic coercivity(H_(cj))and magnetic field at knee-point(H_(knee)).At a lower solid solution temperature,the 2:17 H,1:5 H and Zr-rich precipitation phases appear,which affects the cell structure,density of lamellar phase and Cu concentration in the cell boundary,leading to the reduced magnetic properties.However,at a higher solid solution temperature,there exist obviously light gray and dark regions with different Sm,Cu and Fe contents in scanning electron microscopy observation,and the magnet shows low pinning field in the two regions and incomplete cell structure,resulting in an inferior H_(cj)and H_(knee).展开更多
The as-solution-treated Sm_(2)Co_(17)-type magnets exhibiting a single 1:7 H phase with different average grain sizes(D) were designed.Anisotropy of bending strength(R_(bb))and compressive strength(R_(mc)) of the magn...The as-solution-treated Sm_(2)Co_(17)-type magnets exhibiting a single 1:7 H phase with different average grain sizes(D) were designed.Anisotropy of bending strength(R_(bb))and compressive strength(R_(mc)) of the magnets were investigated.Moreover,the R_(bb) increases from 86 to 173 MPa with D decreasing from~52 to~18 μm for group c//h samples.The Hall-Petch correlation was employed to reveal the effect of grain size on mechanical properties of the magnets,giving deep understanding of the mechanical anisotropy characteristics.The relatively high Hall-Petch coefficient K^(Rbb)(0.79 MPa·m^(1/2)) gives rise to the largest R_(bb)(173 MPa) for group c//h samples.The mechanical anisotropy of the samples is well explained based on crystal structure and grain size features(grain boundaries).Grain refinement is an effective way to enhance the mechanical properties of Sm_(2)Co_(17)-type sintered magnets.展开更多
The excellent thermal stability of magnetic properties of Sm_(2)Co_(17)-based magnets is their most impor-tant feature.However,this stability is reduced when the maximum energy product of Sm_(2)Co_(17)-based magnets i...The excellent thermal stability of magnetic properties of Sm_(2)Co_(17)-based magnets is their most impor-tant feature.However,this stability is reduced when the maximum energy product of Sm_(2)Co_(17)-based magnets is improved,which is mainly determined by the Fe/Cu distribution of the 2:17R cell and 1:5H cell boundary phases.During the demagnetization process,the Cu-rich 1:5H cell boundary phase with a width of 2-15 nm obstructs the motion of the domain walls,yielding coercivity.Herein,we report a micron-scale Cu/Zr-rich and Fe-lean 1:5H-based precipitated phase with a lamellar structure,probably induced by Sm_(2)O_(3) doping.This structure enables the separate regulation of Fe and Cu distribution for Sm_(2)Co_(17)-based magnets with Fe-rich 2:17R cell phases and Cu-rich 1:5H cell boundary phases,consid-erably optimizing the thermal stability of magnetic properties.This discovery can be further developed to produce Sm_(2)Co_(17)-based magnets with high performance and excellent thermal stability of magnetic properties.展开更多
The effects of the calcination temperature on the oxygen content and magnetic properties of the nano- crystalline perovskite manganite Lao.75Sro.25MnO3±δ pre- pared by the sol-gel method were investigated. The h...The effects of the calcination temperature on the oxygen content and magnetic properties of the nano- crystalline perovskite manganite Lao.75Sro.25MnO3±δ pre- pared by the sol-gel method were investigated. The highest temperatures at which the samples were calcined were 973, 1073, 1273, and 1473 K. The X-ray diffraction (XRD) analyses indicate that all the samples have only a single phase with the R3c perovskite structure. As the calcination temperature and calcination time increase, the oxygen content in the samples increases from being deficient to being in excess of that in the stoichiometric formula. The crystallite size also increases from 23 to 283 nm. Magnetic measurements indicate that the sample calcined at 1073 K has the highest Curie temperature. This is owing to the fact that the crystallite cores of this sample have stoichiometric oxygen content. The dependence of the Curie temperature and the saturation magnetization on the calcination tem- perature are successfully explained.展开更多
The hydrogen absorption of the LaFe(10.9)-Co(0.8)Si(1.3) compound under constant 1.01 × 10-5 Pa H2 gas in a flow hydrogen atmosphere was studied. The effects of hydrogen absorption on structure, Curie tempe...The hydrogen absorption of the LaFe(10.9)-Co(0.8)Si(1.3) compound under constant 1.01 × 10-5 Pa H2 gas in a flow hydrogen atmosphere was studied. The effects of hydrogen absorption on structure, Curie temperature, phase transition and magnetic property were investigated by X-ray diffraction(XRD), differential scanning calorimeter(DSC) and superconducting quantum interference device,respectively. The hydrides of LaFe(10.9)Co(0.8)Si(1.3) crystallize into NaZn(13)-type structural phase after hydrogen absorption at temperature from 548 to 623 K. Lower hydrogen absorption temperature is of no advantage for pure 1:13 phase formation in a flow H2 atmosphere. The Curie temperature(TC) of LaFe(10.9)Co(0.8)Si(1.3) compound increases by70 K or more after hydrogen absorption. For LaFe(10.9)-Co(0.8)Si(1.3)H(1.8) compound, the maximum magnetic entropy change and the relative cooling power under a magnetic field change of 0-2 T are 6.1 J·kg^-1·K^-1 and 170 J·kg^-1,respectively. Large refrigerant capacity, low hysteresis loss and wide temperature span of magnetic entropy change peak make it a competitive practical candidate for magnetic refrigerant.展开更多
The electrochemical corrosion behavior of both (Ce_(15)Nd_(85))_(30)Fe_(bal)B_(1)M sintered magnets prepared with dual-main-phase method and N45-type magnets was studied in 3.5 wt% NaCl,1.1 wt% NaH_(2)PO_(4),and 2.5 w...The electrochemical corrosion behavior of both (Ce_(15)Nd_(85))_(30)Fe_(bal)B_(1)M sintered magnets prepared with dual-main-phase method and N45-type magnets was studied in 3.5 wt% NaCl,1.1 wt% NaH_(2)PO_(4),and 2.5 wt% NaOH solutions,respectively.The (Ce_(15)Nd_(85))_(30)Fe_(bal)B_(1)M sintered magnets perform superior corrosion resistance than N45-type magnets in the tested solutions.In general,two kinds of magnets exhibit the best corrosion resistance property in 2.5 wt% NaOH solution,while the worst in 3.5 wt% NaCl solution.Microstructures of samples before and after corrosion were investigated.With the addition of Ce by means of dual-main-phase method,which is conducive to facilitating low-temperature sintering and grain refinement,uniform grain size and(Nd,Ce)-rich phase distribution form,give rise to narrow and thin corrosion channels.Moreover,the corrosion rate of the(Nd,Ce)-rich phase is lower than that of Nd-rich one.Acco rdingly,corro sion re sistance of (Ce_(15)Nd_(85))_(30)Fe_(bal)B_(1)M sintered magnet is superior when compared with the commercial N45-type magnet which has comparable magnetic properties.展开更多
A novel micro structure of magnetically anisotropic Sm Co-based magnet with high-performance is reported.The magnet consists of SmCo_(7)-H(TbCu_(7)-hexagonal type),Sm_(2)Co_(17)-H(Th_(2)Ni_(17)-hexagonal type)and SmCo...A novel micro structure of magnetically anisotropic Sm Co-based magnet with high-performance is reported.The magnet consists of SmCo_(7)-H(TbCu_(7)-hexagonal type),Sm_(2)Co_(17)-H(Th_(2)Ni_(17)-hexagonal type)and SmCo_(3)-R(SmCo_(3)-rhombohedral type)phases.The maximum magnetic energy product of the magnet is 231.69 kj/m^(3),and the intrinsic coercivity is 1005.47 kA/m.An outstanding intrinsic coercivity temperature coefficient(β)of-0.125%/K between 298 and 773 K is obtained,which is very close to theβof commercial high-temperature Sm_(2)Co_(17)-based sintered magnets.The initial magnetization curve indicates that the coercivity mechanism is controlled by a domain wall pinning mechanism.The SmCo_(3)-R lamellar phase may be a potential pinning center or self-pinning center.The microstructure of the magnet is different from that of any previous SmCo-based magnets.These findings provide a new idea for preparing high-performance SmCo-based permanent magnets.展开更多
Influence of Zr contents on high-temperature magnetic performance of Sm(CoFeCuZr)(x=0.025,0.03,0.035,0.04) magnets were investigated.As x increases from 0.025 to 0.04,the temperature coefficient of intrinsic coercivit...Influence of Zr contents on high-temperature magnetic performance of Sm(CoFeCuZr)(x=0.025,0.03,0.035,0.04) magnets were investigated.As x increases from 0.025 to 0.04,the temperature coefficient of intrinsic coercivity(H) is optimized from-0.1673% K^(-1)to-0.1382% K^(-1)and the Hat 773 K gradually increases from 556.32 kA m^(-1)to 667 kA m^(-1).The microstructure and microchemistry of different Zr-content magnets were revealed by a transmission electron microscope equipped with EDS.The increasing Zr content induces that the average size of cells decreases from ~76 nm to ~56 nm and the weight fraction of 1:5 H cell boundary phase increases from ~25% to ~37% as well,resulting decreasing of the average Cu content at cell boundaries from 13.59 at% to ~8.52 at%.It is found that the Cu-lean characteristic at cell boundary phase is the reason that gives rise to higher magnetic properties at elevated temperatures for x=0.04 magnet.展开更多
Individual grains with diverse dimensional parameters were introduced to investigate the magnetization reversals in anisotropic Nd2 Fe_(14)B magnets. The micromagnetic simulations were carried out via Object Oriented ...Individual grains with diverse dimensional parameters were introduced to investigate the magnetization reversals in anisotropic Nd2 Fe_(14)B magnets. The micromagnetic simulations were carried out via Object Oriented MicroMagnetic Framework(OOMMF). With the same bottom area and height, analysis results show that the coercive fields for different bottom shapes are of similar values. Designed as a cubic grain,the coercive field presents descending tendency as grain volume ascends. Under constant grain volume,with aspect ratio increasing, the coercive field decreases in the beginning and increases soon. Based on the demagnetization field vector, the effects of bottom shape, grain volume and aspect ratio on the coercive field can be explained. The nucleation point is chosen to discuss. Its synthetic field and reversal field are calculated by parallelogram law and inverse external field equation, respectively. The synthetic field equal to the reversal field is defined as critical field, which always shows the same tendency as the coercive field for all cases of this study. It can be concluded that critical field is qualified to be a reference index to measure the magnitude of coercive field.展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.51590882 and 51871063)
文摘Single-grain models with different cerium contents or structural parameters have been introduced to investigate the reversal magnetization behaviors in cerium-containing magnets. All the micromagnetic simulations are carried out via the object oriented micromagnetic framework(OOMMF). As for single(Nd,Ce)_2 Fe_(14)B type grain, the coercivity decreases monotonously with the increase of the cerium content. Four types of grain structure have been compared: single(Nd,Ce)_2 Fe_(14)B type, core((Nd,Ce)_2 Fe_(14)B)-shell(Nd_2 Fe_(14)B) type with 2 nm thick shell, core(Ce_2 Fe_(14)B)-shell(Nd_2 Fe_(14)B) type, and core(Nd_2 Fe_(14)B)-shell(Ce_2 Fe_(14)B) type. It is found that core((Nd,Ce)_2 Fe_(14)B)-shell(Nd_2 Fe_(14)B)type grain with 2 nm thick shell always presents the largest coercivity under the same total cerium content. Furthermore,the relationship between the coercivity and the shell thickness t in core((Nd,Ce)_2 Fe_(14)B)-shell(Nd_2 Fe_(14)B) type grain has been studied. When the total cerium content is kept at 20.51 at.%, the analyzed results show that as t varies from 1 nm to 7 nm, the coercivity gradually ascends at the beginning, then quickly descends after reaching the maximum value when t = 5 nm. From the perspective of the positions of nucleation points, the reasons why t affects the coercivity are discussed in detail.
基金supported by the Natural Science Foundation of Hebei Province (No. E2011205083)the Key Item Science Foundation of Hebei Province, China (No.10965125D+3 种基金 No.08965108D)the National Natural Science Foundation of China (No.NSF-10774037No.10074013)the National High Technology Research and Development Program of China (No. 2007AA03Z100)
文摘Powder samples with nominal composition La0.6Sr0.1TexMnO3 (x = 0.00, 0.05, 0.10, 0.15, 0.20) were prepared using the sol-gel method with thermal treatment up to 1473 K. On the basis of powder X-ray diffraction (XRD), thermogravimetric and magnetic measurements, it was found that almost all of the Te and a few of the Mn ions were lost from the samples when they were calcined at 1473 K. The reason for the Te loss and a quantitative phase analysis for the samples calcined at 1473 K are discussed in detail.
基金Project supported by the Beijing Municipal Science and Technology Committee Key Project, China (Grant No D0406002000091)the National Natural Science Foundation of China (Grant No 10374110)
文摘The typical magnetic domains of Sm(CObalFe0.25Cuo.07Zr0.02)7.4 magnets quenched through various heattreatment steps have been revealed by using magnetic force microscopy (MFM). For the specimens in which the nominal c-axis is perpendicular to the imaging plane, the domain configurations change from plate-like for the as-sintered magnet to corrugation and spike-like for the homogenized one, and then to a coarse and finally to a finer domain structure when isothermally aged at 830℃ and then annealed at 400℃. However, only plate-like domains can be detected on the surfaces with the nominal c-axis parallel to the imaging plane. The finer domain (so-called interaction domain) is a characteristic magnetic domain pattern of the SmCo 2:IT-type magnets with high coercivities. Domain walls in a zigzag shape are revealed by means of MFM in final bulk SraCo 2:17-type sintered magnets.
基金Project supported by the National Natural Science Foundation of China (Grant No 50671026)
文摘Nickel particles with submicron size are prepared by using the solvothermal method. These spheres are then coated with a layer of MnO2 using the soft chemical method. The microstructure is characterized by x-ray diffraction, transmission electron microscopy, and scanning electron microscopy. Energy x-ray dispersive spectrometry and high- resolution images show that the granular composites have a classical core/shell structure with an MnO2 superficial layer, no more than 10 nm in thickness. The hysteresis measurements indicate that these submicron-size Ni composite powders have small remanence and moderate coercivity. The electromagnetic properties of the powders measured by a vector network analyzer in a frequency range of 2-18 GHz are also reported in detail.
基金Project supported by the National Key Research and Development Program of China(Grant Nos.2017YFB0702702,2019YFA0704904,2018YFA0305704,2017YFA0206300,2017YFA0303601,and 2016YFB0700903)the National Natural Science Foundation of China(Grant Nos.U1832219,51531008,51771223,51590880,51971240,11674378,11934016,and 11921004)the Key Program and Strategic Priority Research Program(B)of the Chinese Academy of Sciences。
文摘The multicaloric effect refers to the thermal response of a solid material driven by simultaneous or sequential application of more than one type of external field.For practical applications,the multicaloric effect is a potentially interesting strategy to improve the efficiency of refrigeration devices.Here,the state of the art in multi-field driven multicaloric effect is reviewed.The phenomenology and fundamental thermodynamics of the multicaloric effect are well established.A number of theoretical and experimental research approaches are covered.At present,the theoretical understanding of the multicaloric effect is thorough.However,due to the limitation of the current experimental technology,the experimental approach is still in progress.All these researches indicated that the thermal response and effective reversibility of multiferroic materials can be improved through multicaloric cycles to overcome the inherent limitations of the physical mechanisms behind single-field-induced caloric effects.Finally,the viewpoint of further developments is presented.
基金supported by the National Key R&D Program of China (2021YFB3502902,2021YFB3503100,2022YFB3503300,2022YFB3505200)。
文摘The substitution of Fe by Co in the 2:14:1 phase is an effective method to increase the Curie temperature and enhance the thermal stability of the Nd-Fe-B magnets.However,the accumulation of Co ele ment at the grain boundaries(GBs) changes the GBs from nonmagnetic to ferromagnetic and causes the thinlayer GBs to become rare,In this paper,the method of diffusing Tb element was chosen to improve the microstructure and temperature stability of high-Co magnets.Three original sintered Nd_(28.5)Dy_(3)-CO_(x)e_(bal)M_(0.6)B_(i)(x=0,6 wt%,12 wt%;M = Cu,Al,Zr) magnets with different Co contents were diffused with Tb by grain boundary diffusion(GBD).After GBD,high-Co magnets exhibit more continuously distributed thin-layer GBs,and their thermal stability is significantly improved.In high-Co magnets(x=6 wt%),the absolute value of the temperature coefficient of coercivity decreases from 0.603%/K to0.508%/K in the temperature range of 293-413 K,that of remanence decreases from 0.099%/K to 0.091%/K,and the coercivity increases from 18.44 to 25.04 kOe.Transmission electron microscopy(TEM)characterization reveals that there are both the 1:2 phase and the amorphous phase in the high-Co magnet before and after GBD,EDS elemental analysis shows that Tb element is more likely to preferentially replace the rare earth elements in the 2:14:1 main phase than in the 1:2 phase and the amorphous phase.The concentration of Tb at the edge of the main phase is much higher than that in the 1:2phase and amorphous phase,which is beneficial to the improvement of the microstructure.The preferential replacement of Tb elements at the edge of the 2:14:1 phase and thin-layer GBs with a more continuous distribution are synergistically responsible for improving the thermal stability of high-Co magnets.The study indicates that GBD is an effective method to improve the microstructure and thermal stability of high-Co magnets.
基金Project supported by the National Key Research and Development Program(2021YFB3502801,2021YFB3502803)the National Natural Science Foundation of China(52001067)。
文摘A novel Nd-Fe-B type permanent magnet with excellent thermal stability was designed by Co replacing Fe in the main phase and the grain boundary phase.The remanence and coercivity temperature coefficient reach 0.058%/℃and 0.465%/℃in the te mperature range from 25 to 100℃,which are much lower than those of commercial Nd-Fe-B magnet.An enhanced Curie temperature is obtained for the novel magnet due to the Co substitution,which significantly improves the operating temperature.The microstructure result reveals that an amorphous phase exists in the intergranular grains which is probably responsible for the deterioration of intrinsic coercivity.This work can provide a reference for the design and optimization of components of sintered Nd-Fe-B magnets with excellent thermal stability.
基金Project supported by the National Key Research and Development Program of China (2021YFB3503100,2022YFB3505303,2021YFB3501500)the Key Technology Research and Development Program of Shandong Province (2019JZZY020210)。
文摘The high-temperature magnetic perfo rmance and micro structure of Sm_(1-x)Gd_(x)(Co_(bal)Fe_(0.09)Cu_(0.09)Zr_(0.025))_(7.2)(x=0.3,0.5) magnets were investigated.With the isothermal aging time decreasing from 11 to 3 h,the temperature coefficient of intrinsic coercivity in the temperature range of 25-500℃,β_(25-500℃),was optimized from -0,167%/℃ to-0.112%/℃ for x=0.3 magnets.The noticeable enhancement(~33%) of temperature stability is correlated with the increased content of 1:5H cell boundary phase and its relatively high Curie temperature as well.However,for the x=0.5 magnet,it is found that the presence of Sm_(5)Co_(19) phases and wider nanotwin variants hinder the formation of 1:5H cell boundary phase.The insufficient 1:5H is not beneficial to the proper redistribution of Cu in cell boundary,making the x=0.5 magnet difficult to achieve higher temperature stability.Consequently,the approach of adjusting the isothermal aging process can offer guidance for attaining superior magnetic performance in the temperature range from 25 to 500℃ for Gd-substituted Sm_(2)Co_(17)-type magnets.
基金Project supported by the National Key Research and Development Program of China(2016YFB0700903)the National Basic Research Program of China(2014CB643701)+1 种基金the National Natural Science Foundation of China(51331003)Natural Science Foundation of Hebei Province(E2017402039)
文摘Magnetic properties and microstructures of Sm(Co_(bal)Fe_(0.227)Cu_(0.07)Zr_(0.023_)_(7.6) sintered magnets were optimized by sintering treatment. Results show that the knee-point magnetic field, Hknee, is twofold up and the intrinsic coercivity Hcjincreases by 40%, ranging from 21.64 to 30.39 kOe at the cost of a little decrease of Brfrom 10.84 to 10.31 kGs with sintering temperature decreasing from 1488 to 1473 K. And the average domain width is narrower and more uniform for the specimen sintered at 1473 K than that of the specimen sintered at 1488 K. It is impressive that the density of lamellar phase increases from ~0.050 to ~0.058 nm^(-1) with the sintering temperature decreasing from 1488 to 1473 K. Moreover, the average cellular size is about ~84 nm for the magnets sintered at 1473 K, which is 80% of that of the magnets sintered at 1488 K(~97 nm). And the cell boundary width of the magnets sintered at 1473 K(~7 nm) is only half average width of the magnets sintered at 1488 K(~14 nm). It is found that the Cu content in the cell boundaries is much higher(~17 at%) in the magnets sintered at 1473 K compared to that of the magnets sintered at 1488 K(~10 at%). It can be concluded that smaller cells and narrower cell boundaries together with higher gradient of Cu content are key points for obtaining the optimum Hkneeand Hcj.
基金Project supported by the National Key Research and Development Program of China(2016YFB0700903)the National Natural Science Foundation of China(5159088251401054)。
文摘It is confirmed that phase homogenization is very important for improving the magnetic properties of 2:17-type Sm-Co sintered magnets,In this work,the influence of solid solution process on microstructure and magnetic properties of the Sm(CobalFe0.233Cu0.073Zr0.024)7.6 sintered magnets was systematically studied.With the solid-solution treating duration(tS)increasing from 0 to 4 h,intrinsic coercivity(Hcj)increases from 12.83 to 36.54 kOe,magnetic field at knee-point(Hknee)increases from2.76 to 19.14 kOe,and the maximum energy product increases from 19.79 to 29.48 MGOe.The electron probe microanalyzer results reveal that there mainly exist gray and dark regions besides"white"rare earth-rich phase,and the conte nt of Sm,Fe and Cu elements for the two kinds of regions changes a lot for the specimens,Furthermore,with tS increasing up to 4 h,the elements content deviation between the gray and dark regions becomes small gradually from 3.94 at%to 0.27 at%,7.66 at%to 0.21 at%and 7.27 at%to 0.16 at%for Sm,Fe and Cu elements,respectively.Moreover,transmission electron microscopy results show that the distribution of cell size is much more concentrated for aged specimens when tS is 4 h.It is also found that the Cu concentration at cell boundaries for the 4 h solid-solution treatment case shows relatively higher values and greater concentration gradient(1.94 at%/nm).It is verified that sufficient solution treatment duration is prerequisite to form these homogeneous microstructural features,which are the key points for obtaining both high Hcj and Hknee.
基金financially supported by the National High Technology Research and Development Program of China(No.2011AA03A401)the National Natural Science Foundation of China(Nos.50931001,51171049,and 51271060)the National High Technology Research and Development Program of China(No.2010CB934601)
文摘In this paper, the magnetic Nd-Fe-B particles of different sizes were conducted under vacuum by the hot pressing, then cooled quickly to room temperature. Finally hot deformation was performed to get the anisotropy Nd-Fe- B magnet at a deformation rate of 70 % in the protection of argon atmosphere. NIM-2000 was used for the measurement of hysteresis loop of the samples. Meanwhile, scanning electron microscopy (SEM) was used to observe the surface morphology of the magnetic particles with different sizes and hot-deformed magnets, energy spectrum analyzer to analyze the composition of magnetic particles. The effect of magnetic particle sizes on the microstructure and magnetic properties of the hot-deformed anisotropic magnet was investigated. Anisotropic hot-deformed magnets produced from the maximum particle size of 200-350 μm have the highest magnetic properties of Br = 1.465 T, Hcj = 1,157 kA.m-1, (Bn)max = 425 kJ.m-3.
基金financially supported by the National Key Research and Development Program of China(No.2016YFB0700903)the National Natural Science Foundation of China(Nos.51871063 and 51590882)。
文摘It is confirmed that the solid solution temperature range to obtain optimal magnetic properties is different for the magnets with different Fe contents,and the correlation between magnetic properties and microstructures influenced by solid solution temperature(Ts)has been systematically studied.The optimal solid solution temperature range is 1413-1463 K for the Sm(Co_(bal)Fe_(0.213)Cu_(0.073)Zr_(0.024))_(7.6)magnet,which is higher than that of the Sm(Co_(bal)Fe_(0.262)Cu_(0.073)Zr_(0.024))_(7.6)magnet(1403-1453 K),and the optimal T_s range is about 50 K for both of the magnets.The solid solution temperature range shifting toward relatively high temperature is due to the increase in a phase transition temperature.The magnet solution-treated at proper temperature exhibits 1:7 H single phase,and intact cell structure and high Cu concentration(23.12 at%)in the cell boundary are found after aging process,which makes the magnet shows high intrinsic coercivity(H_(cj))and magnetic field at knee-point(H_(knee)).At a lower solid solution temperature,the 2:17 H,1:5 H and Zr-rich precipitation phases appear,which affects the cell structure,density of lamellar phase and Cu concentration in the cell boundary,leading to the reduced magnetic properties.However,at a higher solid solution temperature,there exist obviously light gray and dark regions with different Sm,Cu and Fe contents in scanning electron microscopy observation,and the magnet shows low pinning field in the two regions and incomplete cell structure,resulting in an inferior H_(cj)and H_(knee).
基金Project supported by the National Natural Science Foundation of China(51871063,51771055)。
文摘The as-solution-treated Sm_(2)Co_(17)-type magnets exhibiting a single 1:7 H phase with different average grain sizes(D) were designed.Anisotropy of bending strength(R_(bb))and compressive strength(R_(mc)) of the magnets were investigated.Moreover,the R_(bb) increases from 86 to 173 MPa with D decreasing from~52 to~18 μm for group c//h samples.The Hall-Petch correlation was employed to reveal the effect of grain size on mechanical properties of the magnets,giving deep understanding of the mechanical anisotropy characteristics.The relatively high Hall-Petch coefficient K^(Rbb)(0.79 MPa·m^(1/2)) gives rise to the largest R_(bb)(173 MPa) for group c//h samples.The mechanical anisotropy of the samples is well explained based on crystal structure and grain size features(grain boundaries).Grain refinement is an effective way to enhance the mechanical properties of Sm_(2)Co_(17)-type sintered magnets.
基金supported by the National Key R&D Program of China (No.2021YFB3501600)the Key R&D Program of Zhejiang Province (Nos.2021C01191 and 2021C01190).
文摘The excellent thermal stability of magnetic properties of Sm_(2)Co_(17)-based magnets is their most impor-tant feature.However,this stability is reduced when the maximum energy product of Sm_(2)Co_(17)-based magnets is improved,which is mainly determined by the Fe/Cu distribution of the 2:17R cell and 1:5H cell boundary phases.During the demagnetization process,the Cu-rich 1:5H cell boundary phase with a width of 2-15 nm obstructs the motion of the domain walls,yielding coercivity.Herein,we report a micron-scale Cu/Zr-rich and Fe-lean 1:5H-based precipitated phase with a lamellar structure,probably induced by Sm_(2)O_(3) doping.This structure enables the separate regulation of Fe and Cu distribution for Sm_(2)Co_(17)-based magnets with Fe-rich 2:17R cell phases and Cu-rich 1:5H cell boundary phases,consid-erably optimizing the thermal stability of magnetic properties.This discovery can be further developed to produce Sm_(2)Co_(17)-based magnets with high performance and excellent thermal stability of magnetic properties.
基金financially supported by the National Natural Science Foundation of China(No.NSF-11174069)the Natural Science Foundation of Hebei Province(No.E2011205083)+1 种基金the Key Item Science Foundation of Hebei Province(No.10965125D)the Key Item Science Foundation of the Education Department of Hebei Province(No.ZD2010129)
文摘The effects of the calcination temperature on the oxygen content and magnetic properties of the nano- crystalline perovskite manganite Lao.75Sro.25MnO3±δ pre- pared by the sol-gel method were investigated. The highest temperatures at which the samples were calcined were 973, 1073, 1273, and 1473 K. The X-ray diffraction (XRD) analyses indicate that all the samples have only a single phase with the R3c perovskite structure. As the calcination temperature and calcination time increase, the oxygen content in the samples increases from being deficient to being in excess of that in the stoichiometric formula. The crystallite size also increases from 23 to 283 nm. Magnetic measurements indicate that the sample calcined at 1073 K has the highest Curie temperature. This is owing to the fact that the crystallite cores of this sample have stoichiometric oxygen content. The dependence of the Curie temperature and the saturation magnetization on the calcination tem- perature are successfully explained.
基金financially supported by the Tianjin Research Program of Application Foundation and Advanced Technology (No.14JCQNJC04000)the National Key Research and Development Program of China (No.2017YFB0702700)the Hebei Provincial Education Department Project (No.ZD2017066)
文摘The hydrogen absorption of the LaFe(10.9)-Co(0.8)Si(1.3) compound under constant 1.01 × 10-5 Pa H2 gas in a flow hydrogen atmosphere was studied. The effects of hydrogen absorption on structure, Curie temperature, phase transition and magnetic property were investigated by X-ray diffraction(XRD), differential scanning calorimeter(DSC) and superconducting quantum interference device,respectively. The hydrides of LaFe(10.9)Co(0.8)Si(1.3) crystallize into NaZn(13)-type structural phase after hydrogen absorption at temperature from 548 to 623 K. Lower hydrogen absorption temperature is of no advantage for pure 1:13 phase formation in a flow H2 atmosphere. The Curie temperature(TC) of LaFe(10.9)Co(0.8)Si(1.3) compound increases by70 K or more after hydrogen absorption. For LaFe(10.9)-Co(0.8)Si(1.3)H(1.8) compound, the maximum magnetic entropy change and the relative cooling power under a magnetic field change of 0-2 T are 6.1 J·kg^-1·K^-1 and 170 J·kg^-1,respectively. Large refrigerant capacity, low hysteresis loss and wide temperature span of magnetic entropy change peak make it a competitive practical candidate for magnetic refrigerant.
基金Project supported by the Plan of National Key Research and Development of China (2021YFB3503003)the National Natural Science Foundation of China (51871063)+1 种基金the Key Research and Development Plan of Shandong Province(2019JZZY020210)the Major Projects in Inner Mongolia。
文摘The electrochemical corrosion behavior of both (Ce_(15)Nd_(85))_(30)Fe_(bal)B_(1)M sintered magnets prepared with dual-main-phase method and N45-type magnets was studied in 3.5 wt% NaCl,1.1 wt% NaH_(2)PO_(4),and 2.5 wt% NaOH solutions,respectively.The (Ce_(15)Nd_(85))_(30)Fe_(bal)B_(1)M sintered magnets perform superior corrosion resistance than N45-type magnets in the tested solutions.In general,two kinds of magnets exhibit the best corrosion resistance property in 2.5 wt% NaOH solution,while the worst in 3.5 wt% NaCl solution.Microstructures of samples before and after corrosion were investigated.With the addition of Ce by means of dual-main-phase method,which is conducive to facilitating low-temperature sintering and grain refinement,uniform grain size and(Nd,Ce)-rich phase distribution form,give rise to narrow and thin corrosion channels.Moreover,the corrosion rate of the(Nd,Ce)-rich phase is lower than that of Nd-rich one.Acco rdingly,corro sion re sistance of (Ce_(15)Nd_(85))_(30)Fe_(bal)B_(1)M sintered magnet is superior when compared with the commercial N45-type magnet which has comparable magnetic properties.
基金supported by the National Key R&D Program of China(2021YFB3501600)the Young Elite Scientists Sponsorship Program by CAST(2022QNRC001)the Key R&D Program of Zhejiang Province(2021C01191,2021C01190,2023C01077)。
文摘A novel micro structure of magnetically anisotropic Sm Co-based magnet with high-performance is reported.The magnet consists of SmCo_(7)-H(TbCu_(7)-hexagonal type),Sm_(2)Co_(17)-H(Th_(2)Ni_(17)-hexagonal type)and SmCo_(3)-R(SmCo_(3)-rhombohedral type)phases.The maximum magnetic energy product of the magnet is 231.69 kj/m^(3),and the intrinsic coercivity is 1005.47 kA/m.An outstanding intrinsic coercivity temperature coefficient(β)of-0.125%/K between 298 and 773 K is obtained,which is very close to theβof commercial high-temperature Sm_(2)Co_(17)-based sintered magnets.The initial magnetization curve indicates that the coercivity mechanism is controlled by a domain wall pinning mechanism.The SmCo_(3)-R lamellar phase may be a potential pinning center or self-pinning center.The microstructure of the magnet is different from that of any previous SmCo-based magnets.These findings provide a new idea for preparing high-performance SmCo-based permanent magnets.
基金partially supported by the National Natural Science Foundation of China (No. 51871063)the Key Technology Research and Development Program of Shandong (No. 2019JZZY020210)。
文摘Influence of Zr contents on high-temperature magnetic performance of Sm(CoFeCuZr)(x=0.025,0.03,0.035,0.04) magnets were investigated.As x increases from 0.025 to 0.04,the temperature coefficient of intrinsic coercivity(H) is optimized from-0.1673% K^(-1)to-0.1382% K^(-1)and the Hat 773 K gradually increases from 556.32 kA m^(-1)to 667 kA m^(-1).The microstructure and microchemistry of different Zr-content magnets were revealed by a transmission electron microscope equipped with EDS.The increasing Zr content induces that the average size of cells decreases from ~76 nm to ~56 nm and the weight fraction of 1:5 H cell boundary phase increases from ~25% to ~37% as well,resulting decreasing of the average Cu content at cell boundaries from 13.59 at% to ~8.52 at%.It is found that the Cu-lean characteristic at cell boundary phase is the reason that gives rise to higher magnetic properties at elevated temperatures for x=0.04 magnet.
基金Project supported by the National Natural Science Foundation of China(51590882,51871063)
文摘Individual grains with diverse dimensional parameters were introduced to investigate the magnetization reversals in anisotropic Nd2 Fe_(14)B magnets. The micromagnetic simulations were carried out via Object Oriented MicroMagnetic Framework(OOMMF). With the same bottom area and height, analysis results show that the coercive fields for different bottom shapes are of similar values. Designed as a cubic grain,the coercive field presents descending tendency as grain volume ascends. Under constant grain volume,with aspect ratio increasing, the coercive field decreases in the beginning and increases soon. Based on the demagnetization field vector, the effects of bottom shape, grain volume and aspect ratio on the coercive field can be explained. The nucleation point is chosen to discuss. Its synthetic field and reversal field are calculated by parallelogram law and inverse external field equation, respectively. The synthetic field equal to the reversal field is defined as critical field, which always shows the same tendency as the coercive field for all cases of this study. It can be concluded that critical field is qualified to be a reference index to measure the magnitude of coercive field.