A grid connected microgrid connects to the grid at a point of common coupling. Due to the great inertia of the grid which accelerates and decelerates the generator when its frequency tends to deviate, the grid connect...A grid connected microgrid connects to the grid at a point of common coupling. Due to the great inertia of the grid which accelerates and decelerates the generator when its frequency tends to deviate, the grid connected microgrid operates at a frequency of the infinity bus. Frequency instability is one of the major challenges facing the grid connected microgrid during islanding. The power demand variation causes the variation in rotor speed, resulting to frequency deviation. Frequency can be brought back to standard by varying the power generation to match with the varying load. The performance of the frequency stability control system at Mwenga hydroelectric microgrid has been studied. Through site visitation, the power demand and generation status data were collected and analysed for model preparation. The results of the study indicate that, during islanding, the Mwenga rural electrification project is observed to be subjected to power imbalance which leads to frequency instability. Although the frequency control system tries to keep the system at a nominal frequency by maintaining the continuous balance between generation and varying load demand, however the system still operates with large magnitude of overshoot, undershoot and longer settling time.展开更多
This paper presents a method for optimal sizing of a Micro grid connected to a hybrid source to ensure the continuity and quality of energy in a locality with a stochastically changing population. The hybrid system is...This paper presents a method for optimal sizing of a Micro grid connected to a hybrid source to ensure the continuity and quality of energy in a locality with a stochastically changing population. The hybrid system is composed of a solar photovoltaic system, a wind turbine, and an energy storage system. The reliability of the system is evaluated based on the voltage level regulation on IEEE 33-bus and IEEE 69-bus standards. Power factor correction is performed, despite some reliability and robustness constraints. This work focuses on energy management in a hybrid system considering climatic disturbances on the one hand, and on the other hand, this work evaluates the energy quality and the cost of energy. A combination of genetic algorithms of particle swarm optimization (CGAPSO) shows high convergence speed, which illustrates the robustness of the proposed system. The study of this system shows its feasibility and compliance with standards. The results obtained show a significant reduction in the total cost of production of this proposed system.展开更多
In this paper, we present an analysis of energy and exergy utilization in the residential sector of Cameroon by considering the sectoral energy and exergy flows for the years of 2001-2010. Exergy analysis of Cameroon ...In this paper, we present an analysis of energy and exergy utilization in the residential sector of Cameroon by considering the sectoral energy and exergy flows for the years of 2001-2010. Exergy analysis of Cameroon residential sector utilisation indicates a less efficient picture than that obtained by the energy analysis. Cooking stands out as the most inefficient end use in the Cameroon’s residential sector. In 2010, the energy and exergy efficiency are determined and were respectively 58.74% and 22.63%. Energy and exergy flows diagrams for the overall efficiencies of Cameroon residential sector are illustrated and a comparison with the residential sector of other countries is also done. To carry out this study, a survey of 250 households was conducted and the sharing of the end uses of energy was done and data were gathered.展开更多
Maximum Power Point Tracking (MPPT) algorithms are now widely used in PV systems independently of the weather conditions. In function of the application, a DC-DC converter topology is chosen without any previous perfo...Maximum Power Point Tracking (MPPT) algorithms are now widely used in PV systems independently of the weather conditions. In function of the application, a DC-DC converter topology is chosen without any previous performance test under normal weather conditions. This paper proposes an experimental evaluation of MPPT algorithms according to DC-DC converters topologies, under normal operation conditions. Four widely used MPPT algorithms <i><i><span>i.e.</span></i><span></span></i> Perturb and Observe (P & O), Hill Climbing (HC), Fixed step Increment of Conductance (INCF) and Variable step Increment of Conductance (INCV) are implemented using two topologies of DC-DC converters <i><span>i.e.</span></i><span> buck and boost converters. As input variables to the PV systems, recorded irradiance and temperature, and extracted photovoltaic parameters (ideality factor, series resistance and reverse saturation current) were used. The obtained results show that buck converter has a lot of power losses when controlled by each of the four MPPT algorithms. Meanwhile, boost converter presents a stable output power during the whole day. Once more, the results show that INCV algorithm has the best performance.</span>展开更多
Many industrial installations in developing countries start-up as small factories, without regard for the need of compensation of reactive power, leading to significant financial losses in the long term. By improving ...Many industrial installations in developing countries start-up as small factories, without regard for the need of compensation of reactive power, leading to significant financial losses in the long term. By improving the power factor, the customer can reduce its power demand and potentially increase efficiency of their equipment. A PIC microcontroller is used to switch capacitor banks to compensate for the reactive power. In order to determine the size of the capacitor bank needed, the microcontroller calculates the phase difference between the voltage and the current. The results obtained based on the lagging power factor for three test loads show an improvement in the power factor from 0.52 to 0.96 under different test load conditions.展开更多
The data-driven transient stability assessment(TSA)of power systems can predict online real-time prediction by learning the temporal features before and after faults.However,the accuracy of the assessment is limited b...The data-driven transient stability assessment(TSA)of power systems can predict online real-time prediction by learning the temporal features before and after faults.However,the accuracy of the assessment is limited by the quality of the data and has weak transferability.Based on this,this paper proposes a method for TSA of power systems based on an improved extreme gradient boosting(XGBoost)model.Firstly,the gradient detection method is employed to remove noise interference while maintaining the original time series trend.On this basis,a focal loss function is introduced to guide the training of theXGBoostmodel,enhancing the deep exploration of minority class samples to improve the accuracy of the model evaluation.Furthermore,to improve the generalization ability of the evaluation model,a transfer learning method based on model parameters and sample augmentation is proposed.The simulation analysis on the IEEE 39-bus system demonstrates that the proposed method,compared to the traditional machine learning-based transient stability assessment approach,achieves an average improvement of 2.16%in evaluation accuracy.Specifically,under scenarios involving changes in topology structure and operating conditions,the accuracy is enhanced by 3.65%and 3.11%,respectively.Moreover,the model updating efficiency is enhanced by 14–15 times,indicating the model’s transferable and adaptive capabilities across multiple scenarios.展开更多
An electricity market is a trading platform provided by the actors in the electricity sector to sell and buy electricity while maintaining the stability of the transmission network and minimizing energy losses.The man...An electricity market is a trading platform provided by the actors in the electricity sector to sell and buy electricity while maintaining the stability of the transmission network and minimizing energy losses.The management of electrical energy for rational use consists of all the operations that the consumers can carry out in order to minimize their electricity bill,while the producers optimize their benefits and the transmission infrastructure.The reduction of active and reactive power consumption and the smoothing of daily and yearly load profiles are the main objectives in this work.Many developed countries already have properly functioning electricity markets,but developing countries are still in their infancy of deregulated electricity markets.The major tools used in smoothing the load profiles include decentralized generation,energy storage and demand response.A load power smoothing control strategy is proposed to smooth the load power fluctuations of the distribution network.The required power change is determined by evaluating the power fluctuation rate of the load,and then the required power change is allocated to some generators or to some stored reserves.Otherwise,the consumers are made to curtail their power consumption.The ideas proposed in this work provide important opportunities for energy policy makers and regulators.These ideas would only be feasible if there exists real-time communication among the actors in the electricity market.The results indicate that as much as 1100 Megawatt-hours of energy can be stored for smoothing the load profile,when applied to the Southern Interconnected Grid of the Cameroon power system;and that Time of Use(TOU)pricing could be used instead of rotating blackouts in case of energy shortage.展开更多
A thermogravimetric analyzer was used to conduct a kinetic investigation of rice husk pyrolysis. The major goal is to investigate the reaction kinetics of rice husk at various heating rates in an inert 99.5 percent ni...A thermogravimetric analyzer was used to conduct a kinetic investigation of rice husk pyrolysis. The major goal is to investigate the reaction kinetics of rice husk at various heating rates in an inert 99.5 percent nitrogen atmosphere. Kinetics’ importance can be explained by the fact that it provides evidence for chemical process mechanisms. Understanding reaction mechanisms can help you figure out the best way to get a reaction to happen. Furthermore, it is of fundamental scientific interest. The samples were heated at different heating rates of 5, 10, 20, and 40 K min<sup>-</sup><sup>1</sup> from ambient temperature to 973 K. The thermal degradation characteristics and the kinetic parameter were determined. The values show that the activation energy (E<sub>a</sub>) and pre-exponential factor (A) vary with heating rates and temperature.展开更多
S<span>everal challenges are associated </span></span><span style="font-family:"">with</span><span style="font-family:""> the development, adoption and...S<span>everal challenges are associated </span></span><span style="font-family:"">with</span><span style="font-family:""> the development, adoption and de</span><span style="font-family:"">ployment of biogas digesters in developing countries. Amongst these challenges is a comprehensive and systematic procedure for the design of digesters suitable for rural communities. This paper proposes the Flexible Biogas Digester System (FBDS) as a viable option for rural communities in developing countries and provide</span><span style="font-family:"">s</span><span style="font-family:""> a detailed step-by-step procedure for it</span><span style="font-family:"">s</span><span style="font-family:""> design. The biogas production process is a function of the digester operating factors which may be grouped into physical, process and performance parameters. The physical design parameters include</span><span style="font-family:""> </span><span style="font-family:"">the digester volume, the volume of the biogas storage tank, and the volume of the installation pit. The process parameters include total solid content of the slurry (TS), organic loading rate (OLR), digester operating temperatures, pH of the slurry inside the digester. The performance parameters include</span><span style="font-family:""> </span><span style="font-family:"">biogas production rate, biogas productivity and biogas quality. The Net Present Value and the Levelised Cost of Energy are presented for simple economic evaluation of the FBDS.展开更多
The global sustainability plan for future development relies on solar radiation which is the main source of renewable energy. Thus, this work studies the performance of six models to estimate global solar radiation on...The global sustainability plan for future development relies on solar radiation which is the main source of renewable energy. Thus, this work studies the performance of six models to estimate global solar radiation on a horizontal surface for the Abeche site in Chad. The data used in this work were collected at the General Directorate of National Meteorology of Chad. The reliability and accuracy of different models for estimating global solar radiation were validated by statistical indicators to identify the most accurate model. The results show that among all the models, the Sabbagh model has the best performance in estimating the global solar radiation. The average is 6.354 kWh/m<sup>2</sup> with an average of -3.704%. This model is validated against NASA data which is widely used.展开更多
An investigation is made of the influence of an accumulated charge sprinkled on the surface of an epoxy resin plate in corona mode on partial discharge inception and its forms as analyzed by optical imaging at DC volt...An investigation is made of the influence of an accumulated charge sprinkled on the surface of an epoxy resin plate in corona mode on partial discharge inception and its forms as analyzed by optical imaging at DC voltage.The effects of the polarities of both the deposited hetero-and homocharges were investigated.The occurrence of first streamer discharges was detected electrically and observed by optical imaging.The various forms of streamers were acquired by optical imaging and associated with the polarity and intensity of the accumulated surface charges.Surface charge sprinkling on the epoxy specimen surface was quantitatively evaluated by surface charge mapping.In addition,the effect of the subsequent discharges occurring in a heterocharge configu-ration above the inception voltage was observed.In terms of their directions and lengths,the kinetics of the streamer filaments revealed a strong dependence on both the polarity and the intensity of an accumulated charge.Compared with the reference charge-free surface,the strongest drop in dielectric strength in the interelectrode space with a sprinkled charge was obtained for the heterocharge configuration.The presented results provide a contribution to the assessment of streamer behaviour in the presence of accumulated surface charges,including its polarity and intensity.展开更多
One of the major concerns for the utilities in the Smart Grid(SG)is electricity theft.With the implementation of smart meters,the frequency of energy usage and data collection from smart homes has increased,which make...One of the major concerns for the utilities in the Smart Grid(SG)is electricity theft.With the implementation of smart meters,the frequency of energy usage and data collection from smart homes has increased,which makes it possible for advanced data analysis that was not previously possible.For this purpose,we have taken historical data of energy thieves and normal users.To avoid imbalance observation,biased estimates,we applied the interpolation method.Furthermore,the data unbalancing issue is resolved in this paper by Nearmiss undersampling technique and makes the data suitable for further processing.By proposing an improved version of Zeiler and Fergus Net(ZFNet)as a feature extraction approach,we had able to reduce the model’s time complexity.To minimize the overfitting issues,increase the training accuracy and reduce the training loss,we have proposed an enhanced method by merging Adaptive Boosting(AdaBoost)classifier with Coronavirus Herd Immunity Optimizer(CHIO)and Forensic based Investigation Optimizer(FBIO).In terms of low computational complexity,minimized over-fitting problems on a large quantity of data,reduced training time and training loss and increased training accuracy,our model outperforms the benchmark scheme.Our proposed algorithms Ada-CHIO andAda-FBIO,have the low MeanAverage Percentage Error(MAPE)value of error,i.e.,6.8%and 9.5%,respectively.Furthermore,due to the stability of our model our proposed algorithms Ada-CHIO and Ada-FBIO have achieved the accuracy of 93%and 90%.Statistical analysis shows that the hypothesis we proved using statistics is authentic for the proposed technique against benchmark algorithms,which also depicts the superiority of our proposed techniques.展开更多
The paper presents an economic hybrid circuit breaker for limiting and interrupting the faults in DC railways substations. For fast fault current interruption, the hybrid breaker incorporates high speed mechanical con...The paper presents an economic hybrid circuit breaker for limiting and interrupting the faults in DC railways substations. For fast fault current interruption, the hybrid breaker incorporates high speed mechanical contacts actuated by power semiconductor devices. Additionally, to avoid formation of electric arc, a commutation circuit is used to inject a counter current during fault interruption. In a real railway substation, each feeder is connected to the main DC bus through an expensive air magnetic DC circuit breaker and to an auxiliary DC bus through another expensive breaker. This leads to high cost especially in railway substation with multi feeders which are used to energize the vehicle transmission lines. In this paper, all DC breakers in DC railway substations are replaced by the suggested circuit breaker, which consists of a high speed mechanical contact with two semiconductor devices in each feeder and only one commutation circuit for injecting the counter current in all faulted feeders. The fault diagnosis is designed to detect the abnormal condition (current or voltage) in all feeders and direct the injected current from the commutation circuit to the faulted feeder only when the abnormal reaches a predetermine level. The suggested breaker is able to detect and interrupt any cascading of faults.展开更多
文摘A grid connected microgrid connects to the grid at a point of common coupling. Due to the great inertia of the grid which accelerates and decelerates the generator when its frequency tends to deviate, the grid connected microgrid operates at a frequency of the infinity bus. Frequency instability is one of the major challenges facing the grid connected microgrid during islanding. The power demand variation causes the variation in rotor speed, resulting to frequency deviation. Frequency can be brought back to standard by varying the power generation to match with the varying load. The performance of the frequency stability control system at Mwenga hydroelectric microgrid has been studied. Through site visitation, the power demand and generation status data were collected and analysed for model preparation. The results of the study indicate that, during islanding, the Mwenga rural electrification project is observed to be subjected to power imbalance which leads to frequency instability. Although the frequency control system tries to keep the system at a nominal frequency by maintaining the continuous balance between generation and varying load demand, however the system still operates with large magnitude of overshoot, undershoot and longer settling time.
文摘This paper presents a method for optimal sizing of a Micro grid connected to a hybrid source to ensure the continuity and quality of energy in a locality with a stochastically changing population. The hybrid system is composed of a solar photovoltaic system, a wind turbine, and an energy storage system. The reliability of the system is evaluated based on the voltage level regulation on IEEE 33-bus and IEEE 69-bus standards. Power factor correction is performed, despite some reliability and robustness constraints. This work focuses on energy management in a hybrid system considering climatic disturbances on the one hand, and on the other hand, this work evaluates the energy quality and the cost of energy. A combination of genetic algorithms of particle swarm optimization (CGAPSO) shows high convergence speed, which illustrates the robustness of the proposed system. The study of this system shows its feasibility and compliance with standards. The results obtained show a significant reduction in the total cost of production of this proposed system.
文摘In this paper, we present an analysis of energy and exergy utilization in the residential sector of Cameroon by considering the sectoral energy and exergy flows for the years of 2001-2010. Exergy analysis of Cameroon residential sector utilisation indicates a less efficient picture than that obtained by the energy analysis. Cooking stands out as the most inefficient end use in the Cameroon’s residential sector. In 2010, the energy and exergy efficiency are determined and were respectively 58.74% and 22.63%. Energy and exergy flows diagrams for the overall efficiencies of Cameroon residential sector are illustrated and a comparison with the residential sector of other countries is also done. To carry out this study, a survey of 250 households was conducted and the sharing of the end uses of energy was done and data were gathered.
文摘Maximum Power Point Tracking (MPPT) algorithms are now widely used in PV systems independently of the weather conditions. In function of the application, a DC-DC converter topology is chosen without any previous performance test under normal weather conditions. This paper proposes an experimental evaluation of MPPT algorithms according to DC-DC converters topologies, under normal operation conditions. Four widely used MPPT algorithms <i><i><span>i.e.</span></i><span></span></i> Perturb and Observe (P & O), Hill Climbing (HC), Fixed step Increment of Conductance (INCF) and Variable step Increment of Conductance (INCV) are implemented using two topologies of DC-DC converters <i><span>i.e.</span></i><span> buck and boost converters. As input variables to the PV systems, recorded irradiance and temperature, and extracted photovoltaic parameters (ideality factor, series resistance and reverse saturation current) were used. The obtained results show that buck converter has a lot of power losses when controlled by each of the four MPPT algorithms. Meanwhile, boost converter presents a stable output power during the whole day. Once more, the results show that INCV algorithm has the best performance.</span>
文摘Many industrial installations in developing countries start-up as small factories, without regard for the need of compensation of reactive power, leading to significant financial losses in the long term. By improving the power factor, the customer can reduce its power demand and potentially increase efficiency of their equipment. A PIC microcontroller is used to switch capacitor banks to compensate for the reactive power. In order to determine the size of the capacitor bank needed, the microcontroller calculates the phase difference between the voltage and the current. The results obtained based on the lagging power factor for three test loads show an improvement in the power factor from 0.52 to 0.96 under different test load conditions.
基金This work is supported by the State Grid Shanxi Electric Power Company Technology Project(52053023000B).
文摘The data-driven transient stability assessment(TSA)of power systems can predict online real-time prediction by learning the temporal features before and after faults.However,the accuracy of the assessment is limited by the quality of the data and has weak transferability.Based on this,this paper proposes a method for TSA of power systems based on an improved extreme gradient boosting(XGBoost)model.Firstly,the gradient detection method is employed to remove noise interference while maintaining the original time series trend.On this basis,a focal loss function is introduced to guide the training of theXGBoostmodel,enhancing the deep exploration of minority class samples to improve the accuracy of the model evaluation.Furthermore,to improve the generalization ability of the evaluation model,a transfer learning method based on model parameters and sample augmentation is proposed.The simulation analysis on the IEEE 39-bus system demonstrates that the proposed method,compared to the traditional machine learning-based transient stability assessment approach,achieves an average improvement of 2.16%in evaluation accuracy.Specifically,under scenarios involving changes in topology structure and operating conditions,the accuracy is enhanced by 3.65%and 3.11%,respectively.Moreover,the model updating efficiency is enhanced by 14–15 times,indicating the model’s transferable and adaptive capabilities across multiple scenarios.
文摘An electricity market is a trading platform provided by the actors in the electricity sector to sell and buy electricity while maintaining the stability of the transmission network and minimizing energy losses.The management of electrical energy for rational use consists of all the operations that the consumers can carry out in order to minimize their electricity bill,while the producers optimize their benefits and the transmission infrastructure.The reduction of active and reactive power consumption and the smoothing of daily and yearly load profiles are the main objectives in this work.Many developed countries already have properly functioning electricity markets,but developing countries are still in their infancy of deregulated electricity markets.The major tools used in smoothing the load profiles include decentralized generation,energy storage and demand response.A load power smoothing control strategy is proposed to smooth the load power fluctuations of the distribution network.The required power change is determined by evaluating the power fluctuation rate of the load,and then the required power change is allocated to some generators or to some stored reserves.Otherwise,the consumers are made to curtail their power consumption.The ideas proposed in this work provide important opportunities for energy policy makers and regulators.These ideas would only be feasible if there exists real-time communication among the actors in the electricity market.The results indicate that as much as 1100 Megawatt-hours of energy can be stored for smoothing the load profile,when applied to the Southern Interconnected Grid of the Cameroon power system;and that Time of Use(TOU)pricing could be used instead of rotating blackouts in case of energy shortage.
文摘A thermogravimetric analyzer was used to conduct a kinetic investigation of rice husk pyrolysis. The major goal is to investigate the reaction kinetics of rice husk at various heating rates in an inert 99.5 percent nitrogen atmosphere. Kinetics’ importance can be explained by the fact that it provides evidence for chemical process mechanisms. Understanding reaction mechanisms can help you figure out the best way to get a reaction to happen. Furthermore, it is of fundamental scientific interest. The samples were heated at different heating rates of 5, 10, 20, and 40 K min<sup>-</sup><sup>1</sup> from ambient temperature to 973 K. The thermal degradation characteristics and the kinetic parameter were determined. The values show that the activation energy (E<sub>a</sub>) and pre-exponential factor (A) vary with heating rates and temperature.
文摘S<span>everal challenges are associated </span></span><span style="font-family:"">with</span><span style="font-family:""> the development, adoption and de</span><span style="font-family:"">ployment of biogas digesters in developing countries. Amongst these challenges is a comprehensive and systematic procedure for the design of digesters suitable for rural communities. This paper proposes the Flexible Biogas Digester System (FBDS) as a viable option for rural communities in developing countries and provide</span><span style="font-family:"">s</span><span style="font-family:""> a detailed step-by-step procedure for it</span><span style="font-family:"">s</span><span style="font-family:""> design. The biogas production process is a function of the digester operating factors which may be grouped into physical, process and performance parameters. The physical design parameters include</span><span style="font-family:""> </span><span style="font-family:"">the digester volume, the volume of the biogas storage tank, and the volume of the installation pit. The process parameters include total solid content of the slurry (TS), organic loading rate (OLR), digester operating temperatures, pH of the slurry inside the digester. The performance parameters include</span><span style="font-family:""> </span><span style="font-family:"">biogas production rate, biogas productivity and biogas quality. The Net Present Value and the Levelised Cost of Energy are presented for simple economic evaluation of the FBDS.
文摘The global sustainability plan for future development relies on solar radiation which is the main source of renewable energy. Thus, this work studies the performance of six models to estimate global solar radiation on a horizontal surface for the Abeche site in Chad. The data used in this work were collected at the General Directorate of National Meteorology of Chad. The reliability and accuracy of different models for estimating global solar radiation were validated by statistical indicators to identify the most accurate model. The results show that among all the models, the Sabbagh model has the best performance in estimating the global solar radiation. The average is 6.354 kWh/m<sup>2</sup> with an average of -3.704%. This model is validated against NASA data which is widely used.
文摘An investigation is made of the influence of an accumulated charge sprinkled on the surface of an epoxy resin plate in corona mode on partial discharge inception and its forms as analyzed by optical imaging at DC voltage.The effects of the polarities of both the deposited hetero-and homocharges were investigated.The occurrence of first streamer discharges was detected electrically and observed by optical imaging.The various forms of streamers were acquired by optical imaging and associated with the polarity and intensity of the accumulated surface charges.Surface charge sprinkling on the epoxy specimen surface was quantitatively evaluated by surface charge mapping.In addition,the effect of the subsequent discharges occurring in a heterocharge configu-ration above the inception voltage was observed.In terms of their directions and lengths,the kinetics of the streamer filaments revealed a strong dependence on both the polarity and the intensity of an accumulated charge.Compared with the reference charge-free surface,the strongest drop in dielectric strength in the interelectrode space with a sprinkled charge was obtained for the heterocharge configuration.The presented results provide a contribution to the assessment of streamer behaviour in the presence of accumulated surface charges,including its polarity and intensity.
文摘One of the major concerns for the utilities in the Smart Grid(SG)is electricity theft.With the implementation of smart meters,the frequency of energy usage and data collection from smart homes has increased,which makes it possible for advanced data analysis that was not previously possible.For this purpose,we have taken historical data of energy thieves and normal users.To avoid imbalance observation,biased estimates,we applied the interpolation method.Furthermore,the data unbalancing issue is resolved in this paper by Nearmiss undersampling technique and makes the data suitable for further processing.By proposing an improved version of Zeiler and Fergus Net(ZFNet)as a feature extraction approach,we had able to reduce the model’s time complexity.To minimize the overfitting issues,increase the training accuracy and reduce the training loss,we have proposed an enhanced method by merging Adaptive Boosting(AdaBoost)classifier with Coronavirus Herd Immunity Optimizer(CHIO)and Forensic based Investigation Optimizer(FBIO).In terms of low computational complexity,minimized over-fitting problems on a large quantity of data,reduced training time and training loss and increased training accuracy,our model outperforms the benchmark scheme.Our proposed algorithms Ada-CHIO andAda-FBIO,have the low MeanAverage Percentage Error(MAPE)value of error,i.e.,6.8%and 9.5%,respectively.Furthermore,due to the stability of our model our proposed algorithms Ada-CHIO and Ada-FBIO have achieved the accuracy of 93%and 90%.Statistical analysis shows that the hypothesis we proved using statistics is authentic for the proposed technique against benchmark algorithms,which also depicts the superiority of our proposed techniques.
文摘The paper presents an economic hybrid circuit breaker for limiting and interrupting the faults in DC railways substations. For fast fault current interruption, the hybrid breaker incorporates high speed mechanical contacts actuated by power semiconductor devices. Additionally, to avoid formation of electric arc, a commutation circuit is used to inject a counter current during fault interruption. In a real railway substation, each feeder is connected to the main DC bus through an expensive air magnetic DC circuit breaker and to an auxiliary DC bus through another expensive breaker. This leads to high cost especially in railway substation with multi feeders which are used to energize the vehicle transmission lines. In this paper, all DC breakers in DC railway substations are replaced by the suggested circuit breaker, which consists of a high speed mechanical contact with two semiconductor devices in each feeder and only one commutation circuit for injecting the counter current in all faulted feeders. The fault diagnosis is designed to detect the abnormal condition (current or voltage) in all feeders and direct the injected current from the commutation circuit to the faulted feeder only when the abnormal reaches a predetermine level. The suggested breaker is able to detect and interrupt any cascading of faults.