As one of the seven scientific payloads on board the Tianwen-1 orbiter,the Mars Orbiter Magnetometer(MOMAG)will measure the magnetic fields of and surrounding Mars to study its space environment and the interaction wi...As one of the seven scientific payloads on board the Tianwen-1 orbiter,the Mars Orbiter Magnetometer(MOMAG)will measure the magnetic fields of and surrounding Mars to study its space environment and the interaction with the solar wind.The instrument consists of two identical triaxial fluxgate magnetometer sensors,mounted on a 3.19 meter-long boom with a seperation of about 90 cm.The dual-magnetometers configuration will help eliminate the magnetic field interference generated by the spacecraft platform and payloads.The sensors are controlled by an electric box mounted inside the orbiter.Each magnetometer measures the ambient vector magnetic field over a wide dynamic range(to 10,000 nT per axis)with a resolution of 1.19 pT.Both magnetometers sample the ambient magnetic field at an intrinsic frequency of 128 Hz,but will operate in a model with alternating frequency between 1 and 32 Hz to meet telemetry allocations.展开更多
The space-borne fluxgate magnetometer(FGM)requires regular in-flight calibration to obtain its zero offset.Recently,Wang GQ and Pan ZH(2021a)developed a new method for the zero offset calibration based on the properti...The space-borne fluxgate magnetometer(FGM)requires regular in-flight calibration to obtain its zero offset.Recently,Wang GQ and Pan ZH(2021a)developed a new method for the zero offset calibration based on the properties of Alfvén waves.They found that an optimal offset line(OOL)exists in the offset cube for a pure Alfvén wave and that the zero offset can be determined by the intersection of at least two nonparallel OOLs.Because no pure Alfvén waves exist in the interplanetary magnetic field,calculation of the zero offset relies on the selection of highly Alfvénic fluctuation events.Here,we propose an automatic procedure to find highly Alfvénic fluctuations in the solar wind and calculate the zero offset.This procedure includes three parts:(1)selecting potential Alfvénic fluctuation events,(2)obtaining the OOL,and(3)determining the zero offset.We tested our automatic procedure by applying it to the magnetic field data measured by the FGM onboard the Venus Express.The tests revealed that our automatic procedure was able to achieve results as good as those determined by the Davis-Smith method.One advantage of our procedure is that the selection criteria and the process for selecting the highly Alfvénic fluctuation events are simpler.Our automatic procedure could also be applied to find fluctuation events for the Davis-Smith method.展开更多
We investigated the variations of equatorial plasma bubbles(EPBs)in the East-Asian sector during a strong geomagnetic storm in October 2016,based on observations from the Beidou geostationary(GEO)satellites,Swarm sate...We investigated the variations of equatorial plasma bubbles(EPBs)in the East-Asian sector during a strong geomagnetic storm in October 2016,based on observations from the Beidou geostationary(GEO)satellites,Swarm satellite and ground-based ionosonde.Significant nighttime depletions of F region in situ electron density from Swarm and obvious nighttime EPBs in the Beidou GEO observations were observed on 13 October 2016 during the main phase.Moreover,one interesting feature is that the rare and unique sunrise EPBs were triggered on 14 October 2016 in the main phase rather than during the recovery phase as reported by previous studies.In addition,the nighttime EPBs were suppressed during the whole recovery phase,and absent from 14 to 19 October 2016.Meanwhile,the minimum virtual height of F trace(h’F)at Sanya(18.3°N,109.6°E,MLAT 11.1°N)displayed obvious changes during these intervals.The h’F was enhanced in the main phase and declined during the recovery phase,compared with the values at pre-and post-storm.These results indicate that the enhanced nighttime EPBs and sunrise EPBs during the main phase and the absence nighttime EPBs for many days during the recovery phase could be associated with storm-time electric field changes.展开更多
The ion-to-electron temperature ratio is a good indicator of the processes involved in the plasma sheet.Observations have suggested that patchy reconnection and the resulting earthward bursty bulk flows(BBFs)transport...The ion-to-electron temperature ratio is a good indicator of the processes involved in the plasma sheet.Observations have suggested that patchy reconnection and the resulting earthward bursty bulk flows(BBFs)transport may be involved in causing the lower temperature ratios at smaller radial distances during southward IMF periods.In this paper,we estimate theoretically how a patchy magnetic reconnection electric field can accelerate ions and electrons differently.If both ions and electrons are non-adiabatically accelerated only once within each reconnection,the temperature ratio would be preserved.However,when reconnection occurs closer to the Earth where magnetic field lines are shorter,particles mirrored back from the ionosphere can cross the reconnection region more than once within one reconnection;and electrons,moving faster than ions,can have more crossings than do ions,leading to electrons being accelerated more than ions.Thus as particles are transported from tail to the near-Earth by BBFs through multiple reconnection,electrons should be accelerated by the reconnection electric field more times than are ions,which can explain the lower temperature ratios observed closer to the Earth.展开更多
The ion-to-electron temperature ratio is a good indicator of the processes involved in solar wind plasma entering and being transported inside Earth’s plasma sheet.In this study,we have demonstrated that patchy magne...The ion-to-electron temperature ratio is a good indicator of the processes involved in solar wind plasma entering and being transported inside Earth’s plasma sheet.In this study,we have demonstrated that patchy magnetic reconnection has the potential to preserve the ion-to-electron temperature ratio under certain conditions.If the charged particles are non-adiabatically accelerated no more than once in a single reconnection,the temperature ratio would be preserved;on the other hand,this ratio would not be preserved if they are accelerated multiple times.Consequently,under a northward interplanetary magnetic field(IMF)condition,the reconnection in the nonlinear phase of the Kelvin-Helmholtz instability is the dominant process for solar-originated plasma entering the Earth’s magnetosphere,and the ion-to-electron temperature ratio is preserved inside the plasma sheet.When the direction of the IMF is southward,the reflection of electrons from the magnetic mirror point,and subsequent multiple non-adiabatic accelerations at the reconnection site,are the primary reasons for the observed low ion-to-electron temperature ratio close to the Earth at midnight.While reconnections that occur in the night-side far tail might preserve the ratio,turbulence on the boundaries of the bursty bulk flows(BBFs)could change the ratio in the far tail through the violation of the frozen-in condition of the ions.The plateau in the contour of the calculated ion-to-electron temperature ratio in the down tail distance between 40 and 60 Earth radii may explain the strong correlation between the ion and electron temperatures in the outer central plasma sheet,which has not been clearly understood till date.展开更多
On 21 June 2020,an annular solar eclipse will traverse the low latitudes from Africa to Southeast Asia.The highest latitude of the maximum eclipse obscuration is approximately 30°.This low-latitude solar eclipse ...On 21 June 2020,an annular solar eclipse will traverse the low latitudes from Africa to Southeast Asia.The highest latitude of the maximum eclipse obscuration is approximately 30°.This low-latitude solar eclipse provides a unique and unprecedented opportunity to explore the impact of the eclipse on the low-latitude ionosphere–thermosphere(I–T)system,especially in the equatorial ionization anomaly region.In this study,we describe a quantitative prediction of the impact of this upcoming solar eclipse on the I–T system by using Thermosphere–Ionosphere–Electrodynamics General Circulation Model simulations.A prominent total electron content(TEC)enhancement of around 2 TEC units occurs in the equatorial ionization anomaly region even when this region is still in the shadow of the eclipse.This TEC enhancement lasts for nearly 4.5 hours,long after the solar eclipse has ended.Further model control simulations indicate that the TEC increase is mainly caused by the eclipse-induced transequatorial plasma transport associated with northward neutral wind perturbations,which result from eclipse-induced pressure gradient changes.The results illustrate that the effect of the solar eclipse on the I–T system is not transient and linear but should be considered a dynamically and energetically coupled system.展开更多
Atmospheric electricity is composed of a series of electric phenomena in the atmosphere.Significant advances in atmospheric electricity research conducted in China have been achieved in recent years.In this paper,the ...Atmospheric electricity is composed of a series of electric phenomena in the atmosphere.Significant advances in atmospheric electricity research conducted in China have been achieved in recent years.In this paper,the research progress on atmospheric electricity achieved in China during 2019-22 is reviewed focusing on the following aspects:(1)lightning detection and location techniques,(2)thunderstorm electricity,(3)lightning forecasting methods and techniques,(4)physical processes of lightning discharge,(5)high energy emissions and effects of thunderstorms on the upper atmosphere,and(6)the effect of aerosol on lightning.展开更多
In recent studies of the Martian atmosphere,strong diurnal variation in the dust was discovered in the southern hemisphere during major dust storms,which provides strong evidence that the commonly recognized meridiona...In recent studies of the Martian atmosphere,strong diurnal variation in the dust was discovered in the southern hemisphere during major dust storms,which provides strong evidence that the commonly recognized meridional transport process is driven by thermal tides.This process,when coupled with deep convection,could be an important part of the short-term atmospheric dynamics of water escape.However,the potential of this process to alter the horizontal distribution of moist air has not been systematically investigated.In this work,we conducted pre-research on the horizontal transport of water vapor associated with the migrating diurnal tide(DW1)at 50 Pa in the upper troposphere during major dust storms based on the Mars Climate Database(MCD)5.3,a state-of-the-art database for Martian atmospheric research that has been validated as simulating the relevant short-period atmospheric dynamics well.We found westward-propagating diurnal patterns in the global water vapor front during nearly all the major dust storms from Martian years(MYs)24 to 32.Statistical and correlation analyses showed that the diurnal transport of water vapor during global and A-season regional dust storms is dominated by the DW1.The effect of the tidal transport of water vapor varies with the types of dust storms in different seasons.During regional dust storms,the tidal transport induces only limited diurnal motion of the water vapor.However,the horizontal tidal wind tends to increase the abundance of daytime water vapor at mid-to low latitudes during the MY 28 southern summer global dust storm while decreasing it during the MY 25 southern spring global dust storm.The tidal transport process during these two global dust storms can induce opposite effects on water escape.展开更多
Decametric(DAM) radio emissions are one of the main windows through which one can reveal and understand the Jovian magnetospheric dynamics and its interaction with the moons. DAMs are generated by energetic electrons ...Decametric(DAM) radio emissions are one of the main windows through which one can reveal and understand the Jovian magnetospheric dynamics and its interaction with the moons. DAMs are generated by energetic electrons through cyclotron-maser instability. For Io(the most active moon) related DAMs, the energetic electrons are sourced from Io volcanic activities, and quickly trapped by neighboring Jovian magnetic field. To properly interpret the physical processes behind DAMs, it is important to precisely locate the source field lines from which DAMs are emitted. Following the work by Hess et al.(2008, 2010), we develop a method to locate the source region as well as the associated field lines for any given DAM emission recorded in a radio dynamic spectrum by, e.g.,Wind/WAVES or STEREO/WAVES. The field lines are calculated by the state-of-art analytical model, called JRM09(Connerney et al., 2018).By using this method, we may also derive the emission cone angle and the energy of associated electrons. If multiple radio instruments at different perspectives observe the same DAM event, the evolution of its source region and associated field lines is able to be revealed. We apply the method to an Io-DAM event, and find that the method is valid and reliable. Some physical processes behind the DAM event are also discussed.展开更多
Due to their significant roles in the radiation belts dynamics, chorus waves are widely investigaled in observations, experiments, and simulations. In this paper, numerical studies for the generation of chorus-like wa...Due to their significant roles in the radiation belts dynamics, chorus waves are widely investigaled in observations, experiments, and simulations. In this paper, numerical studies for the generation of chorus-like waves in a launching device, dipole research experiment (DREX), are carried out by a hybrid code. The DREX plasma is generated b} electron cyclotron resonance (ECR), which leads to an intrinsic temperature anisotropy of energetic electrons. Thus the whistler instability can be excited in the device. We then investigate the effects of three parameters, i.e., the cold plasma density no, the hot plasma density nh, and the parallel thermal velocity of energetic electrons, on the generation of chorus-like waves under the DREX design parameters. It is obtained that a larger temperature anisotropy is needed to excite chorus-like waves with a high nc with other parameters fixed. Then we fix the plasma density and parallel thermal velocity, while varying the hot plasma density. It is found that with the increase of nh, the spectrum of the generated waves changes from no chorus elements, to that with several chorus elements, and then further to broad-band hiss-like waves. Besides, different structures of chorus- like waves, such as rising-tone and/or falling-tone structures, can be generated at different parallel thermal velocities in the DREX parameter range.展开更多
In this report,we outline works done by scientists from the Mainland of China on various ionospheric topics after the release of the National Report of China in 2020 on ionospheric researchto the Committee on Space Re...In this report,we outline works done by scientists from the Mainland of China on various ionospheric topics after the release of the National Report of China in 2020 on ionospheric researchto the Committee on Space Research(COSPAR).More than 170 papers were published in 2020-2021.The current report covers the following topics:ionospheric space weather,ionospheric structures and climatology,ionospheric dynamics and couplings,ionospheric irregularity and scintillation,modeling and data assimilation,and ionosphere and sounding techniques.Planetary ionospheres are included for the first time.展开更多
Observations of a quasi-90-day oscillation in the mesosphere and lower thermosphere(MLT) region from April 2011 to December 2014 are presented in this study. There is clear evidence of a quasi-90-day oscillation in te...Observations of a quasi-90-day oscillation in the mesosphere and lower thermosphere(MLT) region from April 2011 to December 2014 are presented in this study. There is clear evidence of a quasi-90-day oscillation in temperatures obtained from the Kunming meteor radar(25.6°N, 103.8°E) and Sounding of the Atmosphere using Broadband Emission Radiometry(SABER), as well as in wind observed by the Kunming meteor radar. The quasi-90-day oscillation appears to be a prominent feature in the temperatures and meridional wind tides and presents quite regular cycles that occur approximately twice per year. The amplitudes and phases of the quasi-90-day oscillation in the SABER temperature show a feature similar to that of upward-propagated diurnal tides, which have a vertical wavelength of ~20 km above 70 km. In the lower atmosphere, a similar 90-day variability is presented in the surface latent heat flux and correlates with the temperature in the MLT region. Similar to the quasi-90-day oscillation in temperature, a 90-day variability of ozone(O3) is also present in the MLT region and is considered to be driven by a similar variability in the upwardly-propagated diurnal tides generated in the lower atmosphere. Moreover, the 90-day variability in the absorption of ultraviolet(UV) radiation by daytime O3 in the MLT region is an in situ source of the quasi-90-day oscillation in the MLT temperature.展开更多
Temperature profiles provided by the Constellation Observing System for Meteorology, Ionosphere and Climate (COSMIC) global positioning system (GPS) satellite constellation were used to study an eight-year series ...Temperature profiles provided by the Constellation Observing System for Meteorology, Ionosphere and Climate (COSMIC) global positioning system (GPS) satellite constellation were used to study an eight-year series (2007 to 2015) of gravity wave (GW) potential energy in the stratosphere (18-30 kin) around the Tibetan Plateau (TP). We found that with increasing altitude, the GW potential energy (Ep) values in the stratosphere caused by convection decreases. The importance of GWs that are stimulated by topography is enhanced in this area. In the TP, which was considered to lack strong topographical GW activity, clear activity existed in the spring and winter of all studied years. Based on the latitudinal zone of the TP, the distribution of GW potential energy is highly consistent with the elevation of the local topography. The activities of topographical GWs are strongly filtered as they propagate upward to the area of zero speed wind. The analysis indicates that in the TP, clear orographic GW excitation exists and propagates upward to the upper stratosphere, where it is greatly influenced by the wind.展开更多
By using atmospheric wind data in the mesopause and lower thermosphere(MLT)region,features of seasonal variations in the quasi-6-day wave(6DW)at different latitudes are analyzed,and modulation of the 6DW by the diurna...By using atmospheric wind data in the mesopause and lower thermosphere(MLT)region,features of seasonal variations in the quasi-6-day wave(6DW)at different latitudes are analyzed,and modulation of the 6DW by the diurnal tide and solar 27-day period is discussed.The data used in the analysis are extracted from a wind dataset collected by a meteor radar chain from December 2008 to November 2017.The meteor radar chain includes four stations,in Mohe,Beijing,Wuhan,and Sanya.Features of seasonal variations in the 6DW indicate that in summer the 6DW is usually strongest during July and August,followed by stronger variations in January and April.At certain altitudes over Wuhan and Sanya,the 6DW is slightly different in different years and altitudes.In our analysis of seasonal variations in the 6DW,we find that it is generally affected by annual oscillations and semiannual oscillations.The annual oscillations of the 6DW in the mid-low latitudes are modulated by the quasibiennial oscillation in the diurnal tide,resulting in seasonal features that are different from those at other latitudes.In addition,the 6DW amplitude at mid-high latitudes has a significant 27-day solar rotation variation,which was prominent in 2016.展开更多
The atmospheric temperatures and densities in the mesosphere and lower thermosphere(MLT)region are essential for studying the dynamics and climate of the middle and upper atmosphere.In this study,we present more than ...The atmospheric temperatures and densities in the mesosphere and lower thermosphere(MLT)region are essential for studying the dynamics and climate of the middle and upper atmosphere.In this study,we present more than 9 years of mesopause temperatures and relative densities estimated by using ambipolar diffusion coefficient measurements observed by the Mengcheng meteor radar(33.4°N,116.5°E).The intercomparison between the meteor radar and Thermosphere Ionosphere Mesosphere Energetics and Dynamics/Sounding of the Atmosphere by Broadband Emission Radiometry(TIMED/SABER)and Earth Observing System(EOS)Aura/Microwave Limb Sounder(MLS)observations indicates that the meteor radar temperatures and densities agree well with the simultaneous satellite measurements.Annual variations dominate the mesopause temperatures,with the maximum during winter and the minimum during summer.The mesopause relative densities also show annual variations,with strong maxima near the spring equinox and weak maxima before the winter solstice,and with a minimum during summer.In addition,the mesopause density exhibits a structure similar to that of the zonal wind:as the zonal wind flows eastward(westward),the mesopause density decreases(increases).At the same time,the meridional wind shows a structure similar to that of the mesopause temperature:as the meridional wind shows northward(southward)enhancements,the mesopause temperature increases(decreases).Simultaneous horizontal wind,temperature,and density observations provide multiple mesospheric parameters for investigating mesospheric dynamics and thermodynamic processes and have the potential to improve widely used empirical atmospheric models.展开更多
With Venus Express magnetic field measurements at 32 Hz from 2006 to 2012, we investigate statistically the magnetic fluctuations in the near-Venusian space. The global spatial distribution of their spectral scaling f...With Venus Express magnetic field measurements at 32 Hz from 2006 to 2012, we investigate statistically the magnetic fluctuations in the near-Venusian space. The global spatial distribution of their spectral scaling features is presented in MHD and kinetic regimes. It can be observed that turbulence is a common phenomenon in the solar wind in both regimes. The solar wind MHD turbulence is modified at the Venusian bow shock;MHD turbulence is absent in the Venusian magnetosheath but present at the magnetosheath boundary layer. Pre-existing kinetic turbulence from the far upstream solar wind is modified in the near solar wind region, while kinetic turbulence can be extensively observed throughout the Venusian magnetosheath and in some regions of the induced magnetosphere. Our results reveal that, in the near-Venusian space, energy cascade can be developed at the boundary between magnetosheath and wake, and the turbulence-related dissipation of magnetic energy occurs extensively in the magnetosheath and the induced magnetosphere.展开更多
In this paper,we use wind observations by a Doppler wind LiDAR near Delingha(37.4°N,97.4°E),Qinghai,Northwestern China to study the characteristics of inertial gravity waves in the stratosphere.We focus on 1...In this paper,we use wind observations by a Doppler wind LiDAR near Delingha(37.4°N,97.4°E),Qinghai,Northwestern China to study the characteristics of inertial gravity waves in the stratosphere.We focus on 10–12 December 2013,a particularly interesting case study.Most of the time,the inertial gravity waves extracted from the LiDAR measurements were stationary with vertical wavelengths of about 9–11 km and horizontal wavelengths of about 800–1000 km.However,for parts of the observational period in this case study,a hodograph analysis indicates that different inertial gravity wave propagation features were present at lower and upper altitudes.In the middle and upper stratosphere(~30–50 km),the waves propagated downward,especially during a period of stronger winds,and to the northwest–southeast.In the lower stratosphere and upper troposphere(~10–20 km),however,waves with upward propagation and northeast–southwest orientation were dominant.By taking into account reanalysis data and satellite observations,we have confirmed the presence of different wave patterns in the lower and upper stratosphere during this part of the observational period.The combined data sets suggest that the different wave patterns at lower and upper height levels are likely to have been associated with the presence of lower and upper stratospheric jet streams.展开更多
Recent studies revealed that the long-lasting daytime ionospheric enhancements of Total Electron Content(TEC)were sometimes observed in the Asian sector during the recovery phase of geomagnetic storms e.g.,Lei(J Geoph...Recent studies revealed that the long-lasting daytime ionospheric enhancements of Total Electron Content(TEC)were sometimes observed in the Asian sector during the recovery phase of geomagnetic storms e.g.,Lei(J Geophys Res Space Phys 123:3217-3232,2018),Li(J Geophys Res Space Phys 125:e2020JA028238,2020).However,they focused only on the dayside ionosphere,and no dedicated studies have been performed to investigate the nighttime ionospheric behavior during such kinds of storm recovery phases.In this study,we focused on two geomagnetic storms that happened on 7-8 September 2017 and 25-26 August 2018,which showed the prominent daytime TEC enhancements in the Asian sector during their recovery phases,to explore the nighttime large-scale ionospheric responses as well as the small-scale Equatorial Plasma Irregularities(EPIs).It is found that during the September 2017 storm recovery phase,the nighttime ionosphere in the American sector is largely depressed,which is similar to the daytime ionospheric response in the same longitude sector;while in the Asian sector,only a small TEC increase is observed at nighttime,which is much weaker than the prominent daytime TEC enhancement in this longitude sector.During the recovery phase of the August 2018 storm,a slight TEC increase is observed on the night side at all longitudes,which is also weaker than the prominent daytime TEC enhancement.For the small-scale EPIs,they are enhanced and extended to higher latitudes during the main phase of both storms.However,during the recovery phases of the first storm,the EPIs are largely enhanced and suppressed in the Asian and American sectors,respectively,while no prominent nighttime EPIs are observed during the second storm recovery phase.The clear north-south asymmetry of equatorial ionization anomaly crests during the second storm should be responsible for the suppression of EPIs during this storm.In addition,our results also suggest that the dusk side ionospheric response could be affected by the daytime ionospheric plasma density/TEC variations during the recovery phase of geomagnetic storms,which further modulates the vertical plasma drift and plasma gradient.As a result,the growth rate of post-sunset EPIs will be enhanced or inhibited.展开更多
Plasma normal modes in ion-beam–plasma systems were experimentally investigated previously only for the waves propagating in the downstream(along the beam)direction.In this paper,the ion wave excitation and propagati...Plasma normal modes in ion-beam–plasma systems were experimentally investigated previously only for the waves propagating in the downstream(along the beam)direction.In this paper,the ion wave excitation and propagation in the upstream(against the beam)direction in an ion-beam–plasma system were experimentally studied in a double plasma device.The waves were launched by applying a ramp voltage to a negatively biased excitation grid.Two kinds of wave signals were detected,one is a particle signal composed of burst ions and the other is an ion-acoustic signal arising from the background plasma.These signals were identified by the dependence of the signal velocities on the characteristics of the ramp voltage.The velocity of the burst ion signal increases with the decrease of the rise time and the increase of the peak-to-peak amplitude of the applied ramp voltage while that of the ion-acoustic signal is independent of these parameters.By adjusting these parameters such that the burst ion velocity approaches to the ion-acoustic velocity,the wave–particle interaction can be observed.展开更多
The persistence and symmetry of cyclones around the poles of Jupiter are unknown.In the present investigation,inspired by cyclones at the South Pole of the Earth,we propose a mechanism that provides an explanation for...The persistence and symmetry of cyclones around the poles of Jupiter are unknown.In the present investigation,inspired by cyclones at the South Pole of the Earth,we propose a mechanism that provides an explanation for this problem.The negative temperature gradient with respect to latitude may play an important role here.This temperature gradient is induced by solar radiation because of the small axial inclination of Jupiter.Our numerical simulations suggest that cyclones in the polar regions of Jupiter may be modulated or controlled by the radially directional Rayleigh–Taylor instability,driven by centrifugal force and the negative temperature gradient along the latitude.展开更多
基金supported by the Chinese National Space Administration,and the science team of MOMAG is supported by the Strategic Priority Program(Grant No.XDB41000000)the key Research Program of Frontier Sciences(No.QYZDB-SSW-DQC015)of the Chinese Academy of Sciences.
文摘As one of the seven scientific payloads on board the Tianwen-1 orbiter,the Mars Orbiter Magnetometer(MOMAG)will measure the magnetic fields of and surrounding Mars to study its space environment and the interaction with the solar wind.The instrument consists of two identical triaxial fluxgate magnetometer sensors,mounted on a 3.19 meter-long boom with a seperation of about 90 cm.The dual-magnetometers configuration will help eliminate the magnetic field interference generated by the spacecraft platform and payloads.The sensors are controlled by an electric box mounted inside the orbiter.Each magnetometer measures the ambient vector magnetic field over a wide dynamic range(to 10,000 nT per axis)with a resolution of 1.19 pT.Both magnetometers sample the ambient magnetic field at an intrinsic frequency of 128 Hz,but will operate in a model with alternating frequency between 1 and 32 Hz to meet telemetry allocations.
基金financially supported by the Shenzhen Science and Technology Research Program(grant no.JCYJ2021032412141-2034)the National Natural Science Foundation of China(grant nos.41804157,41774171,41774167,41974205,41804157,and 41904156)+3 种基金financial support from the pre-research Project on Civil Aerospace Technologies(grant no.D020103)funded by the China National Space Administrationthe 111 Project(grant no.B18017)the Chinese Academy of Sciences Center for Excellence in Comparative Planetologythe Macao Foundation.
文摘The space-borne fluxgate magnetometer(FGM)requires regular in-flight calibration to obtain its zero offset.Recently,Wang GQ and Pan ZH(2021a)developed a new method for the zero offset calibration based on the properties of Alfvén waves.They found that an optimal offset line(OOL)exists in the offset cube for a pure Alfvén wave and that the zero offset can be determined by the intersection of at least two nonparallel OOLs.Because no pure Alfvén waves exist in the interplanetary magnetic field,calculation of the zero offset relies on the selection of highly Alfvénic fluctuation events.Here,we propose an automatic procedure to find highly Alfvénic fluctuations in the solar wind and calculate the zero offset.This procedure includes three parts:(1)selecting potential Alfvénic fluctuation events,(2)obtaining the OOL,and(3)determining the zero offset.We tested our automatic procedure by applying it to the magnetic field data measured by the FGM onboard the Venus Express.The tests revealed that our automatic procedure was able to achieve results as good as those determined by the Davis-Smith method.One advantage of our procedure is that the selection criteria and the process for selecting the highly Alfvénic fluctuation events are simpler.Our automatic procedure could also be applied to find fluctuation events for the Davis-Smith method.
基金supported by the National Natural Science Foundation of China(41831070,41974181)supported by the National Natural Science Foundation of China(42004136)+7 种基金supported by the National Natural Science Foundation of China(41804150)the Project of Stable Support for Youth Team in Basic Research Field,CAS(YSBR-018)the B-type Strategic Priority Program of the Chinese Academy of Sciences(XDB41000000)the Open Research Project of Large Research Infrastructures of CAS-“Study on the interaction between low/mid-latitude atmosphere and ionosphere based on the Chinese Meridian Project”the China Postdoctoral Science Foundation(2020T130628 and 2019M662170)the Fundamental Research Funds for the Central Universities(WK2080000130)the Joint Open Fund of Mengcheng National Geophysical Observatory(No.MENGO202010)the Guangdong Basic and Applied Basic Research Foundation(2021A1515011216)。
文摘We investigated the variations of equatorial plasma bubbles(EPBs)in the East-Asian sector during a strong geomagnetic storm in October 2016,based on observations from the Beidou geostationary(GEO)satellites,Swarm satellite and ground-based ionosonde.Significant nighttime depletions of F region in situ electron density from Swarm and obvious nighttime EPBs in the Beidou GEO observations were observed on 13 October 2016 during the main phase.Moreover,one interesting feature is that the rare and unique sunrise EPBs were triggered on 14 October 2016 in the main phase rather than during the recovery phase as reported by previous studies.In addition,the nighttime EPBs were suppressed during the whole recovery phase,and absent from 14 to 19 October 2016.Meanwhile,the minimum virtual height of F trace(h’F)at Sanya(18.3°N,109.6°E,MLAT 11.1°N)displayed obvious changes during these intervals.The h’F was enhanced in the main phase and declined during the recovery phase,compared with the values at pre-and post-storm.These results indicate that the enhanced nighttime EPBs and sunrise EPBs during the main phase and the absence nighttime EPBs for many days during the recovery phase could be associated with storm-time electric field changes.
基金supported by the National Nature Science Foundation of China (Grant NSFC41374179)supported by NASA (NNX16AJ83G)
文摘The ion-to-electron temperature ratio is a good indicator of the processes involved in the plasma sheet.Observations have suggested that patchy reconnection and the resulting earthward bursty bulk flows(BBFs)transport may be involved in causing the lower temperature ratios at smaller radial distances during southward IMF periods.In this paper,we estimate theoretically how a patchy magnetic reconnection electric field can accelerate ions and electrons differently.If both ions and electrons are non-adiabatically accelerated only once within each reconnection,the temperature ratio would be preserved.However,when reconnection occurs closer to the Earth where magnetic field lines are shorter,particles mirrored back from the ionosphere can cross the reconnection region more than once within one reconnection;and electrons,moving faster than ions,can have more crossings than do ions,leading to electrons being accelerated more than ions.Thus as particles are transported from tail to the near-Earth by BBFs through multiple reconnection,electrons should be accelerated by the reconnection electric field more times than are ions,which can explain the lower temperature ratios observed closer to the Earth.
文摘The ion-to-electron temperature ratio is a good indicator of the processes involved in solar wind plasma entering and being transported inside Earth’s plasma sheet.In this study,we have demonstrated that patchy magnetic reconnection has the potential to preserve the ion-to-electron temperature ratio under certain conditions.If the charged particles are non-adiabatically accelerated no more than once in a single reconnection,the temperature ratio would be preserved;on the other hand,this ratio would not be preserved if they are accelerated multiple times.Consequently,under a northward interplanetary magnetic field(IMF)condition,the reconnection in the nonlinear phase of the Kelvin-Helmholtz instability is the dominant process for solar-originated plasma entering the Earth’s magnetosphere,and the ion-to-electron temperature ratio is preserved inside the plasma sheet.When the direction of the IMF is southward,the reflection of electrons from the magnetic mirror point,and subsequent multiple non-adiabatic accelerations at the reconnection site,are the primary reasons for the observed low ion-to-electron temperature ratio close to the Earth at midnight.While reconnections that occur in the night-side far tail might preserve the ratio,turbulence on the boundaries of the bursty bulk flows(BBFs)could change the ratio in the far tail through the violation of the frozen-in condition of the ions.The plateau in the contour of the calculated ion-to-electron temperature ratio in the down tail distance between 40 and 60 Earth radii may explain the strong correlation between the ion and electron temperatures in the outer central plasma sheet,which has not been clearly understood till date.
基金supported by the B-type Strategic Priority Program of the Chinese Academy of Sciences (XDB41000000)the National Natural Science Foundation of China (41831070, 41974181)+5 种基金the Open Research Project of Large Research Infrastructures of the Chinese Academy of Sciences, “Study of the interaction between low- and mid-latitude atmosphere and ionosphere based on the Chinese Meridian Project.”supported by the National Natural Science Foundation of China (41904138)the National Postdoctoral Program for Innovative Talents (BX20180286)the China Postdoctoral Science Foundation (2018M642525)the Fundamental Research Funds for the Central UniversitiesThe National Center for Atmospheric Research is sponsored by the National Science Foundation。
文摘On 21 June 2020,an annular solar eclipse will traverse the low latitudes from Africa to Southeast Asia.The highest latitude of the maximum eclipse obscuration is approximately 30°.This low-latitude solar eclipse provides a unique and unprecedented opportunity to explore the impact of the eclipse on the low-latitude ionosphere–thermosphere(I–T)system,especially in the equatorial ionization anomaly region.In this study,we describe a quantitative prediction of the impact of this upcoming solar eclipse on the I–T system by using Thermosphere–Ionosphere–Electrodynamics General Circulation Model simulations.A prominent total electron content(TEC)enhancement of around 2 TEC units occurs in the equatorial ionization anomaly region even when this region is still in the shadow of the eclipse.This TEC enhancement lasts for nearly 4.5 hours,long after the solar eclipse has ended.Further model control simulations indicate that the TEC increase is mainly caused by the eclipse-induced transequatorial plasma transport associated with northward neutral wind perturbations,which result from eclipse-induced pressure gradient changes.The results illustrate that the effect of the solar eclipse on the I–T system is not transient and linear but should be considered a dynamically and energetically coupled system.
基金supported by the National Key Research and Development Program of China(Grant No.2017YFC1501500).
文摘Atmospheric electricity is composed of a series of electric phenomena in the atmosphere.Significant advances in atmospheric electricity research conducted in China have been achieved in recent years.In this paper,the research progress on atmospheric electricity achieved in China during 2019-22 is reviewed focusing on the following aspects:(1)lightning detection and location techniques,(2)thunderstorm electricity,(3)lightning forecasting methods and techniques,(4)physical processes of lightning discharge,(5)high energy emissions and effects of thunderstorms on the upper atmosphere,and(6)the effect of aerosol on lightning.
基金This work is supported by the B-type Strategic Priority Program of the Chinese Academy of Sciences(grant XDB41000000)the pre-research project on Civil Aerospace Technologies of the China National Space Administration(grant D020105).T.L.and J.C.acknowledge support from the National Natural Science Foundation of China through grants 41525015 and 41774186 to J.C.,and grants 41674149 and 41974175 to T.L.X.Z.acknowledges support from the National Science Foundation(grant AST1740921).J.L.acknowledges support from the Open Research Program of the Chinese Academy of Sciences Key Laboratory of Geospace Environment.Z.W.acknowledges support from the Guangdong Basic and Applied Basic Research Foundation(grant 2019A1515110815)the Chinese Academy of Sciences Key Laboratory of Lunar and Deep Space Exploration(grant LDSE201803).We would like to thank the MCD teams for making the MCD 5.3 data sets available online at http://www-mars.lmd.jussieu.fr/mars/access.html.
文摘In recent studies of the Martian atmosphere,strong diurnal variation in the dust was discovered in the southern hemisphere during major dust storms,which provides strong evidence that the commonly recognized meridional transport process is driven by thermal tides.This process,when coupled with deep convection,could be an important part of the short-term atmospheric dynamics of water escape.However,the potential of this process to alter the horizontal distribution of moist air has not been systematically investigated.In this work,we conducted pre-research on the horizontal transport of water vapor associated with the migrating diurnal tide(DW1)at 50 Pa in the upper troposphere during major dust storms based on the Mars Climate Database(MCD)5.3,a state-of-the-art database for Martian atmospheric research that has been validated as simulating the relevant short-period atmospheric dynamics well.We found westward-propagating diurnal patterns in the global water vapor front during nearly all the major dust storms from Martian years(MYs)24 to 32.Statistical and correlation analyses showed that the diurnal transport of water vapor during global and A-season regional dust storms is dominated by the DW1.The effect of the tidal transport of water vapor varies with the types of dust storms in different seasons.During regional dust storms,the tidal transport induces only limited diurnal motion of the water vapor.However,the horizontal tidal wind tends to increase the abundance of daytime water vapor at mid-to low latitudes during the MY 28 southern summer global dust storm while decreasing it during the MY 25 southern spring global dust storm.The tidal transport process during these two global dust storms can induce opposite effects on water escape.
基金support by the Strategic Priority Program of the Chinese Academy of Sciences (Grant Nos. XDB41000000, XDA15017300)the NSFC (Grant No.41842037 and 41574167)support by an appointment to the NASA postdoctoral program at the NASA Goddard Space Flight Center administered by Universities Space Research Association under contract with NASA and the Czech Science Foundation grant 1706818Y
文摘Decametric(DAM) radio emissions are one of the main windows through which one can reveal and understand the Jovian magnetospheric dynamics and its interaction with the moons. DAMs are generated by energetic electrons through cyclotron-maser instability. For Io(the most active moon) related DAMs, the energetic electrons are sourced from Io volcanic activities, and quickly trapped by neighboring Jovian magnetic field. To properly interpret the physical processes behind DAMs, it is important to precisely locate the source field lines from which DAMs are emitted. Following the work by Hess et al.(2008, 2010), we develop a method to locate the source region as well as the associated field lines for any given DAM emission recorded in a radio dynamic spectrum by, e.g.,Wind/WAVES or STEREO/WAVES. The field lines are calculated by the state-of-art analytical model, called JRM09(Connerney et al., 2018).By using this method, we may also derive the emission cone angle and the energy of associated electrons. If multiple radio instruments at different perspectives observe the same DAM event, the evolution of its source region and associated field lines is able to be revealed. We apply the method to an Io-DAM event, and find that the method is valid and reliable. Some physical processes behind the DAM event are also discussed.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.41674165,41631071,41474142,and 41674174)the China Postdoctoral Science Foundation(Grant No.2015M570283)
文摘Due to their significant roles in the radiation belts dynamics, chorus waves are widely investigaled in observations, experiments, and simulations. In this paper, numerical studies for the generation of chorus-like waves in a launching device, dipole research experiment (DREX), are carried out by a hybrid code. The DREX plasma is generated b} electron cyclotron resonance (ECR), which leads to an intrinsic temperature anisotropy of energetic electrons. Thus the whistler instability can be excited in the device. We then investigate the effects of three parameters, i.e., the cold plasma density no, the hot plasma density nh, and the parallel thermal velocity of energetic electrons, on the generation of chorus-like waves under the DREX design parameters. It is obtained that a larger temperature anisotropy is needed to excite chorus-like waves with a high nc with other parameters fixed. Then we fix the plasma density and parallel thermal velocity, while varying the hot plasma density. It is found that with the increase of nh, the spectrum of the generated waves changes from no chorus elements, to that with several chorus elements, and then further to broad-band hiss-like waves. Besides, different structures of chorus- like waves, such as rising-tone and/or falling-tone structures, can be generated at different parallel thermal velocities in the DREX parameter range.
基金Supported by National Natural Science Foundation of China(42030202,42188101,42122031)。
文摘In this report,we outline works done by scientists from the Mainland of China on various ionospheric topics after the release of the National Report of China in 2020 on ionospheric researchto the Committee on Space Research(COSPAR).More than 170 papers were published in 2020-2021.The current report covers the following topics:ionospheric space weather,ionospheric structures and climatology,ionospheric dynamics and couplings,ionospheric irregularity and scintillation,modeling and data assimilation,and ionosphere and sounding techniques.Planetary ionospheres are included for the first time.
基金supported by Project(KJCX2-EW-J01,KZZD-EW-0101)of the Chinese Academy of Sciencesthe National Natural Science Foundation of China(41322029,41474129,41421063 and41804147)+5 种基金the National Basic Research Program of China(2012CB825605)the Youth Innovation Promotion Association of the Chinese Academy of Sciences(2011324)the Fundamental Research Funds for the Central Universitiesthe open research project of Chinese Academy of Sciences Large Research Infrastructuresthe Chinese Meridian Projectthe Open Research Program of National Key Laboratory of Electromagnetic Environment of the China Research Institute of Radiowave Propagation
文摘Observations of a quasi-90-day oscillation in the mesosphere and lower thermosphere(MLT) region from April 2011 to December 2014 are presented in this study. There is clear evidence of a quasi-90-day oscillation in temperatures obtained from the Kunming meteor radar(25.6°N, 103.8°E) and Sounding of the Atmosphere using Broadband Emission Radiometry(SABER), as well as in wind observed by the Kunming meteor radar. The quasi-90-day oscillation appears to be a prominent feature in the temperatures and meridional wind tides and presents quite regular cycles that occur approximately twice per year. The amplitudes and phases of the quasi-90-day oscillation in the SABER temperature show a feature similar to that of upward-propagated diurnal tides, which have a vertical wavelength of ~20 km above 70 km. In the lower atmosphere, a similar 90-day variability is presented in the surface latent heat flux and correlates with the temperature in the MLT region. Similar to the quasi-90-day oscillation in temperature, a 90-day variability of ozone(O3) is also present in the MLT region and is considered to be driven by a similar variability in the upwardly-propagated diurnal tides generated in the lower atmosphere. Moreover, the 90-day variability in the absorption of ultraviolet(UV) radiation by daytime O3 in the MLT region is an in situ source of the quasi-90-day oscillation in the MLT temperature.
基金supported by the National Natural Science Foundation of China (Grant Nos.41322029,41474129 & 41421063)the Project of Chinese Academy of Sciences(Grant Nos.KJCX2-EW-J01 & KZZD-EW-0101)+1 种基金Youth Innovation Promotion Association of the Chinese Academy of Sciences(Grant No.2011324)the Fundamental Research Funds for the Central Universities
文摘Temperature profiles provided by the Constellation Observing System for Meteorology, Ionosphere and Climate (COSMIC) global positioning system (GPS) satellite constellation were used to study an eight-year series (2007 to 2015) of gravity wave (GW) potential energy in the stratosphere (18-30 kin) around the Tibetan Plateau (TP). We found that with increasing altitude, the GW potential energy (Ep) values in the stratosphere caused by convection decreases. The importance of GWs that are stimulated by topography is enhanced in this area. In the TP, which was considered to lack strong topographical GW activity, clear activity existed in the spring and winter of all studied years. Based on the latitudinal zone of the TP, the distribution of GW potential energy is highly consistent with the elevation of the local topography. The activities of topographical GWs are strongly filtered as they propagate upward to the area of zero speed wind. The analysis indicates that in the TP, clear orographic GW excitation exists and propagates upward to the upper stratosphere, where it is greatly influenced by the wind.
基金the National Natural Science Foundation of China(41774158,41974174,41674150,41831071 and 41904135)the Open Research Project of Large Research Infrastructures of CAS—“Study on the interaction between low/mid-latitude atmosphere and ionosphere based on the Chinese Meridian Project”.
文摘By using atmospheric wind data in the mesopause and lower thermosphere(MLT)region,features of seasonal variations in the quasi-6-day wave(6DW)at different latitudes are analyzed,and modulation of the 6DW by the diurnal tide and solar 27-day period is discussed.The data used in the analysis are extracted from a wind dataset collected by a meteor radar chain from December 2008 to November 2017.The meteor radar chain includes four stations,in Mohe,Beijing,Wuhan,and Sanya.Features of seasonal variations in the 6DW indicate that in summer the 6DW is usually strongest during July and August,followed by stronger variations in January and April.At certain altitudes over Wuhan and Sanya,the 6DW is slightly different in different years and altitudes.In our analysis of seasonal variations in the 6DW,we find that it is generally affected by annual oscillations and semiannual oscillations.The annual oscillations of the 6DW in the mid-low latitudes are modulated by the quasibiennial oscillation in the diurnal tide,resulting in seasonal features that are different from those at other latitudes.In addition,the 6DW amplitude at mid-high latitudes has a significant 27-day solar rotation variation,which was prominent in 2016.
基金supported by the National Natural Science Foundation of China (Grant Nos. 42125402 and 42174183)the National Key Technologies R&D Program of China (Grant No. 2022YFF0503703)+5 种基金the B-type Strategic Priority Program of the Chinese Academy of Sciences (Grant No. XDB41000000)the foundation of the National Key Laboratory of Electromagnetic Environmentthe Fundamental Research Funds for the Central Universitiesthe Chinese Meridian Projectfunded by the Anhui Provincial Natural Science Foundation (Grant No. 2008085MD113)the Joint Open Fund of Mengcheng National Geophysical Observatory (No. MENGO-202209)
文摘The atmospheric temperatures and densities in the mesosphere and lower thermosphere(MLT)region are essential for studying the dynamics and climate of the middle and upper atmosphere.In this study,we present more than 9 years of mesopause temperatures and relative densities estimated by using ambipolar diffusion coefficient measurements observed by the Mengcheng meteor radar(33.4°N,116.5°E).The intercomparison between the meteor radar and Thermosphere Ionosphere Mesosphere Energetics and Dynamics/Sounding of the Atmosphere by Broadband Emission Radiometry(TIMED/SABER)and Earth Observing System(EOS)Aura/Microwave Limb Sounder(MLS)observations indicates that the meteor radar temperatures and densities agree well with the simultaneous satellite measurements.Annual variations dominate the mesopause temperatures,with the maximum during winter and the minimum during summer.The mesopause relative densities also show annual variations,with strong maxima near the spring equinox and weak maxima before the winter solstice,and with a minimum during summer.In addition,the mesopause density exhibits a structure similar to that of the zonal wind:as the zonal wind flows eastward(westward),the mesopause density decreases(increases).At the same time,the meridional wind shows a structure similar to that of the mesopause temperature:as the meridional wind shows northward(southward)enhancements,the mesopause temperature increases(decreases).Simultaneous horizontal wind,temperature,and density observations provide multiple mesospheric parameters for investigating mesospheric dynamics and thermodynamic processes and have the potential to improve widely used empirical atmospheric models.
基金supported by NSFC grants 41904156, 41974205, 41774171, 41574173, 41774167 and 41804157the Science and Technology Development Fund of Macao SAR (008/2016/A1 and 039/2013/A2)+3 种基金the China Postdoctoral Science Foundation (2019M651271)the financial support of the Shenzhen Science and Technology Research Program (JCYJ20170811154933612 and JCYJ20180306171918617)the 111 Project (B18017)supported by CAS Center for Excellence in Comparative Planetology
文摘With Venus Express magnetic field measurements at 32 Hz from 2006 to 2012, we investigate statistically the magnetic fluctuations in the near-Venusian space. The global spatial distribution of their spectral scaling features is presented in MHD and kinetic regimes. It can be observed that turbulence is a common phenomenon in the solar wind in both regimes. The solar wind MHD turbulence is modified at the Venusian bow shock;MHD turbulence is absent in the Venusian magnetosheath but present at the magnetosheath boundary layer. Pre-existing kinetic turbulence from the far upstream solar wind is modified in the near solar wind region, while kinetic turbulence can be extensively observed throughout the Venusian magnetosheath and in some regions of the induced magnetosphere. Our results reveal that, in the near-Venusian space, energy cascade can be developed at the boundary between magnetosheath and wake, and the turbulence-related dissipation of magnetic energy occurs extensively in the magnetosheath and the induced magnetosphere.
基金This work is supported by the B-type Strategic Priority Program of Chinese Academy of Sciences Grant No.XDB41000000the National Natural Science Foundation of China(41774158,41974174,41831071,and 41904135)the China National Space Administration pre-research Project on Civil Aerospace Technologies No.D020105,and the Open Research Project of Large Research Infrastructures of CAS“Study on the interaction between low/mid-latitude atmosphere and ionosphere based on the Chinese Meridian Project.”。
文摘In this paper,we use wind observations by a Doppler wind LiDAR near Delingha(37.4°N,97.4°E),Qinghai,Northwestern China to study the characteristics of inertial gravity waves in the stratosphere.We focus on 10–12 December 2013,a particularly interesting case study.Most of the time,the inertial gravity waves extracted from the LiDAR measurements were stationary with vertical wavelengths of about 9–11 km and horizontal wavelengths of about 800–1000 km.However,for parts of the observational period in this case study,a hodograph analysis indicates that different inertial gravity wave propagation features were present at lower and upper altitudes.In the middle and upper stratosphere(~30–50 km),the waves propagated downward,especially during a period of stronger winds,and to the northwest–southeast.In the lower stratosphere and upper troposphere(~10–20 km),however,waves with upward propagation and northeast–southwest orientation were dominant.By taking into account reanalysis data and satellite observations,we have confirmed the presence of different wave patterns in the lower and upper stratosphere during this part of the observational period.The combined data sets suggest that the different wave patterns at lower and upper height levels are likely to have been associated with the presence of lower and upper stratospheric jet streams.
基金the National Natural Science Foundation of China(42174191)the start-up program of Wuhan University(600460020)+2 种基金Xin Wan is supported by the China Postdoctoral Science Foundation(2020M683025)Fan Yin is supported by the National Key Research and Development Program of China(Grants 2018YFC1503501-01)the Dragon 5 cooperation 2020-2024(project no.59236)and Chinese Meridian Project.
文摘Recent studies revealed that the long-lasting daytime ionospheric enhancements of Total Electron Content(TEC)were sometimes observed in the Asian sector during the recovery phase of geomagnetic storms e.g.,Lei(J Geophys Res Space Phys 123:3217-3232,2018),Li(J Geophys Res Space Phys 125:e2020JA028238,2020).However,they focused only on the dayside ionosphere,and no dedicated studies have been performed to investigate the nighttime ionospheric behavior during such kinds of storm recovery phases.In this study,we focused on two geomagnetic storms that happened on 7-8 September 2017 and 25-26 August 2018,which showed the prominent daytime TEC enhancements in the Asian sector during their recovery phases,to explore the nighttime large-scale ionospheric responses as well as the small-scale Equatorial Plasma Irregularities(EPIs).It is found that during the September 2017 storm recovery phase,the nighttime ionosphere in the American sector is largely depressed,which is similar to the daytime ionospheric response in the same longitude sector;while in the Asian sector,only a small TEC increase is observed at nighttime,which is much weaker than the prominent daytime TEC enhancement in this longitude sector.During the recovery phase of the August 2018 storm,a slight TEC increase is observed on the night side at all longitudes,which is also weaker than the prominent daytime TEC enhancement.For the small-scale EPIs,they are enhanced and extended to higher latitudes during the main phase of both storms.However,during the recovery phases of the first storm,the EPIs are largely enhanced and suppressed in the Asian and American sectors,respectively,while no prominent nighttime EPIs are observed during the second storm recovery phase.The clear north-south asymmetry of equatorial ionization anomaly crests during the second storm should be responsible for the suppression of EPIs during this storm.In addition,our results also suggest that the dusk side ionospheric response could be affected by the daytime ionospheric plasma density/TEC variations during the recovery phase of geomagnetic storms,which further modulates the vertical plasma drift and plasma gradient.As a result,the growth rate of post-sunset EPIs will be enhanced or inhibited.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11575183 and 11705201)
文摘Plasma normal modes in ion-beam–plasma systems were experimentally investigated previously only for the waves propagating in the downstream(along the beam)direction.In this paper,the ion wave excitation and propagation in the upstream(against the beam)direction in an ion-beam–plasma system were experimentally studied in a double plasma device.The waves were launched by applying a ramp voltage to a negatively biased excitation grid.Two kinds of wave signals were detected,one is a particle signal composed of burst ions and the other is an ion-acoustic signal arising from the background plasma.These signals were identified by the dependence of the signal velocities on the characteristics of the ramp voltage.The velocity of the burst ion signal increases with the decrease of the rise time and the increase of the peak-to-peak amplitude of the applied ramp voltage while that of the ion-acoustic signal is independent of these parameters.By adjusting these parameters such that the burst ion velocity approaches to the ion-acoustic velocity,the wave–particle interaction can be observed.
基金supported by the National Nature Science Foundation of China(Grant No.NSFC41974204).
文摘The persistence and symmetry of cyclones around the poles of Jupiter are unknown.In the present investigation,inspired by cyclones at the South Pole of the Earth,we propose a mechanism that provides an explanation for this problem.The negative temperature gradient with respect to latitude may play an important role here.This temperature gradient is induced by solar radiation because of the small axial inclination of Jupiter.Our numerical simulations suggest that cyclones in the polar regions of Jupiter may be modulated or controlled by the radially directional Rayleigh–Taylor instability,driven by centrifugal force and the negative temperature gradient along the latitude.