The drag on a cylinder with an apple-shaped cross section was studied numerically in this paper. This cross section is adopted because the drag on an apple is known to be lower than that of a sphere. Since the hollows...The drag on a cylinder with an apple-shaped cross section was studied numerically in this paper. This cross section is adopted because the drag on an apple is known to be lower than that of a sphere. Since the hollows of an apple seem to be points of drag reduction, two-dimensional numerical simulations of cylinders with hollows of several shapes are carried out at a Reynolds number of 6.7 × 104 by using the vortex method to check their effects. The cylinder with hollows like those of a real apple attained a 13% reduction in drag compared with a circular cylinder. Other geometrical hollow-shapes, namely, V-shaped and U-shaped grooves, also reduced drag from the circular model, but these effects were less pronounced than those of the apple-shaped cross section. It was concluded that an apple-like hollows were effective for drag reduction of a cylin-der as well as a sphere.展开更多
文摘The drag on a cylinder with an apple-shaped cross section was studied numerically in this paper. This cross section is adopted because the drag on an apple is known to be lower than that of a sphere. Since the hollows of an apple seem to be points of drag reduction, two-dimensional numerical simulations of cylinders with hollows of several shapes are carried out at a Reynolds number of 6.7 × 104 by using the vortex method to check their effects. The cylinder with hollows like those of a real apple attained a 13% reduction in drag compared with a circular cylinder. Other geometrical hollow-shapes, namely, V-shaped and U-shaped grooves, also reduced drag from the circular model, but these effects were less pronounced than those of the apple-shaped cross section. It was concluded that an apple-like hollows were effective for drag reduction of a cylin-der as well as a sphere.