期刊文献+
共找到7篇文章
< 1 >
每页显示 20 50 100
Enhancing microseismic/acoustic emission source localization accuracy with an outlier-robust kernel density estimation approach 被引量:1
1
作者 Jie Chen Huiqiong Huang +4 位作者 Yichao Rui Yuanyuan Pu Sheng Zhang Zheng Li Wenzhong Wang 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2024年第7期943-956,共14页
Monitoring sensors in complex engineering environments often record abnormal data,leading to significant positioning errors.To reduce the influence of abnormal arrival times,we introduce an innovative,outlier-robust l... Monitoring sensors in complex engineering environments often record abnormal data,leading to significant positioning errors.To reduce the influence of abnormal arrival times,we introduce an innovative,outlier-robust localization method that integrates kernel density estimation(KDE)with damping linear correction to enhance the precision of microseismic/acoustic emission(MS/AE)source positioning.Our approach systematically addresses abnormal arrival times through a three-step process:initial location by 4-arrival combinations,elimination of outliers based on three-dimensional KDE,and refinement using a linear correction with an adaptive damping factor.We validate our method through lead-breaking experiments,demonstrating over a 23%improvement in positioning accuracy with a maximum error of 9.12 mm(relative error of 15.80%)—outperforming 4 existing methods.Simulations under various system errors,outlier scales,and ratios substantiate our method’s superior performance.Field blasting experiments also confirm the practical applicability,with an average positioning error of 11.71 m(relative error of 7.59%),compared to 23.56,66.09,16.95,and 28.52 m for other methods.This research is significant as it enhances the robustness of MS/AE source localization when confronted with data anomalies.It also provides a practical solution for real-world engineering and safety monitoring applications. 展开更多
关键词 Microseismic source/acoustic emission(MS/AE) Kernel density estimation(KDE) Damping linear correction Source location Abnormal arrivals
在线阅读 下载PDF
Seepage field distribution and water inflow laws of tunnels in water-rich regions 被引量:7
2
作者 LI Zheng CHEN Zi-quan +2 位作者 HE Chuan MA Chun-chi DUAN Chao-ran 《Journal of Mountain Science》 SCIE CSCD 2022年第2期591-605,共15页
Currently,the water inrush hazards during tunnel construction,the water leakage during tunnel operation,and the accompanying disturbances to the ecological environment have become the main problems that affect the str... Currently,the water inrush hazards during tunnel construction,the water leakage during tunnel operation,and the accompanying disturbances to the ecological environment have become the main problems that affect the structural safety of tunnels in water-rich regions.In this paper,a tunnel seepage model testing system was used to conduct experiments of the grouting circle and primary support with different permeability coefficients.The influences of the supporting structures on the water inflow laws and the distribution of the water pressure in the tunnel were analyzed.With the decrease in the permeability coefficient of the grouting circle or the primary support,the inflow rate of water into the tunnel showed a non-linear decreasing trend.In comparison,the water inflow reduction effect of grouting circle was much better than that of primary support.With the increase of the permeability coefficient of the grouting ring,the water pressure behind the primary lining increases gradually,while the water pressure behind the grouting ring decreases.Thus,the grouting of surrounding rock during the construction of water-rich tunnel can effectively weaken the hydraulic connection,reduce the influence range of seepage,and significantly reduce the decline of groundwater.Meanwhile,the seepage tests at different hydrostatic heads and hydrodynamic heads during tunnel operation period were also conducted.As the hydrostatic head decreased,the water pressure at each characteristic point decreased approximately linearly,and the water inflow rate also had a gradual downward trend.Under the action of hydrodynamic head,the water pressure had an obvious lagging effect,which was not conducive to the stability of the supporting structures,and it could be mitigated by actively regulating the drainage rate.Compared with the hydrostatic head,the hydrodynamic head could change the real-time rate of water inflow to the tunnel and broke the dynamic balance between the water pressure and water inflow rate,thereby affecting the stress state on the supporting structures. 展开更多
关键词 Water-rich tunnel Seepage field distribution Water inflow law Construction period Operation period
在线阅读 下载PDF
Numerical simulation and analysis of the pile underpinning technology used in shield tunnel crossings on bridge pile foundations 被引量:13
3
作者 Zheng Li Ziquan Chen +2 位作者 Lin Wang Zhikai Zeng Dongming Gu 《Underground Space》 SCIE EI 2021年第4期396-408,共13页
Currently,the pile foundation underpinning technology is widely used when underground transportation infrastructure passes through existing buildings or structures in urban areas.This study aims to investigate stress ... Currently,the pile foundation underpinning technology is widely used when underground transportation infrastructure passes through existing buildings or structures in urban areas.This study aims to investigate stress transfer mechanisms in pile foundations during an underpinning process as well as the influence of shield tunnel construction on pile stability.To this end,the pile foundation underpinning technology used in China’s Shenzhen Metro Line 10 crossing through the bridge pile foundation group of the Guangzhou-Shenzhen highway was analyzed in detailed.The refined numerical simulation of the pile foundation underpinning and shield tunnel construction processes were conducted using the fast Lagrangian analysis of continua in 3 dimensions(FLAC3D)software.The results demonstrate that after the pile foundation underpinned,the previous bridge load system of bridge panel→pile foundation→bearing soil would transform into a bridge panel→existing pile foundation→new underpinning pile→deep bearing soil stratum structure.The overlying load on the underpinned pile could be effectively transferred to a new underpinning pile.In the process of underpinning and tunnel excavation,the settlement and deformation of the foundation can improve the tip resistance and shaft friction of piles,which in turn,can reduce the maximum principal stress in the pile foundation group.The deformation of the bridge pile foundation is mainly caused by ground loss and excavation disturbance generated during shield tunneling as the settlement induced by pile foundation underpinning accounts for approximately 20%-30% of the total settlement.The reduction effects of settlement deformation,lateral displacement,and principal stress are mainly manifested in underpinning piles,while the non-underpinning pile exhibits minimal variation.Meanwhile,the deformation of the segment lining structure of the shield tunnel primarily occurs near the underpinning area of the pile foundation,and it is mainly settlement deformation with a small horizontal displacement. 展开更多
关键词 Bridge pile foundation Shield tunnel Pile underpinning technology Numerical simulation
原文传递
Visualization and digitization of model tunnel deformation via transparent soil testing technique 被引量:4
4
作者 Wengang Zhang Haiyi Zhong +3 位作者 Yuzhou Xiang Daifeng Wu Zhikai Zeng Yanmei Zhang 《Underground Space》 SCIE EI 2022年第4期564-576,共13页
With the increasing demand for transportation infrastructure,the construction of urban tunnel systems linking different areas is indispensable.The deformation and the failure process during a tunnel excavation are ess... With the increasing demand for transportation infrastructure,the construction of urban tunnel systems linking different areas is indispensable.The deformation and the failure process during a tunnel excavation are essential concerns for geotechnical engineers.However,few studies have systematically investigated the effect of the ground loss ratio on tunnel deformation and the inequality between the ground loss ratio and the volume of the settlement trough.An experimental study using the transparent soil testing technique is performed herein for better visualization and digitization purposes.The three dimensional vertical and horizontal deformation patterns of a single tunnel are investigated for both the surface and the stratum right below considering different ground loss ratios.The relationship among the empirical constant of the settlement trough width,buried depth,depth-diameter ratio,and ground loss ratio is presented. 展开更多
关键词 Transparent soil TUNNEL Model test SETTLEMENT Horizontal displacement
原文传递
Fatigue damage analysis of ballastless slab track in heavy-haul railway tunnels 被引量:2
5
作者 Zi-qiang Li Zheng Li +2 位作者 Wei-wei Huang Hong-rui Zhang Hang Zhang 《Underground Space》 SCIE EI 2022年第3期440-452,共13页
A ballastless slab track,which is commonly used in the track structures of heavy-haul railway tunnels,was analysed based on field measurement data of the Fuyingzi Tunnel on the Zhangtang Railway.In accordance with the... A ballastless slab track,which is commonly used in the track structures of heavy-haul railway tunnels,was analysed based on field measurement data of the Fuyingzi Tunnel on the Zhangtang Railway.In accordance with the measured data,the dynamic load thresholds and distributions on the surface and bottom of the ballastless slab track were investigated.A fatigue damage analysis of the ballastless slab track was performed based on the dynamic load time–history curve.The results show that the ballastless slab track can accomplish train load attenuation and reduce the dynamic load from heavy-haul trains by 47.22%from the surface to the bottom.In addition,the distribution at the bottom of the ballastless slab track exhibited a triangular shape,and the dynamic load threshold at the line centre accounted for 78.67%of that at the track position.Meanwhile,the distribution at the surface was saddle-shaped;the dynamic load threshold at the track position accounted for 79.55%of that at the line centre position.The fatigue damage of the ballastless slab track was analysed effectively by combining the measured data and the linear fatigue damage theory.Moreover,the accuracy of the calculation results was verified based on the measured dynamic stress of the ballastless slab track structure.The dynamic action of the train load led to more-concentrated damage to the track bed,and the damage occurred earlier than that in the ordinary line.The axle load was the primary influencing factor of the track bed fatigue damage,and the damage mainly occurred in the track position.These results provide a theoretical basis for performing stress analysis and designing parameters for ballastless slab tracks in heavy-haul railway tunnels. 展开更多
关键词 Heavy-haul railway tunnel Numerical simulation results Ballastless slab track Fatigue damage
原文传递
Study on influence of key blasthole parameters on tunnel overbreak 被引量:1
6
作者 Zi-qiang Li Zheng Li +2 位作者 Wei-wei Huang Xuan-ming Ding Hang Zhang 《Underground Space》 SCIE EI CSCD 2023年第2期76-90,共15页
To determine the influence of key blasthole parameters on tunnel overbreak during blasting construction,an intelligent detection sys-tem for tunnel blasting construction is independently developed.And the key blasthol... To determine the influence of key blasthole parameters on tunnel overbreak during blasting construction,an intelligent detection sys-tem for tunnel blasting construction is independently developed.And the key blasthole parameters and overbreak of a typical section of a single line tunnel under the condition of Class V surrounding rock are analyzed and detected.The actual data obtained is compared with the results of numerical simulations and theoretical calculations.The results are as follows:(1)Quantitative analysis is performed based on the blasthole angle,opening position,and charge mass by the self-developed intelligent detection equipment for blasthole parameters,which can be used to guide the drilling construction.Intelligent scanning equipment for outline excavation can be used to image the actual excavation section in real-time and has the advantages of high precision and fast speed;(2)Tunnel overbreak can be regarded as consisting of two parts:the surrounding rock damage caused by the blasting load,and the collapse of the surrounding rock caused by the blasthole opening position.Every parameter of the peripheral hole will affect the tunnel overbreak;however,the key parameter is the blasthole opening position;(3)The distributions of the tunnel overbreak volume obtained with the theoretical analysis,finite element simulation,and measurements are basically consistent.Under the condition of Class V surrounding rock,the overbreak of this single line tunnel can reach 14.1–78.2 cm.To meet the specification requirements,the opening position and construction accuracy of the peripheral hole should be strictly controlled. 展开更多
关键词 Tunnel blasting Blasthole parameters Tunnel overbreak Surrounding rock damage Smooth surface blasting
原文传递
Refined model analysis of basement rock degradation mechanism of heavy-haul railway tunnel 被引量:1
7
作者 Zheng Li Ziqiang Li +3 位作者 Ruyi Cai Yang Hua Lin Wang Dongming Gu 《Underground Space》 SCIE EI 2021年第3期342-352,共11页
This study investigated the degradation mechanism of the surrounding rock of a heavy-haul railway under a water-rich condition,based on the construction of the Taihangshan tunnel for the Wari Railway,a heavy-haul rail... This study investigated the degradation mechanism of the surrounding rock of a heavy-haul railway under a water-rich condition,based on the construction of the Taihangshan tunnel for the Wari Railway,a heavy-haul railway that used standard construction practices for axle loads of 30 t.Remote monitoring demonstrated that the coupling effect between the dynamic load of a heavy-haul train and the groundwater leads to the deterioration and hollowing of the surrounding rock.This study clarified the void evolution process and deterioration mechanism of the basement rock under the comprehensive influence of the groundwater–train dynamic load using a refined discrete element numerical simulation.The results revealed that the groundwater was the primary influencing factor in the deterioration of the lower part of the heavy-haul railway tunnel.Rock particles were gradually lost under the effects of long-term erosion due to groundwater and heavy-haul trains,which inevitably damaged the basement rock after the construction was completed.Based on this observation,the critical conditions for the deterioration and attenuation law of the physical parameters of the basement rock were obtained.The results of this study can provide ideas and serve as a reference for the forecasting and disaster treatment of basement rock damage in heavy-haul railway tunnels. 展开更多
关键词 Heavy-haul railway tunnel Refined model analysis Degradation mechanism Surrounding rock Water-rich condition
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部