The enhanced cooling performance caused by ellipse-shaped tabs located at the outlet of the film cooling holes is conducted.Three covering ratios of ellipse-shaped tabs on film holes and four blowing ratios are studie...The enhanced cooling performance caused by ellipse-shaped tabs located at the outlet of the film cooling holes is conducted.Three covering ratios of ellipse-shaped tabs on film holes and four blowing ratios are studied.The results show that:(1)The heat transfer coefficient ratio is higher than that without tab,indicating that the mixing of mainstream and coolant jet provides a better coverage film on the cooling wall,but increases the local turbulence production which enhances the heat transfer coefficient;(2)When the ellipse-shaped tabs are located at the film hole outlet,there is a larger pressure drop with the ellipse tab relative to the no-tab case.Thus,the discharge coefficient with ellipse tab is lower than that without tab.展开更多
The oxidation behavior of a cast polycrystalline Co-base superalloy was studied at temperatures from 900 to 1050℃ and analyzed by thermogravimetric analysis (TGA), X-ray diffraction (XRD) and scanning electron mi...The oxidation behavior of a cast polycrystalline Co-base superalloy was studied at temperatures from 900 to 1050℃ and analyzed by thermogravimetric analysis (TGA), X-ray diffraction (XRD) and scanning electron microscopy (SEM). The results indicate that a cast Co-base superalloy follows the subparabolic oxidation kinetics at 900 and 1000℃, which are controlled by the growth of the inner Cr-rich layer, and that after oxidation at 1050℃ for 200 h, it almost exhibits the linear oxidation kinetics possible due to the volatility of Cr-rich oxide. A mixed scale forms on the alloy after prolonged oxidation. The oxide scale formed at 900 and 1000℃ is composed of an outer layer of spinel and an inner continuous Cr-rich layer and at I050℃ is composed of a very discontinuous Cr-rich layer.展开更多
The effects of blade lean and vortex design on the aerodynamics of a turbine entry nozzle guide vane (NGV) are considered using computational fluid dynamics. The aim of the work is to address some of the uncertainti...The effects of blade lean and vortex design on the aerodynamics of a turbine entry nozzle guide vane (NGV) are considered using computational fluid dynamics. The aim of the work is to address some of the uncertainties which have arisen from previous studies where conflicting results have been reported for the effect on the NGV. The configuration was initially based on the energy efficient engine turbine which also served as the validation case for the computational method. A total of 17 NGV configurations were evaluated to study the effects of lean and vortex design on row efficiency and secondary kinetic energy. The distribution of mass flow ratio is introduced as an additional factor in the assessment of blade lean effects. The results show that in the turbine entry NGV, the secondary flow strength is not a dominant factor that determines NGV losses and therefore the changes of loading distribution due to blade lean and the associated loss mecha- nisms should be regarded as a key factor. Radial mass flow redistribution under different NGV lean and twist is demonstrated as an addition key factor influencin~ row efficiency.展开更多
The governing equations are derived by circumferentially averaging the three-dimensional (3D) Navier-Stokes equations, which are solved using a time marching finite volume approach. Both Euler throughflow model and ...The governing equations are derived by circumferentially averaging the three-dimensional (3D) Navier-Stokes equations, which are solved using a time marching finite volume approach. Both Euler throughflow model and Navier-Stokes (N-S) throughflow model are employed to investigate the performance and flow fields of a highly loaded transonic single-stage fan ATS-2 and a four-stage fan. The results are compared with the experimental and three-dimensional computational results. It shows that the throughflow models can provide reasonable perform- ance characteristics and N-S throughflow model gives better predictions in endwall regions. A throughflow com- putation in which all the non-axisymmetric terms are included has been performed at off-design condition and the radial distributions of the flow field can be well described.展开更多
In this work, the effects of ratio of monomer to cross-linker(AM/MBAM) and solid loading on the microstructure and mechanical properties of porous Si3N4 ceramics prepared by tert-butyl alcohol(TBA)-based gel-casting p...In this work, the effects of ratio of monomer to cross-linker(AM/MBAM) and solid loading on the microstructure and mechanical properties of porous Si3N4 ceramics prepared by tert-butyl alcohol(TBA)-based gel-casting process were investigated. It was found that, when the ratio of monomer to crosslinker was 8, and the solid loading was 50 wt%, the mechanical properties of sintered samples were the most excellent, which resulted from the uniform pore size distribution and well-grown rod-like bSi3N4 grains. In that case, the porosity and flexural strength of sintered samples were 50% and 125 MPa,respectively.展开更多
The cold flow characteristics are investigated to show the effect of the structural parameters of the flow guide vane on the trapped vortex combustor(TVC). The results show that the structural parameters have signif...The cold flow characteristics are investigated to show the effect of the structural parameters of the flow guide vane on the trapped vortex combustor(TVC). The results show that the structural parameters have significant effects on the TVC. As a/ H increases, the total pressure loss, the wall shear stress at the bottom of the cavity and the turbulent intensity in the main combustion zone increase. b/ B does not have a significant effect on the cavity flow structure and the total pressure loss, and the wall shear stress at the bottom of the cavity increases as b/ B increases. There is no significant increase of the turbulent intensity with the increase of b/ B. The increase of c/ L has little effect on the total pressure loss, and it is not conducive to a stable combustion. As c/ L increases, the wall shear stress at the bottom of the cavity decreases. When a/ H= 0.4, b/ B= 0.4, c/ L= 0.1, a desirable dual-vortex structure is formed with an acceptable pressure loss to achieve a stable combustion. Moreover, to ascertain that the flame is stable for different values of Vm a with the optimal structural parameters, the effect of Vm a on the flow field is discussed. Results suggest that the dual-vortex structure has no relationship with the increase of Vm a. Furthermore, an unsteady simulation is conducted to show the generation and the development of the dual-vortex.展开更多
基金supported by the Research Program of the National Natural Science Foundation of China(51276088)
文摘The enhanced cooling performance caused by ellipse-shaped tabs located at the outlet of the film cooling holes is conducted.Three covering ratios of ellipse-shaped tabs on film holes and four blowing ratios are studied.The results show that:(1)The heat transfer coefficient ratio is higher than that without tab,indicating that the mixing of mainstream and coolant jet provides a better coverage film on the cooling wall,but increases the local turbulence production which enhances the heat transfer coefficient;(2)When the ellipse-shaped tabs are located at the film hole outlet,there is a larger pressure drop with the ellipse tab relative to the no-tab case.Thus,the discharge coefficient with ellipse tab is lower than that without tab.
基金supported by the National Natural Science Foundation of China under Grant No.50501024.
文摘The oxidation behavior of a cast polycrystalline Co-base superalloy was studied at temperatures from 900 to 1050℃ and analyzed by thermogravimetric analysis (TGA), X-ray diffraction (XRD) and scanning electron microscopy (SEM). The results indicate that a cast Co-base superalloy follows the subparabolic oxidation kinetics at 900 and 1000℃, which are controlled by the growth of the inner Cr-rich layer, and that after oxidation at 1050℃ for 200 h, it almost exhibits the linear oxidation kinetics possible due to the volatility of Cr-rich oxide. A mixed scale forms on the alloy after prolonged oxidation. The oxide scale formed at 900 and 1000℃ is composed of an outer layer of spinel and an inner continuous Cr-rich layer and at I050℃ is composed of a very discontinuous Cr-rich layer.
基金the support of Cranfield University and China Aviation Powerplant Research Institute of AVIC
文摘The effects of blade lean and vortex design on the aerodynamics of a turbine entry nozzle guide vane (NGV) are considered using computational fluid dynamics. The aim of the work is to address some of the uncertainties which have arisen from previous studies where conflicting results have been reported for the effect on the NGV. The configuration was initially based on the energy efficient engine turbine which also served as the validation case for the computational method. A total of 17 NGV configurations were evaluated to study the effects of lean and vortex design on row efficiency and secondary kinetic energy. The distribution of mass flow ratio is introduced as an additional factor in the assessment of blade lean effects. The results show that in the turbine entry NGV, the secondary flow strength is not a dominant factor that determines NGV losses and therefore the changes of loading distribution due to blade lean and the associated loss mecha- nisms should be regarded as a key factor. Radial mass flow redistribution under different NGV lean and twist is demonstrated as an addition key factor influencin~ row efficiency.
基金supported by National Natural Science Foundation of China (50736007, 51006005)
文摘The governing equations are derived by circumferentially averaging the three-dimensional (3D) Navier-Stokes equations, which are solved using a time marching finite volume approach. Both Euler throughflow model and Navier-Stokes (N-S) throughflow model are employed to investigate the performance and flow fields of a highly loaded transonic single-stage fan ATS-2 and a four-stage fan. The results are compared with the experimental and three-dimensional computational results. It shows that the throughflow models can provide reasonable perform- ance characteristics and N-S throughflow model gives better predictions in endwall regions. A throughflow com- putation in which all the non-axisymmetric terms are included has been performed at off-design condition and the radial distributions of the flow field can be well described.
基金supported by the National Natural Science Foundation of China (No. 90816018)Program of Shaanxi Bureau of Foreign Expert Affairs (No. 2011-32)
文摘In this work, the effects of ratio of monomer to cross-linker(AM/MBAM) and solid loading on the microstructure and mechanical properties of porous Si3N4 ceramics prepared by tert-butyl alcohol(TBA)-based gel-casting process were investigated. It was found that, when the ratio of monomer to crosslinker was 8, and the solid loading was 50 wt%, the mechanical properties of sintered samples were the most excellent, which resulted from the uniform pore size distribution and well-grown rod-like bSi3N4 grains. In that case, the porosity and flexural strength of sintered samples were 50% and 125 MPa,respectively.
基金Project supported by the National Natural Science Foun-dation of China(Grant Nos.51066006,51266013)the Aero-nautical Science Fund(Grant Nos.2013ZB56002,2013ZB56004)
文摘The cold flow characteristics are investigated to show the effect of the structural parameters of the flow guide vane on the trapped vortex combustor(TVC). The results show that the structural parameters have significant effects on the TVC. As a/ H increases, the total pressure loss, the wall shear stress at the bottom of the cavity and the turbulent intensity in the main combustion zone increase. b/ B does not have a significant effect on the cavity flow structure and the total pressure loss, and the wall shear stress at the bottom of the cavity increases as b/ B increases. There is no significant increase of the turbulent intensity with the increase of b/ B. The increase of c/ L has little effect on the total pressure loss, and it is not conducive to a stable combustion. As c/ L increases, the wall shear stress at the bottom of the cavity decreases. When a/ H= 0.4, b/ B= 0.4, c/ L= 0.1, a desirable dual-vortex structure is formed with an acceptable pressure loss to achieve a stable combustion. Moreover, to ascertain that the flame is stable for different values of Vm a with the optimal structural parameters, the effect of Vm a on the flow field is discussed. Results suggest that the dual-vortex structure has no relationship with the increase of Vm a. Furthermore, an unsteady simulation is conducted to show the generation and the development of the dual-vortex.