期刊文献+
共找到10篇文章
< 1 >
每页显示 20 50 100
Comparison of point detection and area detection for point-scanning structured illumination microscopy
1
作者 Wenshuai Wu Jiajie Chen +6 位作者 Meiting Wang Lei Wang Xiaomin Zheng Jia Li Junle Qu Bruce Zhi Gao Yonghong Shao 《Journal of Innovative Optical Health Sciences》 SCIE EI CSCD 2023年第4期134-149,共16页
Structured illumination microscopy(SIM)is suitable for biological samples because of its relatively low-peak illumination intensity requirement and high imaging speed.The system resolution is affected by two typical d... Structured illumination microscopy(SIM)is suitable for biological samples because of its relatively low-peak illumination intensity requirement and high imaging speed.The system resolution is affected by two typical detection modes:Point detection and area detection.However,a systematic analysis of the imaging performance of the different detection modes of the system has rarely been conducted.In this study,we compared laser point scanning point detection(PS-PD)and point scanning area detection(PS-AD)imaging in nonconfocal microscopy through theoretical analysis and simulated imaging.The results revealed that the imaging resolutions of PSPD and PS-AD depend on excitation and emission point spread functions(PSFs),respectively.Especially,we combined the second harmonic generation(SHG)of point detection(P-SHG)and area detection(A-SHG)with SIM to realize a nonlinear SIM-imaging technique that improves the imaging resolution.Moreover,we analytically and experimentally compared the nonlinear SIM performance of P-SHG with that of A-SHG. 展开更多
关键词 SUPER-RESOLUTION structured illumination microscopy second harmonic generation
在线阅读 下载PDF
Improvement in Resolution of Multiphoton Scanning Structured Illumination Microscopy via Harmonics 被引量:2
2
作者 Lei Wang Xiaomin Zheng +10 位作者 Jie Zhou Meiting Wang Jiajie Chen Youjun Zeng Gaixia Xu Ying Wang Haixia Qiu Yonghong Shao Junle Qu Bruce Zhi Gao Ying Gu 《Engineering》 SCIE EI CAS 2022年第9期65-72,共8页
We describe a multiphoton(mP)-structured illumination microscopy(SIM)technique,which demonstrates substantial improvement in image resolution compared with linear SIM due to the nonlinear response of fluorescence.This... We describe a multiphoton(mP)-structured illumination microscopy(SIM)technique,which demonstrates substantial improvement in image resolution compared with linear SIM due to the nonlinear response of fluorescence.This nonlinear response is caused by the effect of nonsinusoidal structured illumination created by scanning a sinusoidally modulated illumination to excite an mP fluorescence signal.The harmonics of the structured fluorescence illumination are utilised to improve resolution.We present an mP-SIM theory for reconstructing the super-resolution image of the system.Theoretically,the resolution of our m P-SIM is unlimited if all the high-order harmonics of the nonlinear response of fluorescence are considered.Experimentally,we demonstrate an 86 nm lateral resolution for two-photon(2P)-SIM and a 72 nm lateral resolution for second-harmonic-generation(SHG)-SIM.We further demonstrate their application by imaging cells stained with F-actin and collagen fibres in mouse-tail tendon.Our method can be directly used in commercial mP microscopes and requires no specific fluorophores or high-intensity laser. 展开更多
关键词 Super-resolution microscopy Structured illumination microscopy Multiphoton-structured illumination microscopy(SIM) SIM Second-harmonic-generation(SHG)-SIM
在线阅读 下载PDF
Nonlinear scanning structured illumination microscopy based on nonsinusoidal modulation 被引量:5
3
作者 Meiting Wang Lei Wang +6 位作者 Xiaomin Zheng Jie Zhou Jiajie Chen Youjun Zeng Junle Qu Yonghong Shao Bruce Zhi Gao 《Journal of Innovative Optical Health Sciences》 SCIE EI CAS 2021年第5期25-32,共8页
Structured illumination microscopy(SIM)is an essential super-resolution microscopy technique that enhances resolution.Several images are required to reconstruct a super-resolution image.However,linear SIM resolution e... Structured illumination microscopy(SIM)is an essential super-resolution microscopy technique that enhances resolution.Several images are required to reconstruct a super-resolution image.However,linear SIM resolution enhancement can only increase the spatial resolution of micros-copy by a factor of two at most because the frequency of the structured illumination pattern is limited by the cutoff frequency of the excitation point spread function.The frequency of the pattern generated by the nonlinear response in samples is not limited;therefore,nonlinear SIM(NL-SIM),in theory,has no inherent limit to the resolution.In the present study,we describe a two-photon nonlinear SIM(2P-SIM)technique using a multiple harmonics scanning pattern that employs a composite structured illumination pattern,which can produce a higher order harmonic pattern based on the fluorescence nonlinear response in a 2P process.The theoretical models of super-resolution imaging were established through our simulation,which describes the working mechanism of the multi-frequency structure of the nonsinusoidal function to improve the reso-lution.The simulation results predict that a 5-fold improvement in resolution in the 2P-SIM is possible. 展开更多
关键词 Super-resolution image structured illumination microscopy nonsinusoidal function
在线阅读 下载PDF
RECENT PROGRESS IN MULTIFOCAL MULTIPHOTON MICROSCOPY 被引量:1
4
作者 JUNLE QU LIXIN LIU +2 位作者 YONGHONG SHAO HANBEN NIU BRUCE Z.GAO 《Journal of Innovative Optical Health Sciences》 SCIE EI CAS 2012年第3期41-48,共8页
Multifocal multiphoton microscopy(MMM)has recently become an important tool in biomedicine for performing three-dimensional fastfluorescence imaging.Using various beamsplitting techniques,MMM splits the near-infrared ... Multifocal multiphoton microscopy(MMM)has recently become an important tool in biomedicine for performing three-dimensional fastfluorescence imaging.Using various beamsplitting techniques,MMM splits the near-infrared laser beam into multiple beamlets and produces a multifocal array on the sample for parallel multiphoton excitation and then recordsfluorescence signal from all foci simultaneously with an area array detector,which significantly improves the imaging speed of multiphoton microscopy and allows for high efficiency in use of the excitation light.In this paper,we discuss the features of several MMM setups using different beamsplitting devices,including a Nipkow spinning disk,a microlens array,a set of beamsplitting mirrors,or a diffractive optical element(DOE).In particular,we present our recent work on the development of an MMM using a spatial light modulator(SLM). 展开更多
关键词 Multifocal multiphoton microscopy(MMM) microlens array beamsplitter diffractive optical element(DOE) spatial light modulator(SLM)
在线阅读 下载PDF
Scanless multitarget-matching multiphoton excitation fluorescence microscopy
5
作者 Junpeng Qiu Lei Wang +2 位作者 Bruce Zhi Gao Junle Qu Yonghong Shao 《Journal of Innovative Optical Health Sciences》 SCIE EI CAS 2018年第2期1-7,共7页
Using the combination of a refective blazed grating and a reflective phase-only difractive spatiallight modulator(SLM),scanless multitarget-matching multiphoton excitation fuorescence mi.croscopy(SMTM-MP M)was achieve... Using the combination of a refective blazed grating and a reflective phase-only difractive spatiallight modulator(SLM),scanless multitarget-matching multiphoton excitation fuorescence mi.croscopy(SMTM-MP M)was achieved.The SLM shaped an incoming mode-locked,near-infraredTi:sapphire laser beam into an excitation pattern with addressable shapes and sizes that matchedthe samples of interest in the field of view.Temporal and spatial focusing were simultaneouslyrealized by combining an objective lens and a blazed grating.The fluorescence signal fromilluminated areas was recorded by a two-dimensional sCMOS camera.Compared with a conventional temporal focusing multiphoton microscope,our microscope achieved effective use of thelaser power and decreased photodamage with higher axial resolution. 展开更多
关键词 Multitarget-matching multiphoton microscopy SLM temporal focusing
在线阅读 下载PDF
Laser patterning for the study of MSC cardiogenic differentiation at the single-cell level 被引量:2
6
作者 Zhen Ma Qiuying Liu +7 位作者 Huaxiao Yang Raymond B Runyan Carol A Eisenberg Meifeng Xu Thomas K Borg Roger Markwald Yifei Wang Bruce Z Gao 《Light(Science & Applications)》 SCIE EI CAS 2013年第1期154-162,共9页
Mesenchymal stem cells(MSCs)have been cited as contributors to heart repair through cardiogenic differentiation and multiple cellular interactions,including the paracrine effect,cell fusion,and mechanical and electric... Mesenchymal stem cells(MSCs)have been cited as contributors to heart repair through cardiogenic differentiation and multiple cellular interactions,including the paracrine effect,cell fusion,and mechanical and electrical couplings.Due to heart–muscle complexity,progress in the development of knowledge concerning the role of MSCs in cardiac repair is heavily based on MSC–cardiomyocyte coculture.In conventional coculture systems,however,the in vivo cardiac muscle structure,in which rod-shaped cells are connected end-to-end,is not sustained;instead,irregularly shaped cells spread randomly,resulting in randomly distributed cell junctions.Consequently,contact-mediated cell–cell interactions(e.g.,the electrical triggering signal and the mechanical contraction wave that propagate through MSC–cardiomyocyte junctions)occur randomly.Thus,the data generated on the beneficial effects of MSCs may be irrelevant to in vivo biological processes.In this study,we explored whether cardiomyocyte alignment,the most important phenotype,is relevant to stem cell cardiogenic differentiation.Here,we report(i)the construction of a laser-patterned,biochip-based,stem cell–cardiomyocyte coculture model with controlled cell alignment;and(ii)single-cell-level data on stem cell cardiogenic differentiation under in vivo-like cardiomyocyte alignment conditions. 展开更多
关键词 cardiogenic differentiation mesenchymal stem cells MICROENVIRONMENT optical force single-cell analysis
原文传递
CRISPR-powered optothermal nanotweezers:Diverse bio-nanoparticle manipulation and single nucleotide identification 被引量:2
7
作者 Jiajie Chen Zhi Chen +13 位作者 Changle Meng Jianxing Zhou Yuhang Peng Xiaoqi Dai Jingfeng Li Yili Zhong Xiaolin Chen Wu Yuan Ho-Pui Ho Bruce Zhi Gao Junle Qu Xueji Zhang Han Zhang Yonghong Shao 《Light(Science & Applications)》 SCIE EI CSCD 2023年第12期2644-2654,共11页
Optothermal nanotweezers have emerged as an innovative optical manipulation technique in the past decade,which revolutionized classical optical manipulation by efficiently capturing a broader range of nanoparticles.Ho... Optothermal nanotweezers have emerged as an innovative optical manipulation technique in the past decade,which revolutionized classical optical manipulation by efficiently capturing a broader range of nanoparticles.However,the optothermal temperature field was merely employed for in-situ manipulation of nanoparticles,its potential for identifying bio-nanoparticles remains largely untapped.Hence,based on the synergistic effect of optothermal manipulation and CRIPSR-based bio-detection,we developed CRISPR-powered optothermal nanotweezers(CRONT).Specifically,by harnessing diffusiophoresis and thermo-osmotic flows near the substrate upon optothermal excitation,we successfully trapped and enriched DNA functionalized gold nanoparticles,CRISPR-associated proteins,as well as DNA strands.Remarkably,we built an optothermal scheme for enhancing CRISPR-based single-nucleotide polymorphism(SNP)detection at single molecule level,while also introducing a novel CRISPR methodology for observing nucleotide cleavage.Therefore,this innovative approach has endowed optical tweezers with DNA identification ability in aqueous solution which was unattainable before.With its high specificity and feasibility for in-situ bio-nanoparticle manipulation and identification,CRONT will become a universal tool in point-of-care diagnosis,biophotonics,and bio-nanotechnology. 展开更多
关键词 MANIPULATION thermal IDENTIFICATION
原文传递
Advances in inorganic nanoparticles trapping stiffness measurement:A promising tool for energy and environmental study 被引量:1
8
作者 Xiaolin Chen Jiajie Chen +8 位作者 Jianxing Zhou Xiaoqi Dai Yuhang Peng Yili Zhong Ho-Pui Ho Bruce Zhi Gao Han Zhang Junle Qu Yonghong Shao 《Energy Reviews》 2023年第2期13-31,共19页
Optical tweezers system has emerged as an efficient tool to manipulate tiny particles in a non-invasive way.Trapping stiffness,as an essential parameter of an optical potential well,represents the trapping stability.A... Optical tweezers system has emerged as an efficient tool to manipulate tiny particles in a non-invasive way.Trapping stiffness,as an essential parameter of an optical potential well,represents the trapping stability.Additionally,trapping inorganic nanoparticles such as metallic nanoparticles or other functionalized inorganic nanoparticles is important due to their properties of good stability,high conductivity,tolerable toxicity,etc.,which makes it an ideal detection strategy for bio-sensing,force calculation,and determination of particle and environmental properties.However,the trapping stiffness measurement(TSM)methods of inorganic nanoparticles have rarely been analyzed and summarized.Here,in this review,the principle and methods of TSM are analyzed.We also systematically summarize the progress in acquiring inorganic particles trapping stiffness and its promising applications.In addition,we provide prospects of the energy and environment applications of optical tweezering technique and TSM.Finally,the challenges and future directions of achieving the nanoparticles trapping stiffness are discussed. 展开更多
关键词 Optical tweezers Optothermal tweezers Trapping stiffness measurement Inorganic nanoparticles Energy and environment applications
原文传递
Stimulated emission-depletion-based point-scanning structured illumination microscopy
9
作者 汪磊 王美婷 +8 位作者 王璐玮 郑晓敏 陈嘉杰 吴文帅 严伟 于斌 屈军乐 高志 邵永红 《Chinese Optics Letters》 SCIE EI CAS CSCD 2024年第3期95-100,共6页
Wide-field linear structured illumination microscopy(LSIM)extends resolution beyond the diffraction limit by moving unresolvable high-frequency information into the passband of the microscopy in the form of moiré... Wide-field linear structured illumination microscopy(LSIM)extends resolution beyond the diffraction limit by moving unresolvable high-frequency information into the passband of the microscopy in the form of moiréfringes.However,due to the diffraction limit,the spatial frequency of the structured illumination pattern cannot be larger than the microscopy cutoff frequency,which results in a twofold resolution improvement over wide-field microscopes.This Letter presents a novel approach in point-scanning LSIM,aimed at achieving higher-resolution improvement by combining stimulated emission depletion(STED)with point-scanning structured illumination microscopy(ps SIM)(STED-ps SIM).The according structured illumination pattern whose frequency exceeds the microscopy cutoff frequency is produced by scanning the focus of the sinusoidally modulated excitation beam of STED microscopy.The experimental results showed a 1.58-fold resolution improvement over conventional STED microscopy with the same depletion laser power. 展开更多
关键词 stimulated emission depletion structured illumination microscopy superresolution microscopy
原文传递
Low-temperature optothermal nanotweezers 被引量:2
10
作者 Jianxing Zhou Xiaoqi Dai +6 位作者 Yuhang Peng Yili Zhong Ho-Pui Ho Yonghong Shao Bruce Zhi Gao Junle Qu Jiajie Chen 《Nano Research》 SCIE EI CSCD 2023年第5期7710-7715,共6页
Optical tweezers that rely on laser irradiation to capture and manipulate nanoparticles have provided powerful tools for biological and biochemistry studies.However,the existence of optical diffraction-limit and the t... Optical tweezers that rely on laser irradiation to capture and manipulate nanoparticles have provided powerful tools for biological and biochemistry studies.However,the existence of optical diffraction-limit and the thermal damage caused by high laser power hinder the wider application of optical tweezers in the biological field.For the past decade,the emergence of optothermal tweezers has solved the above problems to a certain extent,while the auxiliary agents used in optothermal tweezers still limit their biocompatibility.Here,we report a kind of nanotweezers based on the sign transformation of the thermophoresis coefficient of colloidal particles in low-temperature environment.Using a self-made microfluidic refrigerator to reduce the ambient temperature to around 0℃in the microfluidic cell,we can control a single nanoparticle at lower laser power without adding additional agent solute in the solution.This novel optical tweezering scheme has provided a new path for the manipulation of inorganic nanoparticles as well as biological particles. 展开更多
关键词 optothermal tweezers optical manipulation microfluidic device THERMOPHORESIS thermo-osmotic flow
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部