Smart contracts are self-executing programs on blockchains that manage complex business logic with transparency and integrity.However,their immutability after deployment makes programming errors particularly critical,...Smart contracts are self-executing programs on blockchains that manage complex business logic with transparency and integrity.However,their immutability after deployment makes programming errors particularly critical,as such errors can be exploited to compromise blockchain security.Existing vulnerability detection methods often rely on fixed rules or target specific vulnerabilities,limiting their scalability and adaptability to diverse smart contract scenarios.Furthermore,natural language processing approaches for source code analysis frequently fail to capture program flow,which is essential for identifying structural vulnerabilities.To address these limitations,we propose a novel model that integrates textual and structural information for smart contract vulnerability detection.Our approach employs the CodeBERT NLP model for textual analysis,augmented with structural insights derived from control flow graphs created using the abstract syntax tree and opcode of smart contracts.Each graph node is embedded using Sent2Vec,and centrality analysis is applied to highlight critical paths and nodes within the code.The extracted features are normalized and combined into a prompt for a large language model to detect vulnerabilities effectivel.Experimental results demonstrate the superiority of our model,achieving an accuracy of 86.70%,a recall of 84.87%,a precision of 85.24%,and an F1-score of 84.46%.These outcomes surpass existing methods,including CodeBERT alone(accuracy:81.26%,F1-score:79.84%)and CodeBERT combined with abstract syntax tree analysis(accuracy:83.48%,F1-score:79.65%).The findings underscore the effectiveness of incorporating graph structural information alongside text-based analysis,offering improved scalability and performance in detecting diverse vulnerabilities.展开更多
This paper deals with the recommendation system in the so-called user-centric payment environment where users,i.e.,the payers,can make payments without providing self-information to merchants.This service maintains on...This paper deals with the recommendation system in the so-called user-centric payment environment where users,i.e.,the payers,can make payments without providing self-information to merchants.This service maintains only the minimum purchase information such as the purchased product names,the time of purchase,the place of purchase for possible refunds or cancellations of purchases.This study aims to develop AI-based recommendation system by utilizing the minimum transaction data generated by the user-centric payment service.First,we developed a matrix-based extrapolative collaborative filtering algorithm based on open transaction data.The recommendation methodology was verified with the real transaction data.Based on the experimental results,we confirmed that the recommendation performance is satisfactory only with the minimum purchase information.展开更多
This paper introduces a groundbreaking metaheuristic algorithm named Magnificent Frigatebird Optimization(MFO),inspired by the unique behaviors observed in magnificent frigatebirds in their natural habitats.The founda...This paper introduces a groundbreaking metaheuristic algorithm named Magnificent Frigatebird Optimization(MFO),inspired by the unique behaviors observed in magnificent frigatebirds in their natural habitats.The foundation of MFO is based on the kleptoparasitic behavior of these birds,where they steal prey from other seabirds.In this process,a magnificent frigatebird targets a food-carrying seabird,aggressively pecking at it until the seabird drops its prey.The frigatebird then swiftly dives to capture the abandoned prey before it falls into the water.The theoretical framework of MFO is thoroughly detailed and mathematically represented,mimicking the frigatebird’s kleptoparasitic behavior in two distinct phases:exploration and exploitation.During the exploration phase,the algorithm searches for new potential solutions across a broad area,akin to the frigatebird scouting for vulnerable seabirds.In the exploitation phase,the algorithm fine-tunes the solutions,similar to the frigatebird focusing on a single target to secure its meal.To evaluate MFO’s performance,the algorithm is tested on twenty-three standard benchmark functions,including unimodal,high-dimensional multimodal,and fixed-dimensional multimodal types.The results from these evaluations highlight MFO’s proficiency in balancing exploration and exploitation throughout the optimization process.Comparative studies with twelve well-known metaheuristic algo-rithms demonstrate that MFO consistently achieves superior optimization results,outperforming its competitors across various metrics.In addition,the implementation of MFO on four engineering design problems shows the effectiveness of the proposed approach in handling real-world applications,thereby validating its practical utility and robustness.展开更多
Environmental goods and low-carbon technologies have long been identified as having the potential to drive long-term economic progress without compromising environmental quality. However, their exact role in mitigatin...Environmental goods and low-carbon technologies have long been identified as having the potential to drive long-term economic progress without compromising environmental quality. However, their exact role in mitigating environmental degradation are yet to be unravelled. In addressing this shortfall, the extant literature relied on research funding and patent application as proxies for green technologies. Having established the weaknesses in the use of these variables as proxies for green technologies, this study explored the role of trade in environmental goods and low-carbon technologies in boosting environmental quality among G20 nation using a panel dataset from 1994 to 2018. The study employed the Method of Moment quantile regression for the model estimation and the Ridge regression, Discroll-Kraay standard error, and the Newey-West standard error estimators to test the robustness of our findings. Our findings indicate that whereas environmental goods promote environmental quality, low-carbon technologies decrease same. Also, the study found economic growth to exert an aggravating effect on environmental quality, while foreign direct investments, natural resource rents, human capital development, and renewable energy consumption exert positive influence on environmental quality. Based on the findings of the study, G20 nations are encouraged to improve green market structures to improve the trade in environmental goods and low-carbon technologies. Also the share of renewable energy sources in the overall energy basket must be improved to help improve environmental quality.展开更多
基金supported by the Seoul Business Agency(SBA),funded by the Seoul Metropolitan Government,through the Seoul R&BD Program(FB240022)by the Korea Institute for Advancement of Technology(KIAT),funded by the Korea Government(MOTIE)(RS-2024-00406796)+1 种基金through the HRD Program for Industrial Innovationby the Excellent Researcher Support Project of Kwangwoon University in 2024.
文摘Smart contracts are self-executing programs on blockchains that manage complex business logic with transparency and integrity.However,their immutability after deployment makes programming errors particularly critical,as such errors can be exploited to compromise blockchain security.Existing vulnerability detection methods often rely on fixed rules or target specific vulnerabilities,limiting their scalability and adaptability to diverse smart contract scenarios.Furthermore,natural language processing approaches for source code analysis frequently fail to capture program flow,which is essential for identifying structural vulnerabilities.To address these limitations,we propose a novel model that integrates textual and structural information for smart contract vulnerability detection.Our approach employs the CodeBERT NLP model for textual analysis,augmented with structural insights derived from control flow graphs created using the abstract syntax tree and opcode of smart contracts.Each graph node is embedded using Sent2Vec,and centrality analysis is applied to highlight critical paths and nodes within the code.The extracted features are normalized and combined into a prompt for a large language model to detect vulnerabilities effectivel.Experimental results demonstrate the superiority of our model,achieving an accuracy of 86.70%,a recall of 84.87%,a precision of 85.24%,and an F1-score of 84.46%.These outcomes surpass existing methods,including CodeBERT alone(accuracy:81.26%,F1-score:79.84%)and CodeBERT combined with abstract syntax tree analysis(accuracy:83.48%,F1-score:79.65%).The findings underscore the effectiveness of incorporating graph structural information alongside text-based analysis,offering improved scalability and performance in detecting diverse vulnerabilities.
基金supported under the framework of international cooperation program managed by the National Research Foundation of Korea(NRF 2020K2A9A2A06069972,FY2020)supported by the BK21 FOUR(Fostering Outstanding Universities for Research)funded by the Ministry of Education of the Republic of Korea and National Research Foundation of Korea(NRF)supported by the Ministry of Education of the Republic of Korea and the National Research Foundation of Korea(NRF-2020S1A5B8103855).
文摘This paper deals with the recommendation system in the so-called user-centric payment environment where users,i.e.,the payers,can make payments without providing self-information to merchants.This service maintains only the minimum purchase information such as the purchased product names,the time of purchase,the place of purchase for possible refunds or cancellations of purchases.This study aims to develop AI-based recommendation system by utilizing the minimum transaction data generated by the user-centric payment service.First,we developed a matrix-based extrapolative collaborative filtering algorithm based on open transaction data.The recommendation methodology was verified with the real transaction data.Based on the experimental results,we confirmed that the recommendation performance is satisfactory only with the minimum purchase information.
基金This research is funded by the Science Committee of the Ministry of Science and Higher Education of the Republic of Kazakhstan(Grant No.AP19674517).
文摘This paper introduces a groundbreaking metaheuristic algorithm named Magnificent Frigatebird Optimization(MFO),inspired by the unique behaviors observed in magnificent frigatebirds in their natural habitats.The foundation of MFO is based on the kleptoparasitic behavior of these birds,where they steal prey from other seabirds.In this process,a magnificent frigatebird targets a food-carrying seabird,aggressively pecking at it until the seabird drops its prey.The frigatebird then swiftly dives to capture the abandoned prey before it falls into the water.The theoretical framework of MFO is thoroughly detailed and mathematically represented,mimicking the frigatebird’s kleptoparasitic behavior in two distinct phases:exploration and exploitation.During the exploration phase,the algorithm searches for new potential solutions across a broad area,akin to the frigatebird scouting for vulnerable seabirds.In the exploitation phase,the algorithm fine-tunes the solutions,similar to the frigatebird focusing on a single target to secure its meal.To evaluate MFO’s performance,the algorithm is tested on twenty-three standard benchmark functions,including unimodal,high-dimensional multimodal,and fixed-dimensional multimodal types.The results from these evaluations highlight MFO’s proficiency in balancing exploration and exploitation throughout the optimization process.Comparative studies with twelve well-known metaheuristic algo-rithms demonstrate that MFO consistently achieves superior optimization results,outperforming its competitors across various metrics.In addition,the implementation of MFO on four engineering design problems shows the effectiveness of the proposed approach in handling real-world applications,thereby validating its practical utility and robustness.
文摘Environmental goods and low-carbon technologies have long been identified as having the potential to drive long-term economic progress without compromising environmental quality. However, their exact role in mitigating environmental degradation are yet to be unravelled. In addressing this shortfall, the extant literature relied on research funding and patent application as proxies for green technologies. Having established the weaknesses in the use of these variables as proxies for green technologies, this study explored the role of trade in environmental goods and low-carbon technologies in boosting environmental quality among G20 nation using a panel dataset from 1994 to 2018. The study employed the Method of Moment quantile regression for the model estimation and the Ridge regression, Discroll-Kraay standard error, and the Newey-West standard error estimators to test the robustness of our findings. Our findings indicate that whereas environmental goods promote environmental quality, low-carbon technologies decrease same. Also, the study found economic growth to exert an aggravating effect on environmental quality, while foreign direct investments, natural resource rents, human capital development, and renewable energy consumption exert positive influence on environmental quality. Based on the findings of the study, G20 nations are encouraged to improve green market structures to improve the trade in environmental goods and low-carbon technologies. Also the share of renewable energy sources in the overall energy basket must be improved to help improve environmental quality.