When designing solar systems and assessing the effectiveness of their many uses,estimating sun irradiance is a crucial first step.This study examined three approaches(ANN,GA-ANN,and ANFIS)for estimating daily global s...When designing solar systems and assessing the effectiveness of their many uses,estimating sun irradiance is a crucial first step.This study examined three approaches(ANN,GA-ANN,and ANFIS)for estimating daily global solar radiation(GSR)in the south of Algeria:Adrar,Ouargla,and Bechar.The proposed hybrid GA-ANN model,based on genetic algorithm-based optimization,was developed to improve the ANN model.The GA-ANN and ANFIS models performed better than the standalone ANN-based model,with GA-ANN being better suited for forecasting in all sites,and it performed the best with the best values in the testing phase of Coefficient of Determination(R=0.9005),Mean Absolute Percentage Error(MAPE=8.40%),and Relative Root Mean Square Error(rRMSE=12.56%).Nevertheless,the ANFIS model outperformed the GA-ANN model in forecasting daily GSR,with the best values of indicators when testing the model being R=0.9374,MAPE=7.78%,and rRMSE=10.54%.Generally,we may conclude that the initial ANN stand-alone model performance when forecasting solar radiation has been improved,and the results obtained after injecting the genetic algorithm into the ANN to optimize its weights were satisfactory.The model can be used to forecast daily GSR in dry climates and other climates and may also be helpful in selecting solar energy system installations and sizes.展开更多
Among all the plagues threatening cocoa cultivation in general, and particularly in West Africa, the swollen shoot viral disease is currently the most dangerous. The greatest challenge in the fight to eradicate this p...Among all the plagues threatening cocoa cultivation in general, and particularly in West Africa, the swollen shoot viral disease is currently the most dangerous. The greatest challenge in the fight to eradicate this pandemic remains its early detection. Traditional methods of swollen shoot detection are mostly based on visual observations, leading to late detection and/or diagnostic errors. The use of machine learning algorithms is now an alternative for effective plant disease detection. It is therefore crucial to provide efficient solutions to farmers’ cooperatives. In our study, we built a database of healthy and diseased cocoa leaves. We then explored the power of feature extractors based on convolutional neural networks such as VGG 19, Inception V3, DenseNet 201, and a custom CNN, combining their strengths with the XGBOOST classifier. The results of our experiments showed that this fusion of methods with XGBOOST yielded highly promising scores, outperforming the results of algorithms using the sigmoid function. These results were further consolidated by the use of evaluation metrics such as accuracy, mean squared error, F score, recall, and Matthews’s correlation coefficient. The proposed approach, combining state of the art feature extractors and the XGBOOST classifier, offers an efficient and reliable solution for the early detection of swollen shoot. Its implementation could significantly assist West African cocoa farmers in combating this devastating disease and preserving their crops.展开更多
The Covid-19 epidemic is an emerging infectious disease of the viral zoonosis type caused by the coronavirus strain SARS-CoV-2, it is classified as a human-to-human communicable disease and is currently a pandemic wor...The Covid-19 epidemic is an emerging infectious disease of the viral zoonosis type caused by the coronavirus strain SARS-CoV-2, it is classified as a human-to-human communicable disease and is currently a pandemic worldwide. In this paper, we propose conceptual mathematical models of the epidemic dynamics of four compartments. We have collected data from the Djibouti health ministry. We study the positivity, boundedness, existence and uniqueness of the weak solution. Next, we define the Basic reproduction number by the method of the DFE and EEP. Then, we study the local and global stability and the bifurcation analysis of equilibrium to examine its epidemiological relevance. Finally, we analyze the fit of the data in comparison with the result of our mathematical results, to validate the model and estimate the important model parameters and prediction about the disease. We consider the real cases of Djibouti from 15th March to 15th May 2021.展开更多
Growing concerns about environmental quality of cities are calling for sustainable road transportation technologies. EV (electric vehicles), for public and private transport, can contribute significantly to the lowe...Growing concerns about environmental quality of cities are calling for sustainable road transportation technologies. EV (electric vehicles), for public and private transport, can contribute significantly to the lowering of the current pollution levels. However, the EV use is currently facing several weaknesses among which are: limited driving range, high cost and overall limited efficiency. Electric vehicles management is a relatively recent problem; its purpose is to expedite the establishment of a costumer convenient, cost-effective, EV infrastructure. Inspire the relevance of the problem, a few small research communities in this field work on some of its aspects. In this work, some important issues of this problem are discussed and the contribution of combinatorial optimization tools for solving some challenging subproblems is studied.展开更多
A robust method is proposed for estimating discrete probability functions for small samples. The proposed approach introduces and minimizes a parameterized objective function that is analogous to free energy functions...A robust method is proposed for estimating discrete probability functions for small samples. The proposed approach introduces and minimizes a parameterized objective function that is analogous to free energy functions in statistical physics. A key feature of the method is a model of the parameter that controls the trade-off between likelihood and robustness in response to the degree of fluctuation. The method thus does not require the value of the parameter to be manually selected. It is proved that the estimator approaches the maximum likelihood estimator at the asymptotic limit. The effectiveness of the method in terms of robustness is demonstrated by experimental studies on point estimation for probability distributions with various entropies.展开更多
This paper focuses on a state sharing method for an artificial neural network (ANN) and hidden Markov model (HMM) hybrid on line handwriting recognition system. A modeling precision based distance measure is proposed ...This paper focuses on a state sharing method for an artificial neural network (ANN) and hidden Markov model (HMM) hybrid on line handwriting recognition system. A modeling precision based distance measure is proposed to describe similarity between two ANNs, which are used as HMM state models. Limiting maximum system performance loss, a minimum quantification error aimed hierarchical clustering algorithm is designed to choose the most representative models. The system performance is improved by about 1.5% while saving 40% of the system expense. About 92% of the performance may also be maintained while reducing 70% of system parameters. The suggested method is quite useful for designing pen based interface for various handheld devices.展开更多
This paper presents a simple complete K level tree (CKT) architecture for text database organization and rapid data filtering. A database is constructed as a CKT forest and each CKT contains data of the same length. T...This paper presents a simple complete K level tree (CKT) architecture for text database organization and rapid data filtering. A database is constructed as a CKT forest and each CKT contains data of the same length. The maximum depth and the minimum depth of an individual CKT are equal and identical to data’s length. Insertion and deletion operations are defined; storage method and filtering algorithm are also designed for good compensation between efficiency and complexity. Applications to computer aided teaching of Chinese and protein selection show that an about 30% reduction of storage consumption and an over 60% reduction of computation may be easily obtained.展开更多
Generalized Jacobi polynomials with indexes α,β∈ R are introduced and some basic properties are established. As examples of applications,the second- and fourth-order elliptic boundary value problems with Dirichlet ...Generalized Jacobi polynomials with indexes α,β∈ R are introduced and some basic properties are established. As examples of applications,the second- and fourth-order elliptic boundary value problems with Dirichlet or Robin boundary conditions are considered,and the generalized Jacobi spectral schemes are proposed. For the diagonalization of discrete systems,the Jacobi-Sobolev orthogonal basis functions are constructed,which allow the exact solutions and the approximate solutions to be represented in the forms of infinite and truncated Jacobi series. Error estimates are obtained and numerical results are provided to illustrate the effectiveness and the spectral accuracy.展开更多
This paper is devoted to Professor Benyu Guo's open question on the C1-conforming quadrilateral spectral element method for fourth-order equations which has been endeavored for years. Starting with generalized Jac...This paper is devoted to Professor Benyu Guo's open question on the C1-conforming quadrilateral spectral element method for fourth-order equations which has been endeavored for years. Starting with generalized Jacobi polynomials on the reference square, we construct the C1-conforming basis functions using the bilinear mapping from the reference square onto each quadrilateral element which fall into three categories-interior modes, edge modes, and vertex modes. In contrast to the triangular element, compulsively compensatory requirements on the global C1-continuity should be imposed for edge and vertex mode basis functions such that their normal derivatives on each common edge are reduced from rational functions to polynomials, which depend on only parameters of the common edge. It is amazing that the C1-conforming basis functions on each quadrilateral element contain polynomials in primitive variables, the completeness is then guaranteed and further confirmed by the numerical results on the Petrov-Galerkin spectral method for the non-homogeneous boundary value problem of fourth-order equations on an arbitrary quadrilateral. Finally, a C1-conforming quadrilateral spectral element method is proposed for the biharmonic eigenvalue problem, and numerical experiments demonstrate the effectiveness and efficiency of our spectral element method.展开更多
<span style="font-family:Verdana;">This paper represents</span> <span style="font-family:Verdana;">a continuation of</span><span style="color:#C45911;"> <...<span style="font-family:Verdana;">This paper represents</span> <span style="font-family:Verdana;">a continuation of</span><span style="color:#C45911;"> </span><span><span style="white-space:nowrap;"><a href="#ref1" target="_blank">[1]</a></span><span style="font-family:Verdana;"> and</span> <span style="white-space:nowrap;"><a href="#ref2" target="_blank">[2]</a></span></span><span style="font-family:Verdana;">. </span><span style="font-family:Verdana;">Here, we consider the numerical analysis of a non-trivial frictional contact problem in a form of a system of evolution nonlinear partial differential equations. The model describes the equilibrium of a viscoelastic body in sliding contact with a moving foundation. The contact is modeled with a multivalued normal compliance condition with memory term restricted by a unilateral constraint and is associated with a sliding version of Coulomb’s law of dry friction. After a description of the model and some assumptions, we derive a variational formulation of the problem, which consists of a system coupling a variational inequality for the displacement field and a nonlinear equation for the stress field. Then, we introduce a fully discrete scheme for the numerical approximation of the sliding contact problem. Under certain solution regularity assumptions, we derive an optimal order error estimate and we provide numerical validation of this result by considering some numerical simulations in the study of a two-dimensional problem.</span>展开更多
Increasing global energy consumption has become an urgent problem as natural energy sources such as oil,gas,and uranium are rapidly running out.Research into renewable energy sources such as solar energy is being purs...Increasing global energy consumption has become an urgent problem as natural energy sources such as oil,gas,and uranium are rapidly running out.Research into renewable energy sources such as solar energy is being pursued to counter this.Solar energy is one of the most promising renewable energy sources,as it has the potential to meet the world’s energy needs indefinitely.This study aims to develop and evaluate artificial intelligence(AI)models for predicting hourly global irradiation.The hyperparameters were optimized using the Broyden-FletcherGoldfarb-Shanno(BFGS)quasi-Newton training algorithm and STATISTICA software.Data from two stations in Algeria with different climatic zones were used to develop the model.Various error measurements were used to determine the accuracy of the prediction models,including the correlation coefficient,the mean absolute error,and the root mean square error(RMSE).The optimal support vector machine(SVM)model showed exceptional efficiency during the training phase,with a high correlation coefficient(R=0.99)and a low mean absolute error(MAE=26.5741 Wh/m^(2)),as well as an RMSE of 38.7045 Wh/m^(2) across all phases.Overall,this study highlights the importance of accurate prediction models in the renewable energy,which can contribute to better energy management and planning.展开更多
Online Social Networks(OSNs)are based on the sharing of different types of information and on various interactions(comments,reactions,and sharing).One of these important actions is the emotional reaction to the conten...Online Social Networks(OSNs)are based on the sharing of different types of information and on various interactions(comments,reactions,and sharing).One of these important actions is the emotional reaction to the content.The diversity of reaction types available on Facebook(namely FB)enables users to express their feelings,and its traceability creates and enriches the users’emotional identity in the virtual world.This paper is based on the analysis of 119875012 FB reactions(Like,Love,Haha,Wow,Sad,Angry,Thankful,and Pride)made at multiple levels(publications,comments,and sub-comments)to study and classify the users’emotional behavior,visualize the distribution of different types of reactions,and analyze the gender impact on emotion generation.All of these can be achieved by addressing these research questions:who reacts the most?Which emotion is the most expressed?展开更多
This work is devoted to the study of the dynamics of one-dimensional monotone nonautonomous(cocycle) dynamical systems. A description of the structures of their invariant sets, omega limit sets,Bohr/Levitan almost per...This work is devoted to the study of the dynamics of one-dimensional monotone nonautonomous(cocycle) dynamical systems. A description of the structures of their invariant sets, omega limit sets,Bohr/Levitan almost periodic and almost automorphic motions, global attractors, and pinched and minimalsets is given. An application of our general results is given to scalar differential and difference equations.展开更多
An efficient spectral-Galerkin method for eigenvalue problems of the integral fractional Laplacian on a unit ball of any dimension is proposed in this paper.The symmetric positive definite linear system is retained ex...An efficient spectral-Galerkin method for eigenvalue problems of the integral fractional Laplacian on a unit ball of any dimension is proposed in this paper.The symmetric positive definite linear system is retained explicitly which plays an important role in the numerical analysis.And a sharp estimate on the algebraic system's condition number is established which behaves as N4s with respect to the polynomial degree N,where 2s is the fractional derivative order.The regularity estimate of solutions to source problems of the fractional Laplacian in arbitrary dimensions is firstly investigated in weighted Sobolev spaces.Then the regularity of eigenfunctions of the fractional Laplacian eigenvalue problem is readily derived.Meanwhile,rigorous error estimates of the eigenvalues and eigenvectors are ob-tained.Numerical experiments are presented to demonstrate the accuracy and efficiency and to validate the theoretical results.展开更多
This paper presents a method for the animation of leaf movement. Leaves are classified into two classes: moveable and non-moveable. For moveable leaves, their movements consist of two parts: leafstalk rotation and lea...This paper presents a method for the animation of leaf movement. Leaves are classified into two classes: moveable and non-moveable. For moveable leaves, their movements consist of two parts: leafstalk rotation and leaf surface rotation. For each rotation, a movement model was constructed and the movement was computed based on each model, respectively. The final leaf movements were obtained by superposition of these two rotations. The method's principle is simple and easy to use.展开更多
In this study, the entropy generation and the heat transfer of pulsating air flow in a horizontal channel with an open cavity heated from below with uniform temperature distribution are numerically investigated. A num...In this study, the entropy generation and the heat transfer of pulsating air flow in a horizontal channel with an open cavity heated from below with uniform temperature distribution are numerically investigated. A numerical method based on finite volume method is used to discretize the governing equations. At the inlet of the channel, pulsating velocity is imposed for a range of Strouhal numbers Stpfrom 0 to 1 and amplitude Apfrom 0 to 0.5. The effects of the governing parameters, such as frequency and amplitude of the pulsation, Richardson number, Ri, and aspect ratio of the cavity, L/H, on the flow field, temperature distribution, average Nusselt number and average entropy generation, are numerically analyzed. The results indicate that the heat transfer and entropy generation are strongly affected by the frequency and amplitude of the pulsation and this depends on the Richardson number and aspect ratio of the cavity. The pulsation is more effective with the aspect ratio of the cavity L/H= 1.5 in terms of heat transfer enhancement and entropy generation minimization.展开更多
In this paper,we develop an efficient Hermite spectral-Galerkin method for nonlocal diffusion equations in unbounded domains.We show that the use of the Hermite basis can de-convolute the troublesome convolutional ope...In this paper,we develop an efficient Hermite spectral-Galerkin method for nonlocal diffusion equations in unbounded domains.We show that the use of the Hermite basis can de-convolute the troublesome convolutional operations involved in the nonlocal Laplacian.As a result,the“stiffness”matrix can be fast computed and assembled via the four-point stable recursive algorithm with O(N^(2))arithmetic operations.Moreover,the singular factor in a typical kernel function can be fully absorbed by the basis.With the aid of Fourier analysis,we can prove the convergence of the scheme.We demonstrate that the recursive computation of the entries of the stiffness matrix can be extended to the two-dimensional nonlocal Laplacian using the isotropic Hermite functions as basis functions.We provide ample numerical results to illustrate the accuracy and efficiency of the proposed algorithms.展开更多
In the absence of a central naming authority on the Semantic Web,it is common for different data sets to refer to the same thing by different names.Whenever multiple names are used to denote the same thing,owl:sameAs ...In the absence of a central naming authority on the Semantic Web,it is common for different data sets to refer to the same thing by different names.Whenever multiple names are used to denote the same thing,owl:sameAs statements are needed in order to link the data and foster reuse.Studies that date back as far as 2009,observed that the owl:sameAs property is sometimes used incorrectly.In our previous work,we presented an identity graph containing over 500 million explicit and 35 billion implied owl:sameAs statements,and presented a scalable approach for automatically calculating an error degree for each identity statement.In this paper,we generate subgraphs of the overall identity graph that correspond to certain error degrees.We show that even though the Semantic Web contains many erroneous owl:sameAs statements,it is still possible to use Semantic Web data while at the same time minimising the adverse effects of misusing owl:sameAs.展开更多
文摘When designing solar systems and assessing the effectiveness of their many uses,estimating sun irradiance is a crucial first step.This study examined three approaches(ANN,GA-ANN,and ANFIS)for estimating daily global solar radiation(GSR)in the south of Algeria:Adrar,Ouargla,and Bechar.The proposed hybrid GA-ANN model,based on genetic algorithm-based optimization,was developed to improve the ANN model.The GA-ANN and ANFIS models performed better than the standalone ANN-based model,with GA-ANN being better suited for forecasting in all sites,and it performed the best with the best values in the testing phase of Coefficient of Determination(R=0.9005),Mean Absolute Percentage Error(MAPE=8.40%),and Relative Root Mean Square Error(rRMSE=12.56%).Nevertheless,the ANFIS model outperformed the GA-ANN model in forecasting daily GSR,with the best values of indicators when testing the model being R=0.9374,MAPE=7.78%,and rRMSE=10.54%.Generally,we may conclude that the initial ANN stand-alone model performance when forecasting solar radiation has been improved,and the results obtained after injecting the genetic algorithm into the ANN to optimize its weights were satisfactory.The model can be used to forecast daily GSR in dry climates and other climates and may also be helpful in selecting solar energy system installations and sizes.
文摘Among all the plagues threatening cocoa cultivation in general, and particularly in West Africa, the swollen shoot viral disease is currently the most dangerous. The greatest challenge in the fight to eradicate this pandemic remains its early detection. Traditional methods of swollen shoot detection are mostly based on visual observations, leading to late detection and/or diagnostic errors. The use of machine learning algorithms is now an alternative for effective plant disease detection. It is therefore crucial to provide efficient solutions to farmers’ cooperatives. In our study, we built a database of healthy and diseased cocoa leaves. We then explored the power of feature extractors based on convolutional neural networks such as VGG 19, Inception V3, DenseNet 201, and a custom CNN, combining their strengths with the XGBOOST classifier. The results of our experiments showed that this fusion of methods with XGBOOST yielded highly promising scores, outperforming the results of algorithms using the sigmoid function. These results were further consolidated by the use of evaluation metrics such as accuracy, mean squared error, F score, recall, and Matthews’s correlation coefficient. The proposed approach, combining state of the art feature extractors and the XGBOOST classifier, offers an efficient and reliable solution for the early detection of swollen shoot. Its implementation could significantly assist West African cocoa farmers in combating this devastating disease and preserving their crops.
文摘The Covid-19 epidemic is an emerging infectious disease of the viral zoonosis type caused by the coronavirus strain SARS-CoV-2, it is classified as a human-to-human communicable disease and is currently a pandemic worldwide. In this paper, we propose conceptual mathematical models of the epidemic dynamics of four compartments. We have collected data from the Djibouti health ministry. We study the positivity, boundedness, existence and uniqueness of the weak solution. Next, we define the Basic reproduction number by the method of the DFE and EEP. Then, we study the local and global stability and the bifurcation analysis of equilibrium to examine its epidemiological relevance. Finally, we analyze the fit of the data in comparison with the result of our mathematical results, to validate the model and estimate the important model parameters and prediction about the disease. We consider the real cases of Djibouti from 15th March to 15th May 2021.
文摘Growing concerns about environmental quality of cities are calling for sustainable road transportation technologies. EV (electric vehicles), for public and private transport, can contribute significantly to the lowering of the current pollution levels. However, the EV use is currently facing several weaknesses among which are: limited driving range, high cost and overall limited efficiency. Electric vehicles management is a relatively recent problem; its purpose is to expedite the establishment of a costumer convenient, cost-effective, EV infrastructure. Inspire the relevance of the problem, a few small research communities in this field work on some of its aspects. In this work, some important issues of this problem are discussed and the contribution of combinatorial optimization tools for solving some challenging subproblems is studied.
文摘A robust method is proposed for estimating discrete probability functions for small samples. The proposed approach introduces and minimizes a parameterized objective function that is analogous to free energy functions in statistical physics. A key feature of the method is a model of the parameter that controls the trade-off between likelihood and robustness in response to the degree of fluctuation. The method thus does not require the value of the parameter to be manually selected. It is proved that the estimator approaches the maximum likelihood estimator at the asymptotic limit. The effectiveness of the method in terms of robustness is demonstrated by experimental studies on point estimation for probability distributions with various entropies.
文摘This paper focuses on a state sharing method for an artificial neural network (ANN) and hidden Markov model (HMM) hybrid on line handwriting recognition system. A modeling precision based distance measure is proposed to describe similarity between two ANNs, which are used as HMM state models. Limiting maximum system performance loss, a minimum quantification error aimed hierarchical clustering algorithm is designed to choose the most representative models. The system performance is improved by about 1.5% while saving 40% of the system expense. About 92% of the performance may also be maintained while reducing 70% of system parameters. The suggested method is quite useful for designing pen based interface for various handheld devices.
文摘This paper presents a simple complete K level tree (CKT) architecture for text database organization and rapid data filtering. A database is constructed as a CKT forest and each CKT contains data of the same length. The maximum depth and the minimum depth of an individual CKT are equal and identical to data’s length. Insertion and deletion operations are defined; storage method and filtering algorithm are also designed for good compensation between efficiency and complexity. Applications to computer aided teaching of Chinese and protein selection show that an about 30% reduction of storage consumption and an over 60% reduction of computation may be easily obtained.
基金the National Natural Science Foundation of China (Nos.11571238,11601332,91130014,11471312 and 91430216).
文摘Generalized Jacobi polynomials with indexes α,β∈ R are introduced and some basic properties are established. As examples of applications,the second- and fourth-order elliptic boundary value problems with Dirichlet or Robin boundary conditions are considered,and the generalized Jacobi spectral schemes are proposed. For the diagonalization of discrete systems,the Jacobi-Sobolev orthogonal basis functions are constructed,which allow the exact solutions and the approximate solutions to be represented in the forms of infinite and truncated Jacobi series. Error estimates are obtained and numerical results are provided to illustrate the effectiveness and the spectral accuracy.
文摘This paper is devoted to Professor Benyu Guo's open question on the C1-conforming quadrilateral spectral element method for fourth-order equations which has been endeavored for years. Starting with generalized Jacobi polynomials on the reference square, we construct the C1-conforming basis functions using the bilinear mapping from the reference square onto each quadrilateral element which fall into three categories-interior modes, edge modes, and vertex modes. In contrast to the triangular element, compulsively compensatory requirements on the global C1-continuity should be imposed for edge and vertex mode basis functions such that their normal derivatives on each common edge are reduced from rational functions to polynomials, which depend on only parameters of the common edge. It is amazing that the C1-conforming basis functions on each quadrilateral element contain polynomials in primitive variables, the completeness is then guaranteed and further confirmed by the numerical results on the Petrov-Galerkin spectral method for the non-homogeneous boundary value problem of fourth-order equations on an arbitrary quadrilateral. Finally, a C1-conforming quadrilateral spectral element method is proposed for the biharmonic eigenvalue problem, and numerical experiments demonstrate the effectiveness and efficiency of our spectral element method.
文摘<span style="font-family:Verdana;">This paper represents</span> <span style="font-family:Verdana;">a continuation of</span><span style="color:#C45911;"> </span><span><span style="white-space:nowrap;"><a href="#ref1" target="_blank">[1]</a></span><span style="font-family:Verdana;"> and</span> <span style="white-space:nowrap;"><a href="#ref2" target="_blank">[2]</a></span></span><span style="font-family:Verdana;">. </span><span style="font-family:Verdana;">Here, we consider the numerical analysis of a non-trivial frictional contact problem in a form of a system of evolution nonlinear partial differential equations. The model describes the equilibrium of a viscoelastic body in sliding contact with a moving foundation. The contact is modeled with a multivalued normal compliance condition with memory term restricted by a unilateral constraint and is associated with a sliding version of Coulomb’s law of dry friction. After a description of the model and some assumptions, we derive a variational formulation of the problem, which consists of a system coupling a variational inequality for the displacement field and a nonlinear equation for the stress field. Then, we introduce a fully discrete scheme for the numerical approximation of the sliding contact problem. Under certain solution regularity assumptions, we derive an optimal order error estimate and we provide numerical validation of this result by considering some numerical simulations in the study of a two-dimensional problem.</span>
文摘Increasing global energy consumption has become an urgent problem as natural energy sources such as oil,gas,and uranium are rapidly running out.Research into renewable energy sources such as solar energy is being pursued to counter this.Solar energy is one of the most promising renewable energy sources,as it has the potential to meet the world’s energy needs indefinitely.This study aims to develop and evaluate artificial intelligence(AI)models for predicting hourly global irradiation.The hyperparameters were optimized using the Broyden-FletcherGoldfarb-Shanno(BFGS)quasi-Newton training algorithm and STATISTICA software.Data from two stations in Algeria with different climatic zones were used to develop the model.Various error measurements were used to determine the accuracy of the prediction models,including the correlation coefficient,the mean absolute error,and the root mean square error(RMSE).The optimal support vector machine(SVM)model showed exceptional efficiency during the training phase,with a high correlation coefficient(R=0.99)and a low mean absolute error(MAE=26.5741 Wh/m^(2)),as well as an RMSE of 38.7045 Wh/m^(2) across all phases.Overall,this study highlights the importance of accurate prediction models in the renewable energy,which can contribute to better energy management and planning.
文摘Online Social Networks(OSNs)are based on the sharing of different types of information and on various interactions(comments,reactions,and sharing).One of these important actions is the emotional reaction to the content.The diversity of reaction types available on Facebook(namely FB)enables users to express their feelings,and its traceability creates and enriches the users’emotional identity in the virtual world.This paper is based on the analysis of 119875012 FB reactions(Like,Love,Haha,Wow,Sad,Angry,Thankful,and Pride)made at multiple levels(publications,comments,and sub-comments)to study and classify the users’emotional behavior,visualize the distribution of different types of reactions,and analyze the gender impact on emotion generation.All of these can be achieved by addressing these research questions:who reacts the most?Which emotion is the most expressed?
基金supported by the State Program of the Republic of Moldova “Multivalued Dynamical Systems, Singular Perturbations, Integral Operators and Non-Associative Algebraic Structures (Grant No. 20.80009.5007.25)”
文摘This work is devoted to the study of the dynamics of one-dimensional monotone nonautonomous(cocycle) dynamical systems. A description of the structures of their invariant sets, omega limit sets,Bohr/Levitan almost periodic and almost automorphic motions, global attractors, and pinched and minimalsets is given. An application of our general results is given to scalar differential and difference equations.
基金supported by the National Natural Science Foundation of China(Grant No.12101325)and by the NUPTSF(Grant No.NY220162)The second author was supported by the National Natural Science Foundation of China(Grant Nos.12131005,11971016)+1 种基金The third author was supported by the National Natural Science Foundation of China(Grant No.12131005)The fifth author was supported by the National Natural Science Foundation of China(Grant Nos.12131005,U2230402).
文摘An efficient spectral-Galerkin method for eigenvalue problems of the integral fractional Laplacian on a unit ball of any dimension is proposed in this paper.The symmetric positive definite linear system is retained explicitly which plays an important role in the numerical analysis.And a sharp estimate on the algebraic system's condition number is established which behaves as N4s with respect to the polynomial degree N,where 2s is the fractional derivative order.The regularity estimate of solutions to source problems of the fractional Laplacian in arbitrary dimensions is firstly investigated in weighted Sobolev spaces.Then the regularity of eigenfunctions of the fractional Laplacian eigenvalue problem is readily derived.Meanwhile,rigorous error estimates of the eigenvalues and eigenvectors are ob-tained.Numerical experiments are presented to demonstrate the accuracy and efficiency and to validate the theoretical results.
基金the National Natural Science Foundation of China (No.69633010) and theresearch grant of University of Macao (RG009 /99- OOS /
文摘This paper presents a method for the animation of leaf movement. Leaves are classified into two classes: moveable and non-moveable. For moveable leaves, their movements consist of two parts: leafstalk rotation and leaf surface rotation. For each rotation, a movement model was constructed and the movement was computed based on each model, respectively. The final leaf movements were obtained by superposition of these two rotations. The method's principle is simple and easy to use.
文摘In this study, the entropy generation and the heat transfer of pulsating air flow in a horizontal channel with an open cavity heated from below with uniform temperature distribution are numerically investigated. A numerical method based on finite volume method is used to discretize the governing equations. At the inlet of the channel, pulsating velocity is imposed for a range of Strouhal numbers Stpfrom 0 to 1 and amplitude Apfrom 0 to 0.5. The effects of the governing parameters, such as frequency and amplitude of the pulsation, Richardson number, Ri, and aspect ratio of the cavity, L/H, on the flow field, temperature distribution, average Nusselt number and average entropy generation, are numerically analyzed. The results indicate that the heat transfer and entropy generation are strongly affected by the frequency and amplitude of the pulsation and this depends on the Richardson number and aspect ratio of the cavity. The pulsation is more effective with the aspect ratio of the cavity L/H= 1.5 in terms of heat transfer enhancement and entropy generation minimization.
基金supported in part by the National Natural Science Foundation of China(Grant Nos.11871145,11971016,12131005)The research of L.-L.Wang is partially supported by Singapore MOE AcRF Tier 1(Grant RG 15/21)R.Liu would like to thank Nanyang Technological University for hosting the visit where this research topic was initialised.
文摘In this paper,we develop an efficient Hermite spectral-Galerkin method for nonlocal diffusion equations in unbounded domains.We show that the use of the Hermite basis can de-convolute the troublesome convolutional operations involved in the nonlocal Laplacian.As a result,the“stiffness”matrix can be fast computed and assembled via the four-point stable recursive algorithm with O(N^(2))arithmetic operations.Moreover,the singular factor in a typical kernel function can be fully absorbed by the basis.With the aid of Fourier analysis,we can prove the convergence of the scheme.We demonstrate that the recursive computation of the entries of the stiffness matrix can be extended to the two-dimensional nonlocal Laplacian using the isotropic Hermite functions as basis functions.We provide ample numerical results to illustrate the accuracy and efficiency of the proposed algorithms.
文摘In the absence of a central naming authority on the Semantic Web,it is common for different data sets to refer to the same thing by different names.Whenever multiple names are used to denote the same thing,owl:sameAs statements are needed in order to link the data and foster reuse.Studies that date back as far as 2009,observed that the owl:sameAs property is sometimes used incorrectly.In our previous work,we presented an identity graph containing over 500 million explicit and 35 billion implied owl:sameAs statements,and presented a scalable approach for automatically calculating an error degree for each identity statement.In this paper,we generate subgraphs of the overall identity graph that correspond to certain error degrees.We show that even though the Semantic Web contains many erroneous owl:sameAs statements,it is still possible to use Semantic Web data while at the same time minimising the adverse effects of misusing owl:sameAs.