The digital processing signal is one of the subdivisions of the analog digital converter interface;data transfer rate in modern telecommunications is a critical parameter. The greatest feature of parallel conversion r...The digital processing signal is one of the subdivisions of the analog digital converter interface;data transfer rate in modern telecommunications is a critical parameter. The greatest feature of parallel conversion rate (4-bit parallel Flash 5/s converter) is designed and modeled in 0.18 micron CMOS technology. Low speed swing operation as analog and digital circuits leads to high speed of low power operation power with 70 mVt 1.8 V A/D converter from the power dissipated during operation in the 5 GHz range. Average offset is used to minimize the effect of the bias of a comparator. This paper contains the 8-bit encoder of the metrical term code to direct binary code decreasing power consumption, which is shown by results and comparison with other designs using computer simulation. The results of the flash ADC time-interleaved are a more significant improvement in terms of power and areas than those previously reported.展开更多
Electrocardiogram(ECG)signal is a measure of the heart’s electrical activity.Recently,ECG detection and classification have benefited from the use of computer-aided systems by cardiologists.The goal of this paper is ...Electrocardiogram(ECG)signal is a measure of the heart’s electrical activity.Recently,ECG detection and classification have benefited from the use of computer-aided systems by cardiologists.The goal of this paper is to improve the accuracy of ECG classification by combining the Dipper Throated Optimization(DTO)and Differential Evolution Algorithm(DEA)into a unified algorithm to optimize the hyperparameters of neural network(NN)for boosting the ECG classification accuracy.In addition,we proposed a new feature selection method for selecting the significant feature that can improve the overall performance.To prove the superiority of the proposed approach,several experimentswere conducted to compare the results achieved by the proposed approach and other competing approaches.Moreover,statistical analysis is performed to study the significance and stability of the proposed approach using Wilcoxon and ANOVA tests.Experimental results confirmed the superiority and effectiveness of the proposed approach.The classification accuracy achieved by the proposed approach is(99.98%).展开更多
Selecting the most relevant subset of features from a dataset is a vital step in data mining and machine learning.Each feature in a dataset has 2n possible subsets,making it challenging to select the optimum collectio...Selecting the most relevant subset of features from a dataset is a vital step in data mining and machine learning.Each feature in a dataset has 2n possible subsets,making it challenging to select the optimum collection of features using typical methods.As a result,a new metaheuristicsbased feature selection method based on the dipper-throated and grey-wolf optimization(DTO-GW)algorithms has been developed in this research.Instability can result when the selection of features is subject to metaheuristics,which can lead to a wide range of results.Thus,we adopted hybrid optimization in our method of optimizing,which allowed us to better balance exploration and harvesting chores more equitably.We propose utilizing the binary DTO-GW search approach we previously devised for selecting the optimal subset of attributes.In the proposed method,the number of features selected is minimized,while classification accuracy is increased.To test the proposed method’s performance against eleven other state-of-theart approaches,eight datasets from the UCI repository were used,such as binary grey wolf search(bGWO),binary hybrid grey wolf,and particle swarm optimization(bGWO-PSO),bPSO,binary stochastic fractal search(bSFS),binary whale optimization algorithm(bWOA),binary modified grey wolf optimization(bMGWO),binary multiverse optimization(bMVO),binary bowerbird optimization(bSBO),binary hysteresis optimization(bHy),and binary hysteresis optimization(bHWO).The suggested method is superior 4532 CMC,2023,vol.74,no.2 and successful in handling the problem of feature selection,according to the results of the experiments.展开更多
Traffic prediction of wireless networks attracted many researchersand practitioners during the past decades. However, wireless traffic frequentlyexhibits strong nonlinearities and complicated patterns, which makes it ...Traffic prediction of wireless networks attracted many researchersand practitioners during the past decades. However, wireless traffic frequentlyexhibits strong nonlinearities and complicated patterns, which makes it challengingto be predicted accurately. Many of the existing approaches forpredicting wireless network traffic are unable to produce accurate predictionsbecause they lack the ability to describe the dynamic spatial-temporalcorrelations of wireless network traffic data. In this paper, we proposed anovel meta-heuristic optimization approach based on fitness grey wolf anddipper throated optimization algorithms for boosting the prediction accuracyof traffic volume. The proposed algorithm is employed to optimize the hyperparametersof long short-term memory (LSTM) network as an efficient timeseries modeling approach which is widely used in sequence prediction tasks.To prove the superiority of the proposed algorithm, four other optimizationalgorithms were employed to optimize LSTM, and the results were compared.The evaluation results confirmed the effectiveness of the proposed approachin predicting the traffic of wireless networks accurately. On the other hand,a statistical analysis is performed to emphasize the stability of the proposedapproach.展开更多
Wind power is one of the sustainable ways to generate renewable energy.In recent years,some countries have set renewables to meet future energy needs,with the primary goal of reducing emissions and promoting sustainab...Wind power is one of the sustainable ways to generate renewable energy.In recent years,some countries have set renewables to meet future energy needs,with the primary goal of reducing emissions and promoting sustainable growth,primarily the use of wind and solar power.To achieve the prediction of wind power generation,several deep and machine learning models are constructed in this article as base models.These regression models are Deep neural network(DNN),k-nearest neighbor(KNN)regressor,long short-term memory(LSTM),averaging model,random forest(RF)regressor,bagging regressor,and gradient boosting(GB)regressor.In addition,data cleaning and data preprocessing were performed to the data.The dataset used in this study includes 4 features and 50530 instances.To accurately predict the wind power values,we propose in this paper a new optimization technique based on stochastic fractal search and particle swarm optimization(SFSPSO)to optimize the parameters of LSTM network.Five evaluation criteria were utilized to estimate the efficiency of the regression models,namely,mean absolute error(MAE),Nash Sutcliffe Efficiency(NSE),mean square error(MSE),coefficient of determination(R2),root mean squared error(RMSE).The experimental results illustrated that the proposed optimization of LSTM using SFS-PSO model achieved the best results with R2 equals 99.99%in predicting the wind power values.展开更多
Metamaterial Antenna is a special class of antennas that uses metamaterial to enhance their performance.Antenna size affects the quality factor and the radiation loss of the antenna.Metamaterial antennas can overcome ...Metamaterial Antenna is a special class of antennas that uses metamaterial to enhance their performance.Antenna size affects the quality factor and the radiation loss of the antenna.Metamaterial antennas can overcome the limitation of bandwidth for small antennas.Machine learning(ML)model is recently applied to predict antenna parameters.ML can be used as an alternative approach to the trial-and-error process of finding proper parameters of the simulated antenna.The accuracy of the prediction depends mainly on the selected model.Ensemble models combine two or more base models to produce a better-enhanced model.In this paper,a weighted average ensemble model is proposed to predict the bandwidth of the Metamaterial Antenna.Two base models are used namely:Multilayer Perceptron(MLP)and Support Vector Machines(SVM).To calculate the weights for each model,an optimization algorithm is used to find the optimal weights of the ensemble.Dynamic Group-Based Cooperative Optimizer(DGCO)is employed to search for optimal weight for the base models.The proposed model is compared with three based models and the average ensemble model.The results show that the proposed model is better than other models and can predict antenna bandwidth efficiently.展开更多
The design of an antenna requires a careful selection of its parameters to retain the desired performance.However,this task is time-consuming when the traditional approaches are employed,which represents a significant...The design of an antenna requires a careful selection of its parameters to retain the desired performance.However,this task is time-consuming when the traditional approaches are employed,which represents a significant challenge.On the other hand,machine learning presents an effective solution to this challenge through a set of regression models that can robustly assist antenna designers to find out the best set of design parameters to achieve the intended performance.In this paper,we propose a novel approach for accurately predicting the bandwidth of metamaterial antenna.The proposed approach is based on employing the recently emerged guided whale optimization algorithm using adaptive particle swarm optimization to optimize the parameters of the long-short-term memory(LSTM)deep network.This optimized network is used to retrieve the metamaterial bandwidth given a set of features.In addition,the superiority of the proposed approach is examined in terms of a comparison with the traditional multilayer perceptron(ML),Knearest neighbors(K-NN),and the basic LSTM in terms of several evaluation criteria such as root mean square error(RMSE),mean absolute error(MAE),and mean bias error(MBE).Experimental results show that the proposed approach could achieve RMSE of(0.003018),MAE of(0.001871),and MBE of(0.000205).These values are better than those of the other competing models.展开更多
Skin segmentation participates significantly in various biomedical applications,such as skin cancer identification and skin lesion detection.This paper presents a novel framework for segmenting the skin.The framework ...Skin segmentation participates significantly in various biomedical applications,such as skin cancer identification and skin lesion detection.This paper presents a novel framework for segmenting the skin.The framework contains two main stages:The first stage is for removing different types of noises from the dermoscopic images,such as hair,speckle,and impulse noise,and the second stage is for segmentation of the dermoscopic images using an attention residual U-shaped Network(U-Net).The framework uses variational Autoencoders(VAEs)for removing the hair noises,the Generative Adversarial Denoising Network(DGAN-Net),the Denoising U-shaped U-Net(D-U-NET),and Batch Renormalization U-Net(Br-U-NET)for remov-ing the speckle noise,and the Laplacian Vector Median Filter(MLVMF)for removing the impulse noise.In the second main stage,the residual attention u-net was used for segmentation.The framework achieves(35.11,31.26,27.01,and 26.16),(36.34,33.23,31.32,and 28.65),and(36.33,32.21,28.54,and 27.11)for removing hair,speckle,and impulse noise,respectively,based on Peak Signal Noise Ratio(PSNR)at the level of(0.1,0.25,0.5,and 0.75)of noise.The framework also achieves an accuracy of nearly 94.26 in the dice score in the process of segmentation before removing noise and 95.22 after removing different types of noise.The experiments have shown the efficiency of the used model in removing noise according to the structural similarity index measure(SSIM)and PSNR and in the segmentation process as well.展开更多
The accurate prediction of energy consumption has effective role in decision making and risk management for individuals and governments.Meanwhile,the accurate prediction can be realized using the recent advances in ma...The accurate prediction of energy consumption has effective role in decision making and risk management for individuals and governments.Meanwhile,the accurate prediction can be realized using the recent advances in machine learning and predictive models.This research proposes a novel approach for energy consumption forecasting based on a new optimization algorithm and a new forecasting model consisting of a set of long short-term memory(LSTM)units.The proposed optimization algorithm is used to optimize the parameters of the LSTM-based model to boost its forecasting accuracy.This optimization algorithm is based on the recently emerged dipper-throated optimization(DTO)and stochastic fractal search(SFS)algo-rithm and is referred to as dynamic DTOSFS.To prove the effectiveness and superiority of the proposed approach,five standard benchmark algorithms,namely,stochastic fractal search(SFS),dipper throated optimization(DTO),whale optimization algorithm(WOA),particle swarm optimization(PSO),and grey wolf optimization(GWO),are used to optimize the parameters of the LSTM-based model,and the results are compared with that of the proposed approach.Experimental results show that the proposed DDTOSFS+LSTM can accurately forecast the energy consumption with root mean square error RMSE of 0.00013,which is the best among the recorded results of the other methods.In addition,statistical experiments are conducted to prove the statistical difference of the proposed model.The results of these tests confirmed the expected outcomes.展开更多
Managing physical objects in the network’s periphery is made possible by the Internet of Things(IoT),revolutionizing human life.Open attacks and unauthorized access are possible with these IoT devices,which exchange ...Managing physical objects in the network’s periphery is made possible by the Internet of Things(IoT),revolutionizing human life.Open attacks and unauthorized access are possible with these IoT devices,which exchange data to enable remote access.These attacks are often detected using intrusion detection methodologies,although these systems’effectiveness and accuracy are subpar.This paper proposes a new voting classifier composed of an ensemble of machine learning models trained and optimized using metaheuristic optimization.The employed metaheuristic optimizer is a new version of the whale optimization algorithm(WOA),which is guided by the dipper throated optimizer(DTO)to improve the exploration process of the traditionalWOA optimizer.The proposed voting classifier categorizes the network intrusions robustly and efficiently.To assess the proposed approach,a dataset created from IoT devices is employed to record the efficiency of the proposed algorithm for binary attack categorization.The dataset records are balanced using the locality-sensitive hashing(LSH)and Synthetic Minority Oversampling Technique(SMOTE).The evaluation of the achieved results is performed in terms of statistical analysis and visual plots to prove the proposed approach’s effectiveness,stability,and significance.The achieved results confirmed the superiority of the proposed algorithm for the task of network intrusion detection.展开更多
The Internet of Things(IoT)is a modern approach that enables connection with a wide variety of devices remotely.Due to the resource constraints and open nature of IoT nodes,the routing protocol for low power and lossy...The Internet of Things(IoT)is a modern approach that enables connection with a wide variety of devices remotely.Due to the resource constraints and open nature of IoT nodes,the routing protocol for low power and lossy(RPL)networks may be vulnerable to several routing attacks.That’s why a network intrusion detection system(NIDS)is needed to guard against routing assaults on RPL-based IoT networks.The imbalance between the false and valid attacks in the training set degrades the performance of machine learning employed to detect network attacks.Therefore,we propose in this paper a novel approach to balance the dataset classes based on metaheuristic optimization applied to locality-sensitive hashing and synthetic minority oversampling technique(LSH-SMOTE).The proposed optimization approach is based on a new hybrid between the grey wolf and dipper throated optimization algorithms.To prove the effectiveness of the proposed approach,a set of experiments were conducted to evaluate the performance of NIDS for three cases,namely,detection without dataset balancing,detection with SMOTE balancing,and detection with the proposed optimized LSHSOMTE balancing.Experimental results showed that the proposed approach outperforms the other approaches and could boost the detection accuracy.In addition,a statistical analysis is performed to study the significance and stability of the proposed approach.The conducted experiments include seven different types of attack cases in the RPL-NIDS17 dataset.Based on the 2696 CMC,2023,vol.74,no.2 proposed approach,the achieved accuracy is(98.1%),sensitivity is(97.8%),and specificity is(98.8%).展开更多
This paper mainly studies Weather Stations part of the wind power station. The use of wind energy in practice is carried out using the facilities of the wind in which the kinetic energy of the windscreen flow is conve...This paper mainly studies Weather Stations part of the wind power station. The use of wind energy in practice is carried out using the facilities of the wind in which the kinetic energy of the windscreen flow is converted into mechanical energy wind speed, then electrical energy alternator. The effective operation of the wind turbine is dependent on the direction of the wind. Speed air density, which in turn depends on the temperature and humidity. Thus, the speed of the wind worked effectively in its composition must include the weather. Meteorological station also performs the role of prevention. When the sharp wind speed or increase wind speed above the maximum value, it sends a signal to the lock assembly wind to prevent wind turbine technology from damage. The work of the meteorological stations design as part of the Wind Energy Station is considered. The complex technical devices are used for its implementation. A set of technical means used to its implementation and designed system consists of a temperature, humidity, wind speed, wind direction and rain gauge sensors that are connected to PIC16f876A microcontroller.展开更多
Applications of internet-of-things(IoT)are increasingly being used in many facets of our daily life,which results in an enormous volume of data.Cloud computing and fog computing,two of the most common technologies use...Applications of internet-of-things(IoT)are increasingly being used in many facets of our daily life,which results in an enormous volume of data.Cloud computing and fog computing,two of the most common technologies used in IoT applications,have led to major security concerns.Cyberattacks are on the rise as a result of the usage of these technologies since present security measures are insufficient.Several artificial intelligence(AI)based security solutions,such as intrusion detection systems(IDS),have been proposed in recent years.Intelligent technologies that require data preprocessing and machine learning algorithm-performance augmentation require the use of feature selection(FS)techniques to increase classification accuracy by minimizing the number of features selected.On the other hand,metaheuristic optimization algorithms have been widely used in feature selection in recent decades.In this paper,we proposed a hybrid optimization algorithm for feature selection in IDS.The proposed algorithm is based on grey wolf(GW),and dipper throated optimization(DTO)algorithms and is referred to as GWDTO.The proposed algorithm has a better balance between the exploration and exploitation steps of the optimization process and thus could achieve better performance.On the employed IoT-IDS dataset,the performance of the proposed GWDTO algorithm was assessed using a set of evaluation metrics and compared to other optimization approaches in 2678 CMC,2023,vol.74,no.2 the literature to validate its superiority.In addition,a statistical analysis is performed to assess the stability and effectiveness of the proposed approach.Experimental results confirmed the superiority of the proposed approach in boosting the classification accuracy of the intrusion in IoT-based networks.展开更多
Arrhythmia has been classified using a variety of methods.Because of the dynamic nature of electrocardiogram(ECG)data,traditional handcrafted approaches are difficult to execute,making the machine learning(ML)solution...Arrhythmia has been classified using a variety of methods.Because of the dynamic nature of electrocardiogram(ECG)data,traditional handcrafted approaches are difficult to execute,making the machine learning(ML)solutions more appealing.Patients with cardiac arrhythmias can benefit from competent monitoring to save their lives.Cardiac arrhythmia classification and prediction have greatly improved in recent years.Arrhythmias are a category of conditions in which the heart's electrical activity is abnormally rapid or sluggish.Every year,it is one of the main reasons of mortality for both men and women,worldwide.For the classification of arrhythmias,this work proposes a novel technique based on optimized feature selection and optimized K-nearest neighbors(KNN)classifier.The proposed method makes advantage of the UCI repository,which has a 279-attribute high-dimensional cardiac arrhythmia dataset.The proposed approach is based on dividing cardiac arrhythmia patients into 16 groups based on the electrocardiography dataset’s features.The purpose is to design an efficient intelligent system employing the dipper throated optimization method to categorize cardiac arrhythmia patients.This method of comprehensive arrhythmia classification outperforms earlier methods presented in the literature.The achieved classification accuracy using the proposed approach is 99.8%.展开更多
In this paper, we proposed an algorithm to estimate the reliability of a hybrid computer communication network. A hybrid computer network is a network that consists of wire and wireless sub networks. The proposed algo...In this paper, we proposed an algorithm to estimate the reliability of a hybrid computer communication network. A hybrid computer network is a network that consists of wire and wireless sub networks. The proposed algorithm is built upon using a simulation model due to the complexity of the network topology. We tested the proposed algorithm, and the results show consistency in the reliability estimates.展开更多
Multilevel inverters are used in many industrial applications because of good power quality, minimum losses and less harmonics contents. Multilevel inverters require no series connected synchronized switching devices,...Multilevel inverters are used in many industrial applications because of good power quality, minimum losses and less harmonics contents. Multilevel inverters require no series connected synchronized switching devices, transformer and complex filters. In this paper 10, 18, 24 diode clamped multi-level inverters (DCMLI) are implemented using trust region dog leg optimization method to find the optimized values of switching angles (θ). It decreases the total harmonic distortion (THD) of the output voltages and to reduce the complexity of external filter required. The multi-level inverters are implemented in MATLAB Simulation and results are compared in terms of harmonics, system complexity and efficiency.展开更多
This work aims to study the effect of unwanted peaks and enhance the performance of wireless systems on the basis of tackling such peaks. A new proposition has been made based on wavelet transform method and its entro...This work aims to study the effect of unwanted peaks and enhance the performance of wireless systems on the basis of tackling such peaks. A new proposition has been made based on wavelet transform method and its entropy. Signals with large peak-to-average power ratio (PAPR) will be examined such as the ones that are considered as the major Orthogonal Frequency Division Multiplexing (OFDM) systems drawbacks. Furthermore, aspatial diversity Multiple-Input Multiple- Out-put (MIMO) technology is used to overcome the complexity addition that could arise in our proposition. To draw the best performance of this work, a MATLAB simulation has been used;it is divided into three main stages, namely, MIMO-OFDM symbols’ reconstruction based on wavelet transform, a predetermined thresholding formula, and finally, moving filter. This algorithm is called Peaks’ detection based Entropy Wavelet Transform;PD-EWT. Based on the simulation, and under some constrains such as the bandwidth occupancy and the complexity structure of the transceivers, a peak detection ratio has been achieved and reaches around 0.85. Comparing with our previously published works, the PD-EWT enhances detection ratio for 0.25 more peaks.展开更多
In this study we present the design and realization of a tunable dual band wireless power transfer(TDB-WPT)coupled resonator system.The frequency response of the tunable band can be controlled using a surface-mounted ...In this study we present the design and realization of a tunable dual band wireless power transfer(TDB-WPT)coupled resonator system.The frequency response of the tunable band can be controlled using a surface-mounted varactor.The transmitter(Tx)and the receiver(Rx)circuits are symmetric.The top layer contains a feed line with an impedance of 50Ω.Two identical half rings defected ground structures(HR-DGSs)are loaded on the bottom using a varactor diode.We propose a solution for restricted WPT systems working at a single band application according to the operating frequency.The effects of geometry,orientation,relative distance,and misalignments on the coupling coefficients were studied.To validate the simulation results,the proposed TDB-WPT system was fabricated and tested.The system occupied a space of 40 mm×40 mm.It can deliver power to the receiver with an average coupling efficiency of 98%at the tuned band from 817 to 1018 MHz and an efficiency of 95%at a fixed band of 1.6 GHz at a significant transmission distance of 22 mm.The results of the measurements accorded well with those of an equivalent model and the simulation.展开更多
To reduce the negative effects that conventional modes of transportation have on the environment,researchers are working to increase the use of electric vehicles.The demand for environmentally friendly transportation ...To reduce the negative effects that conventional modes of transportation have on the environment,researchers are working to increase the use of electric vehicles.The demand for environmentally friendly transportation may be hampered by obstacles such as a restricted range and extended rates of recharge.The establishment of urban charging infrastructure that includes both fast and ultra-fast terminals is essential to address this issue.Nevertheless,the powering of these terminals presents challenges because of the high energy requirements,whichmay influence the quality of service.Modelling the maximum hourly capacity of each station based on its geographic location is necessary to arrive at an accurate estimation of the resources required for charging infrastructure.It is vital to do an analysis of specific regional traffic patterns,such as road networks,route details,junction density,and economic zones,rather than making arbitrary conclusions about traffic patterns.When vehicle traffic is simulated using this data and other variables,it is possible to detect limits in the design of the current traffic engineering system.Initially,the binary graylag goose optimization(bGGO)algorithm is utilized for the purpose of feature selection.Subsequently,the graylag goose optimization(GGO)algorithm is utilized as a voting classifier as a decision algorithm to allocate demand to charging stations while taking into consideration the cost variable of traffic congestion.Based on the results of the analysis of variance(ANOVA),a comprehensive summary of the components that contribute to the observed variability in the dataset is provided.The results of the Wilcoxon Signed Rank Test compare the actual median accuracy values of several different algorithms,such as the voting GGO algorithm,the voting grey wolf optimization algorithm(GWO),the voting whale optimization algorithm(WOA),the voting particle swarm optimization(PSO),the voting firefly algorithm(FA),and the voting genetic algorithm(GA),to the theoretical median that would be expected that there is no difference.展开更多
Digital signal processing of electroencephalography(EEG)data is now widely utilized in various applications,including motor imagery classification,seizure detection and prediction,emotion classification,mental task cl...Digital signal processing of electroencephalography(EEG)data is now widely utilized in various applications,including motor imagery classification,seizure detection and prediction,emotion classification,mental task classification,drug impact identification and sleep state classification.With the increasing number of recorded EEG channels,it has become clear that effective channel selection algorithms are required for various applications.Guided Whale Optimization Method(Guided WOA),a suggested feature selection algorithm based on Stochastic Fractal Search(SFS)technique,evaluates the chosen subset of channels.This may be used to select the optimum EEG channels for use in Brain-Computer Interfaces(BCIs),the method for identifying essential and irrelevant characteristics in a dataset,and the complexity to be eliminated.This enables(SFS-Guided WOA)algorithm to choose the most appropriate EEG channels while assisting machine learning classification in its tasks and training the classifier with the dataset.The(SFSGuided WOA)algorithm is superior in performance metrics,and statistical tests such as ANOVA and Wilcoxon rank-sum are used to demonstrate this.展开更多
文摘The digital processing signal is one of the subdivisions of the analog digital converter interface;data transfer rate in modern telecommunications is a critical parameter. The greatest feature of parallel conversion rate (4-bit parallel Flash 5/s converter) is designed and modeled in 0.18 micron CMOS technology. Low speed swing operation as analog and digital circuits leads to high speed of low power operation power with 70 mVt 1.8 V A/D converter from the power dissipated during operation in the 5 GHz range. Average offset is used to minimize the effect of the bias of a comparator. This paper contains the 8-bit encoder of the metrical term code to direct binary code decreasing power consumption, which is shown by results and comparison with other designs using computer simulation. The results of the flash ADC time-interleaved are a more significant improvement in terms of power and areas than those previously reported.
文摘Electrocardiogram(ECG)signal is a measure of the heart’s electrical activity.Recently,ECG detection and classification have benefited from the use of computer-aided systems by cardiologists.The goal of this paper is to improve the accuracy of ECG classification by combining the Dipper Throated Optimization(DTO)and Differential Evolution Algorithm(DEA)into a unified algorithm to optimize the hyperparameters of neural network(NN)for boosting the ECG classification accuracy.In addition,we proposed a new feature selection method for selecting the significant feature that can improve the overall performance.To prove the superiority of the proposed approach,several experimentswere conducted to compare the results achieved by the proposed approach and other competing approaches.Moreover,statistical analysis is performed to study the significance and stability of the proposed approach using Wilcoxon and ANOVA tests.Experimental results confirmed the superiority and effectiveness of the proposed approach.The classification accuracy achieved by the proposed approach is(99.98%).
文摘Selecting the most relevant subset of features from a dataset is a vital step in data mining and machine learning.Each feature in a dataset has 2n possible subsets,making it challenging to select the optimum collection of features using typical methods.As a result,a new metaheuristicsbased feature selection method based on the dipper-throated and grey-wolf optimization(DTO-GW)algorithms has been developed in this research.Instability can result when the selection of features is subject to metaheuristics,which can lead to a wide range of results.Thus,we adopted hybrid optimization in our method of optimizing,which allowed us to better balance exploration and harvesting chores more equitably.We propose utilizing the binary DTO-GW search approach we previously devised for selecting the optimal subset of attributes.In the proposed method,the number of features selected is minimized,while classification accuracy is increased.To test the proposed method’s performance against eleven other state-of-theart approaches,eight datasets from the UCI repository were used,such as binary grey wolf search(bGWO),binary hybrid grey wolf,and particle swarm optimization(bGWO-PSO),bPSO,binary stochastic fractal search(bSFS),binary whale optimization algorithm(bWOA),binary modified grey wolf optimization(bMGWO),binary multiverse optimization(bMVO),binary bowerbird optimization(bSBO),binary hysteresis optimization(bHy),and binary hysteresis optimization(bHWO).The suggested method is superior 4532 CMC,2023,vol.74,no.2 and successful in handling the problem of feature selection,according to the results of the experiments.
基金Princess Nourah bint Abdulrahman University Researchers Supporting Project Number (PNURSP2022R323)Princess Nourah bint Abdulrahman University,Riyadh,Saudi Arabia.
文摘Traffic prediction of wireless networks attracted many researchersand practitioners during the past decades. However, wireless traffic frequentlyexhibits strong nonlinearities and complicated patterns, which makes it challengingto be predicted accurately. Many of the existing approaches forpredicting wireless network traffic are unable to produce accurate predictionsbecause they lack the ability to describe the dynamic spatial-temporalcorrelations of wireless network traffic data. In this paper, we proposed anovel meta-heuristic optimization approach based on fitness grey wolf anddipper throated optimization algorithms for boosting the prediction accuracyof traffic volume. The proposed algorithm is employed to optimize the hyperparametersof long short-term memory (LSTM) network as an efficient timeseries modeling approach which is widely used in sequence prediction tasks.To prove the superiority of the proposed algorithm, four other optimizationalgorithms were employed to optimize LSTM, and the results were compared.The evaluation results confirmed the effectiveness of the proposed approachin predicting the traffic of wireless networks accurately. On the other hand,a statistical analysis is performed to emphasize the stability of the proposedapproach.
文摘Wind power is one of the sustainable ways to generate renewable energy.In recent years,some countries have set renewables to meet future energy needs,with the primary goal of reducing emissions and promoting sustainable growth,primarily the use of wind and solar power.To achieve the prediction of wind power generation,several deep and machine learning models are constructed in this article as base models.These regression models are Deep neural network(DNN),k-nearest neighbor(KNN)regressor,long short-term memory(LSTM),averaging model,random forest(RF)regressor,bagging regressor,and gradient boosting(GB)regressor.In addition,data cleaning and data preprocessing were performed to the data.The dataset used in this study includes 4 features and 50530 instances.To accurately predict the wind power values,we propose in this paper a new optimization technique based on stochastic fractal search and particle swarm optimization(SFSPSO)to optimize the parameters of LSTM network.Five evaluation criteria were utilized to estimate the efficiency of the regression models,namely,mean absolute error(MAE),Nash Sutcliffe Efficiency(NSE),mean square error(MSE),coefficient of determination(R2),root mean squared error(RMSE).The experimental results illustrated that the proposed optimization of LSTM using SFS-PSO model achieved the best results with R2 equals 99.99%in predicting the wind power values.
文摘Metamaterial Antenna is a special class of antennas that uses metamaterial to enhance their performance.Antenna size affects the quality factor and the radiation loss of the antenna.Metamaterial antennas can overcome the limitation of bandwidth for small antennas.Machine learning(ML)model is recently applied to predict antenna parameters.ML can be used as an alternative approach to the trial-and-error process of finding proper parameters of the simulated antenna.The accuracy of the prediction depends mainly on the selected model.Ensemble models combine two or more base models to produce a better-enhanced model.In this paper,a weighted average ensemble model is proposed to predict the bandwidth of the Metamaterial Antenna.Two base models are used namely:Multilayer Perceptron(MLP)and Support Vector Machines(SVM).To calculate the weights for each model,an optimization algorithm is used to find the optimal weights of the ensemble.Dynamic Group-Based Cooperative Optimizer(DGCO)is employed to search for optimal weight for the base models.The proposed model is compared with three based models and the average ensemble model.The results show that the proposed model is better than other models and can predict antenna bandwidth efficiently.
文摘The design of an antenna requires a careful selection of its parameters to retain the desired performance.However,this task is time-consuming when the traditional approaches are employed,which represents a significant challenge.On the other hand,machine learning presents an effective solution to this challenge through a set of regression models that can robustly assist antenna designers to find out the best set of design parameters to achieve the intended performance.In this paper,we propose a novel approach for accurately predicting the bandwidth of metamaterial antenna.The proposed approach is based on employing the recently emerged guided whale optimization algorithm using adaptive particle swarm optimization to optimize the parameters of the long-short-term memory(LSTM)deep network.This optimized network is used to retrieve the metamaterial bandwidth given a set of features.In addition,the superiority of the proposed approach is examined in terms of a comparison with the traditional multilayer perceptron(ML),Knearest neighbors(K-NN),and the basic LSTM in terms of several evaluation criteria such as root mean square error(RMSE),mean absolute error(MAE),and mean bias error(MBE).Experimental results show that the proposed approach could achieve RMSE of(0.003018),MAE of(0.001871),and MBE of(0.000205).These values are better than those of the other competing models.
文摘Skin segmentation participates significantly in various biomedical applications,such as skin cancer identification and skin lesion detection.This paper presents a novel framework for segmenting the skin.The framework contains two main stages:The first stage is for removing different types of noises from the dermoscopic images,such as hair,speckle,and impulse noise,and the second stage is for segmentation of the dermoscopic images using an attention residual U-shaped Network(U-Net).The framework uses variational Autoencoders(VAEs)for removing the hair noises,the Generative Adversarial Denoising Network(DGAN-Net),the Denoising U-shaped U-Net(D-U-NET),and Batch Renormalization U-Net(Br-U-NET)for remov-ing the speckle noise,and the Laplacian Vector Median Filter(MLVMF)for removing the impulse noise.In the second main stage,the residual attention u-net was used for segmentation.The framework achieves(35.11,31.26,27.01,and 26.16),(36.34,33.23,31.32,and 28.65),and(36.33,32.21,28.54,and 27.11)for removing hair,speckle,and impulse noise,respectively,based on Peak Signal Noise Ratio(PSNR)at the level of(0.1,0.25,0.5,and 0.75)of noise.The framework also achieves an accuracy of nearly 94.26 in the dice score in the process of segmentation before removing noise and 95.22 after removing different types of noise.The experiments have shown the efficiency of the used model in removing noise according to the structural similarity index measure(SSIM)and PSNR and in the segmentation process as well.
基金funded by the Deanship of Scientific Research,Princess Nourah bint Abdulrahman University,through the Program of Research Project Funding After Publication,Grant No (43-PRFA-P-52).
文摘The accurate prediction of energy consumption has effective role in decision making and risk management for individuals and governments.Meanwhile,the accurate prediction can be realized using the recent advances in machine learning and predictive models.This research proposes a novel approach for energy consumption forecasting based on a new optimization algorithm and a new forecasting model consisting of a set of long short-term memory(LSTM)units.The proposed optimization algorithm is used to optimize the parameters of the LSTM-based model to boost its forecasting accuracy.This optimization algorithm is based on the recently emerged dipper-throated optimization(DTO)and stochastic fractal search(SFS)algo-rithm and is referred to as dynamic DTOSFS.To prove the effectiveness and superiority of the proposed approach,five standard benchmark algorithms,namely,stochastic fractal search(SFS),dipper throated optimization(DTO),whale optimization algorithm(WOA),particle swarm optimization(PSO),and grey wolf optimization(GWO),are used to optimize the parameters of the LSTM-based model,and the results are compared with that of the proposed approach.Experimental results show that the proposed DDTOSFS+LSTM can accurately forecast the energy consumption with root mean square error RMSE of 0.00013,which is the best among the recorded results of the other methods.In addition,statistical experiments are conducted to prove the statistical difference of the proposed model.The results of these tests confirmed the expected outcomes.
文摘Managing physical objects in the network’s periphery is made possible by the Internet of Things(IoT),revolutionizing human life.Open attacks and unauthorized access are possible with these IoT devices,which exchange data to enable remote access.These attacks are often detected using intrusion detection methodologies,although these systems’effectiveness and accuracy are subpar.This paper proposes a new voting classifier composed of an ensemble of machine learning models trained and optimized using metaheuristic optimization.The employed metaheuristic optimizer is a new version of the whale optimization algorithm(WOA),which is guided by the dipper throated optimizer(DTO)to improve the exploration process of the traditionalWOA optimizer.The proposed voting classifier categorizes the network intrusions robustly and efficiently.To assess the proposed approach,a dataset created from IoT devices is employed to record the efficiency of the proposed algorithm for binary attack categorization.The dataset records are balanced using the locality-sensitive hashing(LSH)and Synthetic Minority Oversampling Technique(SMOTE).The evaluation of the achieved results is performed in terms of statistical analysis and visual plots to prove the proposed approach’s effectiveness,stability,and significance.The achieved results confirmed the superiority of the proposed algorithm for the task of network intrusion detection.
文摘The Internet of Things(IoT)is a modern approach that enables connection with a wide variety of devices remotely.Due to the resource constraints and open nature of IoT nodes,the routing protocol for low power and lossy(RPL)networks may be vulnerable to several routing attacks.That’s why a network intrusion detection system(NIDS)is needed to guard against routing assaults on RPL-based IoT networks.The imbalance between the false and valid attacks in the training set degrades the performance of machine learning employed to detect network attacks.Therefore,we propose in this paper a novel approach to balance the dataset classes based on metaheuristic optimization applied to locality-sensitive hashing and synthetic minority oversampling technique(LSH-SMOTE).The proposed optimization approach is based on a new hybrid between the grey wolf and dipper throated optimization algorithms.To prove the effectiveness of the proposed approach,a set of experiments were conducted to evaluate the performance of NIDS for three cases,namely,detection without dataset balancing,detection with SMOTE balancing,and detection with the proposed optimized LSHSOMTE balancing.Experimental results showed that the proposed approach outperforms the other approaches and could boost the detection accuracy.In addition,a statistical analysis is performed to study the significance and stability of the proposed approach.The conducted experiments include seven different types of attack cases in the RPL-NIDS17 dataset.Based on the 2696 CMC,2023,vol.74,no.2 proposed approach,the achieved accuracy is(98.1%),sensitivity is(97.8%),and specificity is(98.8%).
文摘This paper mainly studies Weather Stations part of the wind power station. The use of wind energy in practice is carried out using the facilities of the wind in which the kinetic energy of the windscreen flow is converted into mechanical energy wind speed, then electrical energy alternator. The effective operation of the wind turbine is dependent on the direction of the wind. Speed air density, which in turn depends on the temperature and humidity. Thus, the speed of the wind worked effectively in its composition must include the weather. Meteorological station also performs the role of prevention. When the sharp wind speed or increase wind speed above the maximum value, it sends a signal to the lock assembly wind to prevent wind turbine technology from damage. The work of the meteorological stations design as part of the Wind Energy Station is considered. The complex technical devices are used for its implementation. A set of technical means used to its implementation and designed system consists of a temperature, humidity, wind speed, wind direction and rain gauge sensors that are connected to PIC16f876A microcontroller.
文摘Applications of internet-of-things(IoT)are increasingly being used in many facets of our daily life,which results in an enormous volume of data.Cloud computing and fog computing,two of the most common technologies used in IoT applications,have led to major security concerns.Cyberattacks are on the rise as a result of the usage of these technologies since present security measures are insufficient.Several artificial intelligence(AI)based security solutions,such as intrusion detection systems(IDS),have been proposed in recent years.Intelligent technologies that require data preprocessing and machine learning algorithm-performance augmentation require the use of feature selection(FS)techniques to increase classification accuracy by minimizing the number of features selected.On the other hand,metaheuristic optimization algorithms have been widely used in feature selection in recent decades.In this paper,we proposed a hybrid optimization algorithm for feature selection in IDS.The proposed algorithm is based on grey wolf(GW),and dipper throated optimization(DTO)algorithms and is referred to as GWDTO.The proposed algorithm has a better balance between the exploration and exploitation steps of the optimization process and thus could achieve better performance.On the employed IoT-IDS dataset,the performance of the proposed GWDTO algorithm was assessed using a set of evaluation metrics and compared to other optimization approaches in 2678 CMC,2023,vol.74,no.2 the literature to validate its superiority.In addition,a statistical analysis is performed to assess the stability and effectiveness of the proposed approach.Experimental results confirmed the superiority of the proposed approach in boosting the classification accuracy of the intrusion in IoT-based networks.
文摘Arrhythmia has been classified using a variety of methods.Because of the dynamic nature of electrocardiogram(ECG)data,traditional handcrafted approaches are difficult to execute,making the machine learning(ML)solutions more appealing.Patients with cardiac arrhythmias can benefit from competent monitoring to save their lives.Cardiac arrhythmia classification and prediction have greatly improved in recent years.Arrhythmias are a category of conditions in which the heart's electrical activity is abnormally rapid or sluggish.Every year,it is one of the main reasons of mortality for both men and women,worldwide.For the classification of arrhythmias,this work proposes a novel technique based on optimized feature selection and optimized K-nearest neighbors(KNN)classifier.The proposed method makes advantage of the UCI repository,which has a 279-attribute high-dimensional cardiac arrhythmia dataset.The proposed approach is based on dividing cardiac arrhythmia patients into 16 groups based on the electrocardiography dataset’s features.The purpose is to design an efficient intelligent system employing the dipper throated optimization method to categorize cardiac arrhythmia patients.This method of comprehensive arrhythmia classification outperforms earlier methods presented in the literature.The achieved classification accuracy using the proposed approach is 99.8%.
文摘In this paper, we proposed an algorithm to estimate the reliability of a hybrid computer communication network. A hybrid computer network is a network that consists of wire and wireless sub networks. The proposed algorithm is built upon using a simulation model due to the complexity of the network topology. We tested the proposed algorithm, and the results show consistency in the reliability estimates.
文摘Multilevel inverters are used in many industrial applications because of good power quality, minimum losses and less harmonics contents. Multilevel inverters require no series connected synchronized switching devices, transformer and complex filters. In this paper 10, 18, 24 diode clamped multi-level inverters (DCMLI) are implemented using trust region dog leg optimization method to find the optimized values of switching angles (θ). It decreases the total harmonic distortion (THD) of the output voltages and to reduce the complexity of external filter required. The multi-level inverters are implemented in MATLAB Simulation and results are compared in terms of harmonics, system complexity and efficiency.
文摘This work aims to study the effect of unwanted peaks and enhance the performance of wireless systems on the basis of tackling such peaks. A new proposition has been made based on wavelet transform method and its entropy. Signals with large peak-to-average power ratio (PAPR) will be examined such as the ones that are considered as the major Orthogonal Frequency Division Multiplexing (OFDM) systems drawbacks. Furthermore, aspatial diversity Multiple-Input Multiple- Out-put (MIMO) technology is used to overcome the complexity addition that could arise in our proposition. To draw the best performance of this work, a MATLAB simulation has been used;it is divided into three main stages, namely, MIMO-OFDM symbols’ reconstruction based on wavelet transform, a predetermined thresholding formula, and finally, moving filter. This algorithm is called Peaks’ detection based Entropy Wavelet Transform;PD-EWT. Based on the simulation, and under some constrains such as the bandwidth occupancy and the complexity structure of the transceivers, a peak detection ratio has been achieved and reaches around 0.85. Comparing with our previously published works, the PD-EWT enhances detection ratio for 0.25 more peaks.
文摘In this study we present the design and realization of a tunable dual band wireless power transfer(TDB-WPT)coupled resonator system.The frequency response of the tunable band can be controlled using a surface-mounted varactor.The transmitter(Tx)and the receiver(Rx)circuits are symmetric.The top layer contains a feed line with an impedance of 50Ω.Two identical half rings defected ground structures(HR-DGSs)are loaded on the bottom using a varactor diode.We propose a solution for restricted WPT systems working at a single band application according to the operating frequency.The effects of geometry,orientation,relative distance,and misalignments on the coupling coefficients were studied.To validate the simulation results,the proposed TDB-WPT system was fabricated and tested.The system occupied a space of 40 mm×40 mm.It can deliver power to the receiver with an average coupling efficiency of 98%at the tuned band from 817 to 1018 MHz and an efficiency of 95%at a fixed band of 1.6 GHz at a significant transmission distance of 22 mm.The results of the measurements accorded well with those of an equivalent model and the simulation.
基金funded by the Deanship of Scientific Research,Princess Nourah bint Abdulrahman University,through the Program of Research Project Funding After Publication,Grant No.(44-PRFA-P-48).
文摘To reduce the negative effects that conventional modes of transportation have on the environment,researchers are working to increase the use of electric vehicles.The demand for environmentally friendly transportation may be hampered by obstacles such as a restricted range and extended rates of recharge.The establishment of urban charging infrastructure that includes both fast and ultra-fast terminals is essential to address this issue.Nevertheless,the powering of these terminals presents challenges because of the high energy requirements,whichmay influence the quality of service.Modelling the maximum hourly capacity of each station based on its geographic location is necessary to arrive at an accurate estimation of the resources required for charging infrastructure.It is vital to do an analysis of specific regional traffic patterns,such as road networks,route details,junction density,and economic zones,rather than making arbitrary conclusions about traffic patterns.When vehicle traffic is simulated using this data and other variables,it is possible to detect limits in the design of the current traffic engineering system.Initially,the binary graylag goose optimization(bGGO)algorithm is utilized for the purpose of feature selection.Subsequently,the graylag goose optimization(GGO)algorithm is utilized as a voting classifier as a decision algorithm to allocate demand to charging stations while taking into consideration the cost variable of traffic congestion.Based on the results of the analysis of variance(ANOVA),a comprehensive summary of the components that contribute to the observed variability in the dataset is provided.The results of the Wilcoxon Signed Rank Test compare the actual median accuracy values of several different algorithms,such as the voting GGO algorithm,the voting grey wolf optimization algorithm(GWO),the voting whale optimization algorithm(WOA),the voting particle swarm optimization(PSO),the voting firefly algorithm(FA),and the voting genetic algorithm(GA),to the theoretical median that would be expected that there is no difference.
基金Funding for this study is received from Taif University Researchers Supporting Project No.(Project No.TURSP-2020/150)Taif University,Taif,Saudi Arabia。
文摘Digital signal processing of electroencephalography(EEG)data is now widely utilized in various applications,including motor imagery classification,seizure detection and prediction,emotion classification,mental task classification,drug impact identification and sleep state classification.With the increasing number of recorded EEG channels,it has become clear that effective channel selection algorithms are required for various applications.Guided Whale Optimization Method(Guided WOA),a suggested feature selection algorithm based on Stochastic Fractal Search(SFS)technique,evaluates the chosen subset of channels.This may be used to select the optimum EEG channels for use in Brain-Computer Interfaces(BCIs),the method for identifying essential and irrelevant characteristics in a dataset,and the complexity to be eliminated.This enables(SFS-Guided WOA)algorithm to choose the most appropriate EEG channels while assisting machine learning classification in its tasks and training the classifier with the dataset.The(SFSGuided WOA)algorithm is superior in performance metrics,and statistical tests such as ANOVA and Wilcoxon rank-sum are used to demonstrate this.