The robotic airship can provide a promising aerostatic platform for many potential applications.These applications require a precise autonomous trajectory tracking control for airship.Airship has a nonlinear and uncer...The robotic airship can provide a promising aerostatic platform for many potential applications.These applications require a precise autonomous trajectory tracking control for airship.Airship has a nonlinear and uncertain dynamics.It is prone to wind disturbances that offer a challenge for a trajectory tracking control design.This paper addresses the airship trajectory tracking problem having time varying reference path.A lumped parameter estimation approach under model uncertainties and wind disturbances is opted against distributed parameters.It uses extended Kalman filter(EKF)for uncertainty and disturbance estimation.The estimated parameters are used by sliding mode controller(SMC)for ultimate control of airship trajectory tracking.This comprehensive algorithm,EKF based SMC(ESMC),is used as a robust solution to track airship trajectory.The proposed estimator provides the estimates of wind disturbances as well as model uncertainty due to the mass matrix variations and aerodynamic model inaccuracies.The stability and convergence of the proposed method are investigated using the Lyapunov stability analysis.The simulation results show that the proposed method efficiently tracks the desired trajectory.The method solves the stability,convergence,and chattering problem of SMC under model uncertainties and wind disturbances.展开更多
Introduction:This study protocol specifies the primary research line and theoretical framework of the 2023 Survey of the Psychology and Behavior of the Chinese Population.It aims to establish a consistent database of ...Introduction:This study protocol specifies the primary research line and theoretical framework of the 2023 Survey of the Psychology and Behavior of the Chinese Population.It aims to establish a consistent database of Chinese residents'psychological and behavioral surveys through multi-center and large-sample cross-sectional surveys to provide robust data support for developing research in related fields.It will track the public's physical and psychological health more comprehensively and systematically.Methods:The study was conducted from June 20,2023 to August 31,2023,using stratified and quota sampling methods.A total of 150 cities across 800 communities/villages were surveyed,selected from China(Despite extensive coordination,we have been unable to contact our counterparts in the Taiwan region of China to obtain relevant statistical data).The questionnaires were distributed to the public one-on-one and face-to-face by trained surveyors.The questionnaires included basic information about the individual,personal health status,basic information about the family,the social environment in which the individual lives,psychological condition scales,behavioral level scales,other scales,and attitudes towards topical social issues.Supervisors conducted quality control during the distribution process and returned questionnaires,logically checked and cleaned for data analysis.Discussion:Data collection has been finished,and scientific outputs based on this data will support the development of health promotion strategies in China and globally.In the aftermath of the pandemic,it will guide policymakers and healthcare organizations to improve their existing policies and services to maximize the physical and mental health of the Chinese population.Trial Registration:This study was filed in the National Health Security Information Platform(Record No.:MR-37-23-017876)and officially registered in the China Clinical Trials Registry(Registration No.:ChiCTR2300072573).展开更多
Multi-pass TIG welding was conducted on plates(15×300×180 mm^(3))of aluminum alloy Al-5083 that usually serves as the component material in structural applications such as cryogenics and chemical processing ...Multi-pass TIG welding was conducted on plates(15×300×180 mm^(3))of aluminum alloy Al-5083 that usually serves as the component material in structural applications such as cryogenics and chemical processing industries.Porosity formation and solidification cracking are the most common defects when TIG welding Al-5083 alloy,which is sensitive to the welding heat input.In the experiment,the heat input was varied from 0.89 kJ/mm to 5 kJ/mm designed by the combination of welding torch travel speed and welding current.Tensile,micro-Vicker hardness and Charpy impact tests were executed to witness the impetus response of heat input on the mechanical properties of the joints.Radiographic inspection was performed to assess the joint’s quality and welding defects.The results show that all the specimens displayed inferior mechanical properties as compared to the base alloy.It was established that porosity was progressively abridged by the increase of heat input.The results also clinched that the use of medium heat input(1-2 kJ/mm)offered the best mechanical properties by eradicating welding defects,in which only about 18.26% of strength was lost.The yield strength of all the welded specimens remained unaffected indica ted no influence of heat input.Partially melted zone(PMZ)width also affected by heat input,which became widened with the increase of heat input.The grain size of PMZ was found to be coarser than the respective grain size in the fusion zone.Charpy impact testing revealed that the absorbed energy by low heat input specimen(welded at high speed)was greater than that of high heat input(welded at low speed)because of low porosity and the formation of equiaxed grains which induce better impact toughness.Cryogenic(-196℃)impact testing was also performed and the results corroborate that impact properties under the cryogenic environment revealed no appreciable change after welding at designated heat input.Finally,Macro and micro fractured surfaces of tensile and impact specimens were analyzed using Stereo and Scanning Electron Microscopy(SEM),which have supported the experimental findings.展开更多
Mechanical stimuli play critical roles in cardiovascular diseases,in which in vivo stresses in blood vessels present a great challenge to predict.Based on the structural-thermal coupled finite element method,we propos...Mechanical stimuli play critical roles in cardiovascular diseases,in which in vivo stresses in blood vessels present a great challenge to predict.Based on the structural-thermal coupled finite element method,we propose a thermal expansion method to estimate stresses in multi-layer blood vessels under healthy and pathological conditions.The proposed method provides a relatively simple and convenient means to predict reliable in vivo mechanical stresses with accurate residual stress.The method is first verified with the opening-up process and the pressure-radius responses for single and multi-layer vessel models.It is then applied to study the stress variation in a human carotid artery at different hypertension stages and in a plaque of vascular stenosis.Our results show that specific or optimal residual stresses exist for different blood pressures,which helps form a homogeneous stress distribution across vessel walls.High elastic shear stress is identified on the shoulder of the plaque,which contributes to the tearing effect in plaque rupture.The present study indicates that the proposed numerical method is a capable and efficient in vivo stress evaluation of patient-specific blood vessels for clinical purposes.展开更多
Incompressible viscous flows on curved surfaces are considered with respect to the interplay of surface geometry, curvature, and vorticity dynamics. Free flows and cylindrical wakes over a Gaussian bump are numericall...Incompressible viscous flows on curved surfaces are considered with respect to the interplay of surface geometry, curvature, and vorticity dynamics. Free flows and cylindrical wakes over a Gaussian bump are numerically solved using a surface vorticity- stream function formulation. Numerical simulations show that the Gaussian curvature can generate vorticity, and non-uniformity of the Gaussian curvature is the main cause. In the cylindrical wake, the bump dominated by the positive Gaussian curvature can significantly affect the vortex street by forming velocity depression and changing vorticity transport. The results may provide possibilities for manipulating surface flows through local change in the surface geometry.展开更多
Our study evaluated the hemodynamic performance of an axial flow blood pump surgically implanted in idealized total cavopulmonary connection(TCPC)models.This blood pump was designed to augment pressure from the inferi...Our study evaluated the hemodynamic performance of an axial flow blood pump surgically implanted in idealized total cavopulmonary connection(TCPC)models.This blood pump was designed to augment pressure from the inferior vena cava(IVC)to the pulmonary circulation.Two Fontan procedures with single and bilateral superior vena cava(SVC)were compared to fit the mechanical supported TCPC physiologies.Computational fluid dynamics(CFD)analyses of two Pump-TCPC models were performed in the analyses.Pressure-flow characteristics,energy efficiency,fluid streamlines,hemolysis and thrombosis analyses were implemented.Numerical simulations indicate that the pump produces pressure generations of 1 mm to 24 mm Hg for rotational speeds ranging from 2000 RPM to 5000 RPM and flow rates of 2 LPM to 4 LPM.Two surgical models incorporated with the pump were found to be insignificant in pressure augmentation and energy boost.The risk assessment of blood trauma and thrombosis generation was evaluated representatively through blood damage index(BDI),particle resident time(PRT)and relative resistant time(RRT).The hemolysis and thrombosis analyses declare the advantage of the pump supported bilateral SVC surgical scheme in balancing flow distribution and reducing the risk of endothelial cell destruction and trauma generation.展开更多
The detailed flow structures and closely-related heat transfer characteristics are investigated along the wall of a cooling channel with rib tabulator by computation.Three typical Reynolds numbers defined by the rib h...The detailed flow structures and closely-related heat transfer characteristics are investigated along the wall of a cooling channel with rib tabulator by computation.Three typical Reynolds numbers defined by the rib height are set at 200,500,1300,and the Mach numbers is 0.2,respectively.Two inlet boundary conditions,including the uniform and the fully-developed turbulent conditions,are used to study the turbulence effects on the characteristics of heat transfer in the vicinity of rib and wall.Results show that the local Nusselt number increases when the Reynolds number rises from 200 to 1300.At lower Reynolds number,the turbulent inlet condition generates more tangible heat transfer enhancement.At higher Reynolds number,however,the uniform inlet condition contributes more to the convective heat transfer effects.The paper discovers that the high Nusselt number has a consistent correlation with the positive and negative sign alteration of the shear layer on the wall,which satisfactorily explains the mechanisms of heat transfer enhancement due to the flow.展开更多
Models to describe the damage and fracture behaviors of the interface between the fuel foil and cladding in UMo/Zr monolithic fuel plates were established and numerically implemented.The effects of the interfacial coh...Models to describe the damage and fracture behaviors of the interface between the fuel foil and cladding in UMo/Zr monolithic fuel plates were established and numerically implemented.The effects of the interfacial cohesive strength and cohesive energy on the irradiationinduced thermal-mechanical behaviors of fuel plates were investigated.The results indicated that for heterogeneously irradiated fuel plates:(1)interfacial damage and failure were predicted to be initiated near the fuel foil corner with higher fission densities,accompanied by the formation of a large gap after interface failure,which was consistent with some experimental observations;high tensile stresses in the fuel foil occurred near the edges of the failed interface,attributed to through-thickness cracking of the fuel foil,as found in some post-irradiation examinations;(2)the cohesive strength and cohesive energy of the interface both influenced the in-pile evolution behaviors of fuel plates;a lower cohesive strength or cohesive energy resulted in faster interfacial damage;(3)after interface fracture,the thickness of the whole plate increased to a greater degree(by~20%)than that of the samples without interfacial damage,which was attributed to the locally enhanced Mises stresses and the nearby creep deformations around the cracked interface.This study provided a theoretical basis for assessing failure in fuel elements.展开更多
In high performance aerospace systems where weight and aerodynamics are of major concern, fiber reinforced composite laminates can be tailored to achieve desirable mechanical properties and accommodate low-profile mic...In high performance aerospace systems where weight and aerodynamics are of major concern, fiber reinforced composite laminates can be tailored to achieve desirable mechanical properties and accommodate low-profile microstrip antenna. This work aims at the analysis of microstrip antenna array embedded in composite laminated substrates. The size of a single antenna is first calculated by spectral domain analysis to model the effects of the substrate’s electromagnetic property and the orientation of the laminate layers. The antenna array as well as the feed network, composed of microstrip transmission lines, quarter wave-length impedance transformers, and T-junction power dividers, is then tuned to accommodate the effects of the coupling between the antenna elements and the feed network loss. The performance of the 1 × 2, 1 × 4, and 1 × 8 linear array and 2 × 2 and 2 × 4 planar array are shown to have better directivity when embedded in composite laminated substrate compared with those when attached on isotropic substrate. Both 1 × 2 and 1 × 4 arrays at 2.4 GHz are validated experimentally to achieve better coverage.展开更多
A moving-mass control method is introduced to stratospheric airship for its special working condition of low atmospheric density and low speed.The dynamic equation of airship is derived by using the Newton-Euler metho...A moving-mass control method is introduced to stratospheric airship for its special working condition of low atmospheric density and low speed.The dynamic equation of airship is derived by using the Newton-Euler method and the mechanism of attitude control by moving masses is studied.Then the passive gliding of airship by the moving masses is given based on the theory of glider,and attitude control capability between moving mass and elevator is compared at different airspeed.Analysis results show that the motion of masses changes the gravity center of the airship system,which makes the inertia tensor and the gravity moment vary.Meanwhile,the aerodynamic angles are generated,which results in the change of aerodynamic moment.Control efficiency of moving masses is independent of airspeed.Thus the moving-mass control has the advantage over the aerodynamic surfaces at low airspeed.展开更多
Wireless power transfer (WPT) from a transmitter resonator on the ground to an electrically powered miniature heli-copter was attempted to demonstrate WPT using magnetic resonance coupling to an object moving in 3D sp...Wireless power transfer (WPT) from a transmitter resonator on the ground to an electrically powered miniature heli-copter was attempted to demonstrate WPT using magnetic resonance coupling to an object moving in 3D space. The transmission efficiency was optimized by automatic impedance matching for different flight attitudes: a maximum flight altitude of 590 mm was achieved. Furthermore, an estimation method of transmission efficiency using only the properties on the transmitter side was proposed, with transmission power regulated as constant against the change in the coupling coefficient.展开更多
Flow structures of a Mach 6 transitional boundary layer over a 260 mm long flared cone are investigated by the particle image velocimetry(PIV). Particle images near the curved wall are initially transformed into surfa...Flow structures of a Mach 6 transitional boundary layer over a 260 mm long flared cone are investigated by the particle image velocimetry(PIV). Particle images near the curved wall are initially transformed into surface-fitted orthogonal coordinates and spliced with their 180?-symmetric images to satisfy a no-slip condition at the wall.The results are then reversely transformed to the physical domain. Direct numerical simulation(DNS) is also performed to validate the experimental results. The experimental and numerical results are in agreement, indicating a strong dilatation process within the second-mode instability.展开更多
Most fluid flows in nature and engineering applications are in the state of turbulence.Turbulent motions usually exhibit a wide range of spatial and temporal scales,such as the flow of natural gas and oil in pipelines...Most fluid flows in nature and engineering applications are in the state of turbulence.Turbulent motions usually exhibit a wide range of spatial and temporal scales,such as the flow of natural gas and oil in pipelines,the wakes of cars and submarines,the boundary layer of an aircraft,the current in the ocean surface,the atmospheric boundary layer,the interstellar gas clouds(gaseous stars),and the Earth’s wake in the solar wind.Turbulence can greatly improve the heat and mass transfer efficiency of macroscopic flow.For example,chemical engineers use turbulence to mix up and homogenize fluid components and to increase chemical reaction rates in liquids or gases.However,turbulence can also lead to increases in drag,aerodynamic heat,and hydrodynamic and aerodynamic noise.For instance,the aerodynamic loading of high-speed aircraft can be significantly increased due to turbulence.展开更多
In this paper,a comparative study for kernel-PCA based linear parameter varying(LPV)model approximation of sufficiently nonlinear and reasonably practical systems is carried out.Linear matrix inequalities(LMIs)to be s...In this paper,a comparative study for kernel-PCA based linear parameter varying(LPV)model approximation of sufficiently nonlinear and reasonably practical systems is carried out.Linear matrix inequalities(LMIs)to be solved in LPV controller design process increase exponentially with the increase in a number of scheduling variables.Fifteen kernel functions are used to obtain the approximate LPV model of highly coupled nonlinear systems.An error to norm ratio of original and approximate LPV models is introduced as a measure of accuracy of the approximate LPV model.Simulation examples conclude the effectiveness of kernel-PCA for LPV model approximation as with the identification of accurate approximate LPV model,computation complexity involved in LPV controller design is decreased exponentially.展开更多
In order to improve the surgical treatment of the congenital heart disease patient with single ventricle defect,two axial flow blood pumps,one with diffuser and the other without diffuser,were designed and virtually i...In order to improve the surgical treatment of the congenital heart disease patient with single ventricle defect,two axial flow blood pumps,one with diffuser and the other without diffuser,were designed and virtually implanted into an idealized total cavopulmonary connection(TCPC)model to form two types of Pump-TCPC physiological structure.Computational fluid dynamics(CFD)simulationswere performed to analyze the variations of the hemodynamic characteristics,such as flow field,wall shear stress(WSS),oscillatory shear index(OSI),relative residence time(RRT),between the two Pump-TCPC models.Numerical results indicate that the Pump-TCPC with diffuser has better flow field stability,less damage on endothelial cell of vessel wall,and lower risk of vascular injury and thrombosis formation than that without diffuser.展开更多
Mixed ionic electronic conductors(MIECs)have attracted increasing attention as anode materials for solid oxide fuel cells(SOFCs)and they hold great promise for lowering the operation temperature of SOFCs.However,there...Mixed ionic electronic conductors(MIECs)have attracted increasing attention as anode materials for solid oxide fuel cells(SOFCs)and they hold great promise for lowering the operation temperature of SOFCs.However,there has been a lack of understanding of the performance-limiting factors and guidelines for rational design of composite metal-MIEC electrodes.Using a newly-developed approach based on 3 D-tomography and electrochemical impedance spectroscopy,here for the first time we quantify the contribution of the dual-phase boundary(DPB)relative to the three-phase boundary(TPB)reaction pathway on real MIEC electrodes.A new design strategy is developed for Ni/gadolinium doped ceria(CGO)electrodes(a typical MIEC electrode)based on the quantitative analyses and a novel Ni/CGO fiber-matrix structure is proposed and fabricated by combining electrospinning and tape-casting methods using commercial powders.With only 11.5 vol%nickel,the designer Ni/CGO fiber-matrix electrode shows 32%and 67%lower polarization resistance than a nano-Ni impregnated CGO scaffold electrode and conventional cermet electrode respectively.The results in this paper demonstrate quantitatively using real electrode structures that enhancing DPB and hydrogen kinetics are more efficient strategies to enhance electrode performance than simply increasing TPB.展开更多
The original online version of this article (Masataka Motoyama, Kenichiro Sugitani, Yuji Ohya, et al. (2014) “Improving the Power Generation Performance of a Solar Tower Using Thermal Updraft Wind”, 2014, 6, 362-370...The original online version of this article (Masataka Motoyama, Kenichiro Sugitani, Yuji Ohya, et al. (2014) “Improving the Power Generation Performance of a Solar Tower Using Thermal Updraft Wind”, 2014, 6, 362-370. http://dx.doi.org/10.4236/epe.2014.611031) was published in October, 2014.The author wishes to correct the following error in text and Figures 9-11.展开更多
The numerical simulation of flow field around Hayabusa capsule loaded with light-weight ablator thermal response coupled with pyrolysis gas flow inside the ablator was carried out. In addition, the radiation from high...The numerical simulation of flow field around Hayabusa capsule loaded with light-weight ablator thermal response coupled with pyrolysis gas flow inside the ablator was carried out. In addition, the radiation from high temperature gas around the capsule was coupled with flow field. Hayabusa capsule reentered the atmosphere about 12 km/sec in velocity and Mach number about 30. During such an atmospheric entry, space vehicle is exposed to very savior aerodynamic heating due to convection and radiation. In this study, Hayabusa capsule was treated as a typical model of the atmospheric entry spacecraft. The light-weight ablator had porous structure, and permeability was an important parameter to analyze flow inside ablator. In this study, permeability was a variable parameter dependent on density of ablator. It is found that the effect of permeability of light-weight ablator was important with this analysis.展开更多
Meander line antenna has been considered desirable on flight vehicles to reduce drag and minimize aerodynamic disturbance;however, the antenna design and performance analysis have made mostly by trial-and-error. An in...Meander line antenna has been considered desirable on flight vehicles to reduce drag and minimize aerodynamic disturbance;however, the antenna design and performance analysis have made mostly by trial-and-error. An inductor model by simulating the meander line sections as electrical inductors and the interconnecting radiation elements as a quasi-monopole antenna is developed to analyze the antenna performance. Experimental verifications of the printed meander line antennas embedded in composite laminated substrates show that the inductor model is effective to design and analyze. Of the 4 antennas tested, the discrepancy of resonant frequency in simulation and experiment is within 4.6%.展开更多
In this work, flexural properties and failure behavior of unidirectional (UD) carbon fiber reinforced polyamide 6 (CF/Nylon 6) and epoxy resin (CF/ Epoxy) laminates were investigated through three-point bending test. ...In this work, flexural properties and failure behavior of unidirectional (UD) carbon fiber reinforced polyamide 6 (CF/Nylon 6) and epoxy resin (CF/ Epoxy) laminates were investigated through three-point bending test. The mechanical properties and failure behavior of 0 and 90 degree CF/Nylon 6 and CF/Epoxy laminates were discussed based on the fiber volume fraction, fiber distribution, void content, interfacial properties, transversal tensile strength and fracture toughness. The effects of fiber volume fraction, fiber distribution, void content and their hybrid effect on the flexural properties were investigated. Step-by-step observation and scanning electron microscope observation of laminates after flexural tests were employed to analyze the fracture process.展开更多
文摘The robotic airship can provide a promising aerostatic platform for many potential applications.These applications require a precise autonomous trajectory tracking control for airship.Airship has a nonlinear and uncertain dynamics.It is prone to wind disturbances that offer a challenge for a trajectory tracking control design.This paper addresses the airship trajectory tracking problem having time varying reference path.A lumped parameter estimation approach under model uncertainties and wind disturbances is opted against distributed parameters.It uses extended Kalman filter(EKF)for uncertainty and disturbance estimation.The estimated parameters are used by sliding mode controller(SMC)for ultimate control of airship trajectory tracking.This comprehensive algorithm,EKF based SMC(ESMC),is used as a robust solution to track airship trajectory.The proposed estimator provides the estimates of wind disturbances as well as model uncertainty due to the mass matrix variations and aerodynamic model inaccuracies.The stability and convergence of the proposed method are investigated using the Lyapunov stability analysis.The simulation results show that the proposed method efficiently tracks the desired trajectory.The method solves the stability,convergence,and chattering problem of SMC under model uncertainties and wind disturbances.
基金Research project of China Medical Education Association,Grant/Award Number:CMEA[2023]:No.0003。
文摘Introduction:This study protocol specifies the primary research line and theoretical framework of the 2023 Survey of the Psychology and Behavior of the Chinese Population.It aims to establish a consistent database of Chinese residents'psychological and behavioral surveys through multi-center and large-sample cross-sectional surveys to provide robust data support for developing research in related fields.It will track the public's physical and psychological health more comprehensively and systematically.Methods:The study was conducted from June 20,2023 to August 31,2023,using stratified and quota sampling methods.A total of 150 cities across 800 communities/villages were surveyed,selected from China(Despite extensive coordination,we have been unable to contact our counterparts in the Taiwan region of China to obtain relevant statistical data).The questionnaires were distributed to the public one-on-one and face-to-face by trained surveyors.The questionnaires included basic information about the individual,personal health status,basic information about the family,the social environment in which the individual lives,psychological condition scales,behavioral level scales,other scales,and attitudes towards topical social issues.Supervisors conducted quality control during the distribution process and returned questionnaires,logically checked and cleaned for data analysis.Discussion:Data collection has been finished,and scientific outputs based on this data will support the development of health promotion strategies in China and globally.In the aftermath of the pandemic,it will guide policymakers and healthcare organizations to improve their existing policies and services to maximize the physical and mental health of the Chinese population.Trial Registration:This study was filed in the National Health Security Information Platform(Record No.:MR-37-23-017876)and officially registered in the China Clinical Trials Registry(Registration No.:ChiCTR2300072573).
文摘Multi-pass TIG welding was conducted on plates(15×300×180 mm^(3))of aluminum alloy Al-5083 that usually serves as the component material in structural applications such as cryogenics and chemical processing industries.Porosity formation and solidification cracking are the most common defects when TIG welding Al-5083 alloy,which is sensitive to the welding heat input.In the experiment,the heat input was varied from 0.89 kJ/mm to 5 kJ/mm designed by the combination of welding torch travel speed and welding current.Tensile,micro-Vicker hardness and Charpy impact tests were executed to witness the impetus response of heat input on the mechanical properties of the joints.Radiographic inspection was performed to assess the joint’s quality and welding defects.The results show that all the specimens displayed inferior mechanical properties as compared to the base alloy.It was established that porosity was progressively abridged by the increase of heat input.The results also clinched that the use of medium heat input(1-2 kJ/mm)offered the best mechanical properties by eradicating welding defects,in which only about 18.26% of strength was lost.The yield strength of all the welded specimens remained unaffected indica ted no influence of heat input.Partially melted zone(PMZ)width also affected by heat input,which became widened with the increase of heat input.The grain size of PMZ was found to be coarser than the respective grain size in the fusion zone.Charpy impact testing revealed that the absorbed energy by low heat input specimen(welded at high speed)was greater than that of high heat input(welded at low speed)because of low porosity and the formation of equiaxed grains which induce better impact toughness.Cryogenic(-196℃)impact testing was also performed and the results corroborate that impact properties under the cryogenic environment revealed no appreciable change after welding at designated heat input.Finally,Macro and micro fractured surfaces of tensile and impact specimens were analyzed using Stereo and Scanning Electron Microscopy(SEM),which have supported the experimental findings.
基金The authors would like to thank Prof.Shu Takagi and Prof.Huaxiong Huang for their instructive comments.The authors would also like to acknowledge Jianda Yang for assisting with FEM simulations.This work was supported by the National Natural Science Foundation of China(Grants 11372191,11232010,11650(Grant 91111138)the National Institute of Health(Grant 2R01DC005642-10A1).
文摘Mechanical stimuli play critical roles in cardiovascular diseases,in which in vivo stresses in blood vessels present a great challenge to predict.Based on the structural-thermal coupled finite element method,we propose a thermal expansion method to estimate stresses in multi-layer blood vessels under healthy and pathological conditions.The proposed method provides a relatively simple and convenient means to predict reliable in vivo mechanical stresses with accurate residual stress.The method is first verified with the opening-up process and the pressure-radius responses for single and multi-layer vessel models.It is then applied to study the stress variation in a human carotid artery at different hypertension stages and in a plaque of vascular stenosis.Our results show that specific or optimal residual stresses exist for different blood pressures,which helps form a homogeneous stress distribution across vessel walls.High elastic shear stress is identified on the shoulder of the plaque,which contributes to the tearing effect in plaque rupture.The present study indicates that the proposed numerical method is a capable and efficient in vivo stress evaluation of patient-specific blood vessels for clinical purposes.
基金supported by the National Natural Science Foundation of China(Nos.11472082 and11172069)
文摘Incompressible viscous flows on curved surfaces are considered with respect to the interplay of surface geometry, curvature, and vorticity dynamics. Free flows and cylindrical wakes over a Gaussian bump are numerically solved using a surface vorticity- stream function formulation. Numerical simulations show that the Gaussian curvature can generate vorticity, and non-uniformity of the Gaussian curvature is the main cause. In the cylindrical wake, the bump dominated by the positive Gaussian curvature can significantly affect the vortex street by forming velocity depression and changing vorticity transport. The results may provide possibilities for manipulating surface flows through local change in the surface geometry.
文摘Our study evaluated the hemodynamic performance of an axial flow blood pump surgically implanted in idealized total cavopulmonary connection(TCPC)models.This blood pump was designed to augment pressure from the inferior vena cava(IVC)to the pulmonary circulation.Two Fontan procedures with single and bilateral superior vena cava(SVC)were compared to fit the mechanical supported TCPC physiologies.Computational fluid dynamics(CFD)analyses of two Pump-TCPC models were performed in the analyses.Pressure-flow characteristics,energy efficiency,fluid streamlines,hemolysis and thrombosis analyses were implemented.Numerical simulations indicate that the pump produces pressure generations of 1 mm to 24 mm Hg for rotational speeds ranging from 2000 RPM to 5000 RPM and flow rates of 2 LPM to 4 LPM.Two surgical models incorporated with the pump were found to be insignificant in pressure augmentation and energy boost.The risk assessment of blood trauma and thrombosis generation was evaluated representatively through blood damage index(BDI),particle resident time(PRT)and relative resistant time(RRT).The hemolysis and thrombosis analyses declare the advantage of the pump supported bilateral SVC surgical scheme in balancing flow distribution and reducing the risk of endothelial cell destruction and trauma generation.
基金financially supported by the United Innovation Program of Shanghai Commercial Aircraft Engine (No. AR908)
文摘The detailed flow structures and closely-related heat transfer characteristics are investigated along the wall of a cooling channel with rib tabulator by computation.Three typical Reynolds numbers defined by the rib height are set at 200,500,1300,and the Mach numbers is 0.2,respectively.Two inlet boundary conditions,including the uniform and the fully-developed turbulent conditions,are used to study the turbulence effects on the characteristics of heat transfer in the vicinity of rib and wall.Results show that the local Nusselt number increases when the Reynolds number rises from 200 to 1300.At lower Reynolds number,the turbulent inlet condition generates more tangible heat transfer enhancement.At higher Reynolds number,however,the uniform inlet condition contributes more to the convective heat transfer effects.The paper discovers that the high Nusselt number has a consistent correlation with the positive and negative sign alteration of the shear layer on the wall,which satisfactorily explains the mechanisms of heat transfer enhancement due to the flow.
基金supported by the National Natural Science Foundation of China(Nos.12132005,11772095,12102094)the Foundation from Science and Technology on Reactor System Design Technology Laboratory。
文摘Models to describe the damage and fracture behaviors of the interface between the fuel foil and cladding in UMo/Zr monolithic fuel plates were established and numerically implemented.The effects of the interfacial cohesive strength and cohesive energy on the irradiationinduced thermal-mechanical behaviors of fuel plates were investigated.The results indicated that for heterogeneously irradiated fuel plates:(1)interfacial damage and failure were predicted to be initiated near the fuel foil corner with higher fission densities,accompanied by the formation of a large gap after interface failure,which was consistent with some experimental observations;high tensile stresses in the fuel foil occurred near the edges of the failed interface,attributed to through-thickness cracking of the fuel foil,as found in some post-irradiation examinations;(2)the cohesive strength and cohesive energy of the interface both influenced the in-pile evolution behaviors of fuel plates;a lower cohesive strength or cohesive energy resulted in faster interfacial damage;(3)after interface fracture,the thickness of the whole plate increased to a greater degree(by~20%)than that of the samples without interfacial damage,which was attributed to the locally enhanced Mises stresses and the nearby creep deformations around the cracked interface.This study provided a theoretical basis for assessing failure in fuel elements.
文摘In high performance aerospace systems where weight and aerodynamics are of major concern, fiber reinforced composite laminates can be tailored to achieve desirable mechanical properties and accommodate low-profile microstrip antenna. This work aims at the analysis of microstrip antenna array embedded in composite laminated substrates. The size of a single antenna is first calculated by spectral domain analysis to model the effects of the substrate’s electromagnetic property and the orientation of the laminate layers. The antenna array as well as the feed network, composed of microstrip transmission lines, quarter wave-length impedance transformers, and T-junction power dividers, is then tuned to accommodate the effects of the coupling between the antenna elements and the feed network loss. The performance of the 1 × 2, 1 × 4, and 1 × 8 linear array and 2 × 2 and 2 × 4 planar array are shown to have better directivity when embedded in composite laminated substrate compared with those when attached on isotropic substrate. Both 1 × 2 and 1 × 4 arrays at 2.4 GHz are validated experimentally to achieve better coverage.
基金Supported by the National Natural Science Foundation of China(No.61175074,11272205)
文摘A moving-mass control method is introduced to stratospheric airship for its special working condition of low atmospheric density and low speed.The dynamic equation of airship is derived by using the Newton-Euler method and the mechanism of attitude control by moving masses is studied.Then the passive gliding of airship by the moving masses is given based on the theory of glider,and attitude control capability between moving mass and elevator is compared at different airspeed.Analysis results show that the motion of masses changes the gravity center of the airship system,which makes the inertia tensor and the gravity moment vary.Meanwhile,the aerodynamic angles are generated,which results in the change of aerodynamic moment.Control efficiency of moving masses is independent of airspeed.Thus the moving-mass control has the advantage over the aerodynamic surfaces at low airspeed.
文摘Wireless power transfer (WPT) from a transmitter resonator on the ground to an electrically powered miniature heli-copter was attempted to demonstrate WPT using magnetic resonance coupling to an object moving in 3D space. The transmission efficiency was optimized by automatic impedance matching for different flight attitudes: a maximum flight altitude of 590 mm was achieved. Furthermore, an estimation method of transmission efficiency using only the properties on the transmitter side was proposed, with transmission power regulated as constant against the change in the coupling coefficient.
基金Project supported by the National Natural Science Foundation of China(Nos.11602005,10921202,and 11632002)
文摘Flow structures of a Mach 6 transitional boundary layer over a 260 mm long flared cone are investigated by the particle image velocimetry(PIV). Particle images near the curved wall are initially transformed into surface-fitted orthogonal coordinates and spliced with their 180?-symmetric images to satisfy a no-slip condition at the wall.The results are then reversely transformed to the physical domain. Direct numerical simulation(DNS) is also performed to validate the experimental results. The experimental and numerical results are in agreement, indicating a strong dilatation process within the second-mode instability.
基金Project supported by the National Natural Science Foundation of China(No.91752000)
文摘Most fluid flows in nature and engineering applications are in the state of turbulence.Turbulent motions usually exhibit a wide range of spatial and temporal scales,such as the flow of natural gas and oil in pipelines,the wakes of cars and submarines,the boundary layer of an aircraft,the current in the ocean surface,the atmospheric boundary layer,the interstellar gas clouds(gaseous stars),and the Earth’s wake in the solar wind.Turbulence can greatly improve the heat and mass transfer efficiency of macroscopic flow.For example,chemical engineers use turbulence to mix up and homogenize fluid components and to increase chemical reaction rates in liquids or gases.However,turbulence can also lead to increases in drag,aerodynamic heat,and hydrodynamic and aerodynamic noise.For instance,the aerodynamic loading of high-speed aircraft can be significantly increased due to turbulence.
文摘In this paper,a comparative study for kernel-PCA based linear parameter varying(LPV)model approximation of sufficiently nonlinear and reasonably practical systems is carried out.Linear matrix inequalities(LMIs)to be solved in LPV controller design process increase exponentially with the increase in a number of scheduling variables.Fifteen kernel functions are used to obtain the approximate LPV model of highly coupled nonlinear systems.An error to norm ratio of original and approximate LPV models is introduced as a measure of accuracy of the approximate LPV model.Simulation examples conclude the effectiveness of kernel-PCA for LPV model approximation as with the identification of accurate approximate LPV model,computation complexity involved in LPV controller design is decreased exponentially.
基金This work has been supported by the Natural Science Foundation of China(No.11872152).
文摘In order to improve the surgical treatment of the congenital heart disease patient with single ventricle defect,two axial flow blood pumps,one with diffuser and the other without diffuser,were designed and virtually implanted into an idealized total cavopulmonary connection(TCPC)model to form two types of Pump-TCPC physiological structure.Computational fluid dynamics(CFD)simulationswere performed to analyze the variations of the hemodynamic characteristics,such as flow field,wall shear stress(WSS),oscillatory shear index(OSI),relative residence time(RRT),between the two Pump-TCPC models.Numerical results indicate that the Pump-TCPC with diffuser has better flow field stability,less damage on endothelial cell of vessel wall,and lower risk of vascular injury and thrombosis formation than that without diffuser.
基金the financial support from EPSRC(EP/P024807/1,EP/M014045/1,EP/S000933/1 and EP/N009924/1)by the EPSRC energy storage for low carbon grids project(EP/K002252/1)+3 种基金the EPSRC Joint UK-India Clean Energy center(JUICE)(EP/P003605/1)the Integrated Development of Low-Carbon Energy Systems(IDLES)project(EP/R045518/1)the Innovate UK BAFTA project,the Innovate UK for Advanced Battery Lifetime Extension(ABLE)project for funding underthe China Scholarship Council。
文摘Mixed ionic electronic conductors(MIECs)have attracted increasing attention as anode materials for solid oxide fuel cells(SOFCs)and they hold great promise for lowering the operation temperature of SOFCs.However,there has been a lack of understanding of the performance-limiting factors and guidelines for rational design of composite metal-MIEC electrodes.Using a newly-developed approach based on 3 D-tomography and electrochemical impedance spectroscopy,here for the first time we quantify the contribution of the dual-phase boundary(DPB)relative to the three-phase boundary(TPB)reaction pathway on real MIEC electrodes.A new design strategy is developed for Ni/gadolinium doped ceria(CGO)electrodes(a typical MIEC electrode)based on the quantitative analyses and a novel Ni/CGO fiber-matrix structure is proposed and fabricated by combining electrospinning and tape-casting methods using commercial powders.With only 11.5 vol%nickel,the designer Ni/CGO fiber-matrix electrode shows 32%and 67%lower polarization resistance than a nano-Ni impregnated CGO scaffold electrode and conventional cermet electrode respectively.The results in this paper demonstrate quantitatively using real electrode structures that enhancing DPB and hydrogen kinetics are more efficient strategies to enhance electrode performance than simply increasing TPB.
文摘The original online version of this article (Masataka Motoyama, Kenichiro Sugitani, Yuji Ohya, et al. (2014) “Improving the Power Generation Performance of a Solar Tower Using Thermal Updraft Wind”, 2014, 6, 362-370. http://dx.doi.org/10.4236/epe.2014.611031) was published in October, 2014.The author wishes to correct the following error in text and Figures 9-11.
文摘The numerical simulation of flow field around Hayabusa capsule loaded with light-weight ablator thermal response coupled with pyrolysis gas flow inside the ablator was carried out. In addition, the radiation from high temperature gas around the capsule was coupled with flow field. Hayabusa capsule reentered the atmosphere about 12 km/sec in velocity and Mach number about 30. During such an atmospheric entry, space vehicle is exposed to very savior aerodynamic heating due to convection and radiation. In this study, Hayabusa capsule was treated as a typical model of the atmospheric entry spacecraft. The light-weight ablator had porous structure, and permeability was an important parameter to analyze flow inside ablator. In this study, permeability was a variable parameter dependent on density of ablator. It is found that the effect of permeability of light-weight ablator was important with this analysis.
文摘Meander line antenna has been considered desirable on flight vehicles to reduce drag and minimize aerodynamic disturbance;however, the antenna design and performance analysis have made mostly by trial-and-error. An inductor model by simulating the meander line sections as electrical inductors and the interconnecting radiation elements as a quasi-monopole antenna is developed to analyze the antenna performance. Experimental verifications of the printed meander line antennas embedded in composite laminated substrates show that the inductor model is effective to design and analyze. Of the 4 antennas tested, the discrepancy of resonant frequency in simulation and experiment is within 4.6%.
文摘In this work, flexural properties and failure behavior of unidirectional (UD) carbon fiber reinforced polyamide 6 (CF/Nylon 6) and epoxy resin (CF/ Epoxy) laminates were investigated through three-point bending test. The mechanical properties and failure behavior of 0 and 90 degree CF/Nylon 6 and CF/Epoxy laminates were discussed based on the fiber volume fraction, fiber distribution, void content, interfacial properties, transversal tensile strength and fracture toughness. The effects of fiber volume fraction, fiber distribution, void content and their hybrid effect on the flexural properties were investigated. Step-by-step observation and scanning electron microscope observation of laminates after flexural tests were employed to analyze the fracture process.