期刊文献+
共找到57篇文章
< 1 2 3 >
每页显示 20 50 100
Functional additives for solid polymer electrolytes in flexible and high-energy-density solid-state lithium-ion batteries 被引量:8
1
作者 Hao Chen Mengting Zheng +5 位作者 Shangshu Qian Han Yeu Ling Zhenzhen Wu Xianhu Liu Cheng Yan Shanqing Zhang 《Carbon Energy》 SCIE CAS 2021年第6期929-956,共28页
Solid polymer electrolytes(SPEs)have become increasingly attractive in solid-state lithium-ion batteries(SSLIBs)in recent years because of their inherent properties of flexibility,processability,and interfacial compat... Solid polymer electrolytes(SPEs)have become increasingly attractive in solid-state lithium-ion batteries(SSLIBs)in recent years because of their inherent properties of flexibility,processability,and interfacial compatibility.However,the commercialization of SPEs remains challenging for flexible and high-energy-density LIBs.The incorporation of functional additives into SPEs could significantly improve the electrochemical and mechanical properties of SPEs and has created some historical milestones in boosting the development of SPEs.In this study,we review the roles of additives in SPEs,highlighting the working mechanisms and functionalities of the additives.The additives could afford significant advantages in boosting ionic conductivity,increasing ion transference number,improving high-voltage stability,enhancing mechanical strength,inhibiting lithium dendrite,and reducing flammability.Moreover,the application of functional additives in high-voltage cathodes,lithium-sulfur batteries,and flexible lithiumion batteries is summarized.Finally,future research perspectives are proposed to overcome the unresolved technical hurdles and critical issues in additives of SPEs,such as facile fabrication process,interfacial compatibility,investigation of the working mechanism,and special functionalities. 展开更多
关键词 functional additive high voltage ionic conductivity lithium-ion batteries solid polymer electrolyte
在线阅读 下载PDF
DFT‑Guided Design and Fabrication of Carbon‑Nitride‑Based Materials for Energy Storage Devices:A Review 被引量:4
2
作者 David Adekoya Shangshu Qian +4 位作者 Xingxing Gu William Wen Dongsheng Li Jianmin Ma Shanqing Zhang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2021年第1期245-288,共44页
Carbon nitrides(including CN,C2N,C3N,C3N4,C4N,and C5N)are a unique family of nitrogen-rich carbon materials with multiple beneficial properties in crystalline structures,morphologies,and electronic configurations.In t... Carbon nitrides(including CN,C2N,C3N,C3N4,C4N,and C5N)are a unique family of nitrogen-rich carbon materials with multiple beneficial properties in crystalline structures,morphologies,and electronic configurations.In this review,we provide a comprehensive review on these materials properties,theoretical advantages,the synthesis and modification strategies of different carbon nitride-based materials(CNBMs)and their application in existing and emerging rechargeable battery systems,such as lithium-ion batteries,sodium and potassium-ion batteries,lithium sulfur batteries,lithium oxygen batteries,lithium metal batteries,zinc-ion batteries,and solid-state batteries.The central theme of this review is to apply the theoretical and computational design to guide the experimental synthesis of CNBMs for energy storage,i.e.,facilitate the application of first-principle studies and density functional theory for electrode material design,synthesis,and characterization of different CNBMs for the aforementioned rechargeable batteries.At last,we conclude with the challenges,and prospects of CNBMs,and propose future perspectives and strategies for further advancement of CNBMs for rechargeable batteries. 展开更多
关键词 Carbon nitrides Metal-ion batteries Density functional theory g-C3N4 ANODE
在线阅读 下载PDF
Corrigendum to“Cation-vacancy induced Li+intercalation pseudocapacitance at atomically thin heterointerface for high capacity and high power lithium-ion batteries”[J.Energy Chem.62(2021)281–288]
3
作者 Ding Yuan David Adekoya +9 位作者 Yuhai Dou Yuhui Tian Hao Chen Zhenzhen Wu Jiadong Qin Linping Yu Jian Zhang Xianhu Liu Shi Xue Dou Shanqing Zhang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第8期655-656,共2页
The authors regret that the wrong image of Fig.1 was uploaded in the paper.The correct one should be:We confirm the discrepancy is restricted to the image of Fig.1 only,the underlying data is correct and unchanged.The... The authors regret that the wrong image of Fig.1 was uploaded in the paper.The correct one should be:We confirm the discrepancy is restricted to the image of Fig.1 only,the underlying data is correct and unchanged.The authors would like to apologise for any inconvenience caused. 展开更多
关键词 lithium capacitance unchanged
在线阅读 下载PDF
A hydrophilic poly(methyl vinyl ether-alt-maleic acid) polymer as a green, universal, and dual-functional binder for high-performance silicon anode and sulfur cathode 被引量:7
4
作者 Hao Chen Zhenzhen Wu +4 位作者 Zhong Su Luke Hencz Su Chen Cheng Yan Shanqing Zhang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第11期127-135,I0003,共10页
Binders could play crucial or even decisive roles in the fabrication of low-cost, stable and high-capacity electrodes. This is especially the case for the silicon (Si) anodes and sulfur (S) cathodes that undergo large... Binders could play crucial or even decisive roles in the fabrication of low-cost, stable and high-capacity electrodes. This is especially the case for the silicon (Si) anodes and sulfur (S) cathodes that undergo large volume change and active material loss in lithium-ion batteries during prolonged cycles. Herein, a hydrophilic polymer poly(methyl vinyl ether-alt-maleic acid) (PMVEMA) was explored as a dual-functional aqueous binder for the preparation of high-performance silicon anode and sulfur cathode. Benefiting from the dual functions of PMVEMA, i.e., the excellent dispersion ability and strong binding forces, the as-prepared electrodes exhibit improved capacity, rate capability and long-term cycling performance. In particular, the as-prepared Si electrode delivers a high initial discharge capacity of 1346.5 mAh g^(−1) at a high rate of 8.4 A/g and maintains 834.5 mAh g^(−1) after 300 cycles at 4.2 A/g, while the as-prepared S cathode exhibits enhanced cycling performance with high remaining discharge capacities of 663.4 mAh g^(−1) after 100 cycles at 0.2 C and 487.07 mAh g^(−1) after 300 cycles at 1 C, respectively. These encouraging results suggest that PMVEMA could be a universal binder to facilitate the green manufacture of both anode and cathode for high-capacity energy storage systems. 展开更多
关键词 Dual-functional Aqueous binder Silicon anode Sulfur cathode Lithium-ion batteries Lithium-sulfur batteries
在线阅读 下载PDF
An efficient and reusable bimetallic Ni_3Fe NPs@C catalyst for selective hydrogenation of biomass-derived levulinic acid toγ-valerolactone 被引量:7
5
作者 Haojie Wang Chun Chen +2 位作者 Haimin Zhang Guozhong Wang Huijun Zhao 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2018年第10期1599-1607,共9页
Bimetallic nanostructures have attracted great interest as efficient catalyst to enhance activity,selectivity and stability in catalytical conversion.Herein,we report a facile one‐pot carbothermal route to in‐situ c... Bimetallic nanostructures have attracted great interest as efficient catalyst to enhance activity,selectivity and stability in catalytical conversion.Herein,we report a facile one‐pot carbothermal route to in‐situ controllable synthesize heterogeneous bimetallic Ni3Fe NPs@C nanocatalyst.The X‐ray diffraction,transmission electron microscopy,X‐ray photoelectron spectroscopy and N2 adsorption‐description results reveal that the Ni3Fe alloy nanoparticles are evenly embedded in carbon matrix.The as‐prepared Ni3Fe NPs@C catalyst shows excellent selective hydrogenation catalytic performance toward the conversion of levulinic acid(LA)toγ‐valerolactone(GVL)via both direct hydrogenation(DH)and transfer hydrogenation(TH).In DH of LA,the bimetallic catalyst achieved a 93.8%LA conversion efficiency with a 95.5%GVL selectivity and 38.2 mmol g–1 h–1 GVL productivity(under 130°C,2MPa H2 within 2 h),which are 6 and 40 times in comparison with monometallic Ni NPs@C and Fe NPs@C catalysts,respectively.In addition,the identical catalyst displayed a full conversion of LA with almost 100%GVL selectivity and 167.1 mmol g–1 h–1 GVL productivity at 180°C within 0.5 h in TH of LA.Under optimal reaction conditions,the DH and TH catalytic performance of 500‐Ni3Fe NPs@C(3:1)catalyst for converting LA to GVL is comparable to the state‐of‐the‐art noble‐based catalysts.The demonstrated capability of bimetallic catalyst design approach to introduce dual‐catalytic functionality for DH and TH reactions could be adoptable for other catalysis processes. 展开更多
关键词 Levulinic acid γ‐valerolactone Bimetallic catalyst HYDROGENATION Dual‐catalytic functionality
在线阅读 下载PDF
Cyclohexanedodecol-Assisted Interfacial Engineering for Robust and High-Performance Zinc Metal Anode 被引量:5
6
作者 Zhenzhen Wu Meng Li +8 位作者 Yuhui Tian Hao Chen Shao-Jian Zhang Chuang Sun Chengpeng Li Milton Kiefel Chao Lai Zhan Lin Shanqing Zhang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2022年第7期55-71,共17页
Aqueous zinc-ion batteries(AZIBs)can be one of the most promising electrochemical energy storage devices for being non-flammable,low-cost,and sustainable.However,the challenges of AZIBs,including dendrite growth,hydro... Aqueous zinc-ion batteries(AZIBs)can be one of the most promising electrochemical energy storage devices for being non-flammable,low-cost,and sustainable.However,the challenges of AZIBs,including dendrite growth,hydrogen evolution,corrosion,and passivation of zinc anode during charging and discharging processes,must be overcome to achieve high cycling performance and stability in practical applications.In this work,we utilize a dual-func-tional organic additive cyclohexanedodecol(CHD)to firstly establish[Zn(H2O)5(CHD)]2+complex ion in an aqueous Zn electrolyte and secondly build a robust protection layer on the Zn surface to overcome these dilemmas.Systematic experiments and theoretical calculations are carried out to interpret the working mechanism of CHD.At a very low concentration of 0.1 mg mL^(−1) CHD,long-term reversible Zn plating/stripping could be achieved up to 2200 h at 2 mA cm^(−2),1000 h at 5 mA cm^(−2),and 650 h at 10 mA cm^(−2) at the fixed capacity of 1 mAh cm^(−2).When matched with V_(2)O_(5) cathode,the resultant AZIBs full cell with the CHD-modified electrolyte presents a high capacity of 175 mAh g^(−1) with the capacity retention of 92%after 2000 cycles under 2 A g^(−1).Such a performance could enable the commercialization of AZIBs for applications in grid energy storage and industrial energy storage. 展开更多
关键词 Cyclohexanedodecol Aqueous Zn-ion battery Zn dendrite Zn corrosion Hydrogen evolution
在线阅读 下载PDF
Cation-vacancy induced Li+ intercalation pseudocapacitance at atomically thin heterointerface for high capacity and high power lithium-ion batteries 被引量:2
7
作者 Ding Yuan David Adekoya +9 位作者 Yuhai Dou Yuhui Tian Hao Chen Zhenzhen Wu Jiadong Qin Linping Yu Jian Zhang Xianhu Liu Shi Xue Dou Shanqing Zhang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第11期281-288,I0006,共9页
It is challenging to create cation vacancies in electrode materials for enhancing the performance of rechargeable lithium ion batteries (LIBs). Herein, we utilized a strong alkaline etching method to successfully crea... It is challenging to create cation vacancies in electrode materials for enhancing the performance of rechargeable lithium ion batteries (LIBs). Herein, we utilized a strong alkaline etching method to successfully create Co vacancies at the interface of atomically thin Co_(3−x)O_(4)/graphene@CNT heterostructure for high-energy/power lithium storage. The creation of Co-vacancies in the sample was confirmed by high-resolution scanning transmission electron microscope (HRSTEM), X-ray photoelectron spectroscopy (XPS) and electron energy loss near-edge structures (ELNES). The obtained Co_(3−x)O_(4)/graphene@CNT delivers an ultra-high capacity of 1688.2 mAh g^(−1) at 0.2 C, excellent rate capability of 83.7% capacity retention at 1 C, and an ultralong life up to 1500 cycles with a reversible capacity of 1066.3 mAh g^(−1). Reaction kinetic study suggests a significant contribution from pseudocapacitive storage induced by the Co-vacancies at the Co_(3−x)O_(4)/graphene@CNT interface. Density functional theory confirms that the Co-vacancies could dramatically enhance the Li adsorption and provide an additional pathway with a lower energy barrier for Li diffusion, which results in an intercalation pseudocapacitive behavior and high-capacity/rate energy storage. 展开更多
关键词 Cation vacancy Atomically thin Interface PSEUDOCAPACITANCE Lithium-ion batteries
在线阅读 下载PDF
High temperature mechanical properties and microstructure of die forged Al-5.87Zn-2.07Mg-2.42Cu alloy
8
作者 Yao LI Guo-fu XU +3 位作者 Xiao-yan PENG Shi-chao LIU Yu-hai DOU Xiao-peng LIANG 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2020年第7期1771-1779,共9页
The high temperature mechanical properties(250 ℃) and microstructure of a die-forged Al-5.87 Zn-2.07 Mg-2.42 Cu alloy after T6 heat treatment were investigated. High temperature tensile tests show that as the tempera... The high temperature mechanical properties(250 ℃) and microstructure of a die-forged Al-5.87 Zn-2.07 Mg-2.42 Cu alloy after T6 heat treatment were investigated. High temperature tensile tests show that as the temperature increases from room temperature to 250 ℃, the ultimate tensile strength of the alloy decreases from 638 to 304 MPa, and the elongation rises from 13.6% to 20.4%. Transmission electron microscopy(TEM) and electron backscattered diffraction(EBSD) were applied for microstructure characterization, which indicates that the increase of tensile temperature can lead to the coarsening of precipitates, drop of dislocation density, and increase of dynamic recovery. After tensile testing at 250 ℃, a sub-grain structure composed of a high fraction of small-angle grain boundary is formed. 展开更多
关键词 Al-Zn-Mg-Cu alloy dynamic recovery high temperature mechanical properties MICROSTRUCTURE
在线阅读 下载PDF
Housing Sulfur in Polymer Composite Frameworks for Li–S Batteries 被引量:4
9
作者 Luke Hencz Hao Chen +4 位作者 Han Yeu Ling Yazhou Wang Chao Lai Huijun Zhao Shanqing Zhang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2019年第1期282-325,共44页
Extensive efforts have been devoted to the design of micro-, nano-, and/or molecular structures of sulfur hosts to address the challenges of lithium–sulfur(Li–S) batteries, yet comparatively little research has been... Extensive efforts have been devoted to the design of micro-, nano-, and/or molecular structures of sulfur hosts to address the challenges of lithium–sulfur(Li–S) batteries, yet comparatively little research has been carried out on the binders in Li–S batteries. Herein, we systematically review the polymer composite frameworks that confine the sulfur within the sulfur electrode, taking the roles of sulfur hosts and functions of binders into consideration. In particular, we investigate the binding mechanism between the binder and sulfur host(such as mechanical interlocking and interfacial interactions), the chemical interactions between the polymer binder and sulfur(such as covalent bonding, electrostatic bonding, etc.), as well as the beneficial functions that polymer binders can impart on Li–S cathodes, such as conductive binders, electrolyte intake, adhesion strength etc. This work could provide a more comprehensive strategy in designing sulfur electrodes for long-life, large-capacity and high-rate Li–S battery. 展开更多
关键词 Lithium–sulfur battery SULFUR CATHODE BINDER BINDING mechanism Polymer composite frameworks
在线阅读 下载PDF
Interface Engineering of CoS/CoO@N‑Doped Graphene Nanocomposite for High‑Performance Rechargeable Zn–Air Batteries 被引量:8
10
作者 Yuhui Tian Li Xu +6 位作者 Meng Li Ding Yuan Xianhu Liu Junchao Qian Yuhai Dou Jingxia Qiu Shanqing Zhang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2021年第1期29-43,共15页
Low cost and green fabrication of high-performance electrocatalysts with earth-abundant resources for oxygen reduction reaction(ORR)and oxygen evolution reaction(OER)are crucial for the large-scale application of rech... Low cost and green fabrication of high-performance electrocatalysts with earth-abundant resources for oxygen reduction reaction(ORR)and oxygen evolution reaction(OER)are crucial for the large-scale application of rechargeable Zn-air batteries(ZABs).In this work,our density functional theory calculations on the electrocatalyst suggest that the rational construction of interfacial structure can induce local charge redistribution,improve the electronic conductivity and enhance the catalyst stability.In order to realize such a structure,we spatially immobilize heterogeneous CoS/CoO nanocrystals onto N-doped graphene to synthesize a bifunctional electrocatalyst(CoS/CoO@NGNs).The optimization of the composition,interfacial structure and conductivity of the electrocatalyst is conducted to achieve bifunctional catalytic activity and deliver outstanding efficiency and stability for both ORR and OER.The aqueous ZAB with the as-prepared CoS/CoO@NGNs cathode displays a high maximum power density of 137.8 mW cm^−2,a specific capacity of 723.9 mAh g^−1 and excellent cycling stability(continuous operating for 100 h)with a high round-trip efficiency.In addition,the assembled quasi-solid-state ZAB also exhibits outstanding mechanical flexibility besides high battery performances,showing great potential for applications in flexible and wearable electronic devices. 展开更多
关键词 Cobalt sulfide/oxide HETEROSTRUCTURE INTERFACE Bifunctional electrocatalyst Rechargeable Zn-air battery
在线阅读 下载PDF
Cobalt-doped Mn3O4 nanocrystals embedded in graphene nanosheets as a high-performance bifunctional oxygen electrocatalyst for rechargeable Zn–Air batteries 被引量:4
11
作者 Mengyang Dong Xu Liu +7 位作者 Lixue Jiang Zhengju Zhu Yajie Shu Shan Chen Yuhai Dou Porun Liu Huajie Yin Huijun Zhao 《Green Energy & Environment》 SCIE CSCD 2020年第4期499-505,共7页
A non-noble-metal bifunctional catalyst with efficient and durable activity towards both the oxygen reduction reaction(ORR)and the oxygen evolution reaction(OER)is crucial to the development of rechargeable Zn-air bat... A non-noble-metal bifunctional catalyst with efficient and durable activity towards both the oxygen reduction reaction(ORR)and the oxygen evolution reaction(OER)is crucial to the development of rechargeable Zn-air batteries.Herein,a facile one-step hydrothermal method is reported for the synthesis of a high-performance bifunctional oxygen electrocatalyst,cobalt-doped Mn_(3)O_(4) nanocrystals supported on graphene nanosheets(Co–Mn_(3)O_(4)/G).Compare to pristine Mn_(3)O_(4),this Co–Mn_(3)O_(4)/G exhibits greatly enhanced electrocatalytic activity,delivering a halfwave potential of 0.866 V for the ORR and a low overpotential of 275 mV at 10 mA cm^(-2) for the OER.The zinc-air battery built with Co–Mn_(3)O_(4)/G shows a reduced charge–discharge voltage of 0.91 V at 10 mA cm^(-2),an power density of 115.24 mW cm^(-2) and excellent stability without any degradation after 945 cycles(315 h),outperforming the state-of-the-art Pt/C–Ir/C catalyst-based device. 展开更多
关键词 Mn_(3)O_(4) Bifunctional electrocatalysts Oxygen reduction reaction Oxygen evolution reaction Zinc air battery
在线阅读 下载PDF
Suppressing Li Dendrites via Electrolyte Engineering by Crown Ethers for Lithium Metal Batteries 被引量:4
12
作者 Shanqing Zhang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2020年第11期226-228,共3页
Electrolyte engineering is considered as an effective strategy to establish stable solid electrolyte interface(SEI),and thus to suppress the growth of lithium dendrites.In a recent study reported in Advanced Functiona... Electrolyte engineering is considered as an effective strategy to establish stable solid electrolyte interface(SEI),and thus to suppress the growth of lithium dendrites.In a recent study reported in Advanced Functional Materials by Ma group,discovered that strong coordination force could be founded between 15-Crown-5 ether(15-C-5) and Li+,which facilitates the crown ether(15-C-1) to participate in the solvation structure of Li+ in the electrolyte for the same purpose.Such a novel strategy might impact the design of highperformance and safe lithium metal batteries(LMB s). 展开更多
关键词 Li dendrites Crown ethers Lithium metal batteries ELECTROLYTE
在线阅读 下载PDF
Encapsulated Ni-Co alloy nanoparticles as efficient catalyst for hydrodeoxygenation of biomass derivatives in water 被引量:4
13
作者 Dongdong Wang Wanbing Gong +6 位作者 Jifang Zhang Miaomiao Han Chun Chen Yunxia Zhang Guozhong Wang Haimin Zhang Huijun Zhao 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 2021年第11期2027-2037,共11页
Catalytic hydrodeoxygenation(HDO)is one of the most promising strategies to transform oxygen-rich biomass derivatives into high value-added chemicals and fuels,but highly challenging due to the lack of highly efficien... Catalytic hydrodeoxygenation(HDO)is one of the most promising strategies to transform oxygen-rich biomass derivatives into high value-added chemicals and fuels,but highly challenging due to the lack of highly efficient nonprecious metal catalysts.Herein,we report for the first time of a facile synthetic approach to controllably fabricate well-defined Ni-Co alloy NPs confined on the tip of N-CNTs as HDO catalyst.The resultant Ni-Co alloy catalyst possesses outstanding HDO performance towards biomass-derived vanillin into 2-methoxy-4-methylphenol in water with 100%conversion efficiency and selectivity under mild reaction conditions,surpassing the reported high performance nonprecious HDO catalysts.Impressively,our experimental results also unveil that the Ni-Co alloy catalyst can be generically applied to catalyze HDO of vanillin derivatives and other aromatic aldehydes in water with 100%conversion efficiency and over 90%selectivity.Importantly,our DFT calculations and experimental results confirm that the achieved outstanding HDO catalytic performance is due to the greatly promoted selective adsorption and activation of C=O,and desorption of the activated hydrogen species by the synergism of the alloyed Ni-Co NPs.The findings of this work affords a new strategy to design and develop efficient transition metal-based catalysts for HDO reactions in water. 展开更多
关键词 Ni-Co alloy nanoparticles Carbon nanotubes HYDRODEOXYGENATION Biomass derivatives H_(2)O solvent
在线阅读 下载PDF
2020 roadmap on pore materials for energy and environmental applications 被引量:6
14
作者 Zengxi Wei Bing Ding +11 位作者 Hui Dou Jorge Gascon Xiang-Jian Kong Yujie Xiong Bin Cai Ruiyang Zhang Ying Zhou Mingce Long Jie Miao Yuhai Dou Ding Yuan Jianmin Ma 《Chinese Chemical Letters》 SCIE CAS CSCD 2019年第12期2110-2122,共13页
Porous materials have attracted great attention in energy and environment applications,such as metal organic frameworks(MOFs),metal aerogels,carbon aerogels,porous metal oxides.These materials could be also hybridized... Porous materials have attracted great attention in energy and environment applications,such as metal organic frameworks(MOFs),metal aerogels,carbon aerogels,porous metal oxides.These materials could be also hybridized with other materials into functional composites with superior properties.The high specific area of porous materials offer them the advantage as hosts to conduct catalytic and electrochemical reactions.On one hand,catalytic reactions include photocatalytic,p ho toe lectrocatalytic and electrocatalytic reactions over some gases.On the other hand,they can be used as electrodes in various batteries,such as alkaline metal ion batteries and electrochemical capacitors.So far,both catalysis and batteries are extremely attractive topics.There are also many obstacles to overcome in the exploration of these porous materials.The research related to porous materials for energy and environment applications is at extremely active stage,and this has motivated us to contribute with a roadmap on ’porous materials for energy and environment applications’. 展开更多
关键词 Metal organic frameworks Zeolitic imidazolate frameworks Covalent organic frameworks AEROGELS Photocatalysis PHOTOELECTROCATALYSIS ELECTROCATALYSIS Metal-ion batteries Electrochemical capacitors
原文传递
La_(1-x)Ca_xMn_(1-y)Al_yO_3 perovskites as efficient catalysts for two-step thermochemical water splitting in conjunction with exceptional hydrogen yields 被引量:3
15
作者 Lulu Wang Mohammad Al‐Mamun +3 位作者 Porun Liu Yun Wang Hua Gui Yang Huijun Zhao 《Chinese Journal of Catalysis》 EI CSCD 北大核心 2017年第6期1079-1086,共8页
Solar‐driven thermochemical water splitting represents one efficient route to the generation of H2as a clean and renewable fuel.Due to their outstanding catalytic abilities and promising solar fuel production capacit... Solar‐driven thermochemical water splitting represents one efficient route to the generation of H2as a clean and renewable fuel.Due to their outstanding catalytic abilities and promising solar fuel production capacities,perovskite‐type redox catalysts have attracted significant attention in this regard.In the present study,the perovskite series La1‐xCaxMn1‐yAlyO3(x,y=0.2,0.4,0.6,or0.8)was fabricated using a modified Pechini method and comprehensively investigated to determine the applicability of these materials to solar H2production via two‐step thermochemical water splitting.The thermochemical redox behaviors of these perovskites were optimized by doping at either the A(Ca)or B(Al)sites over a broad range of substitution values,from0.2to0.8.Through this doping,a highly efficient perovskite(La0.6Ca0.4Mn0.6Al0.4O3)was developed,which yielded a remarkable H2production rate of429μmol/g during two‐step thermochemical H2O splitting,going between1400and1000°C.Moreover,the performance of the optimized perovskite was found to be eight times higher than that of the benchmark catalyst CeO2under the same experimental conditions.Furthermore,these perovskites also showed impressive catalytic stability during two‐step thermochemical cycling tests.These newly developed La1‐xCaxMn1‐yAlyO3redox catalysts appear to have great potential for future practical applications in thermochemical solar fuel production. 展开更多
关键词 Two‐step thermochemical route Water splitting Solar fuel Perovskite‐type redox catalyst Hydrogen production
在线阅读 下载PDF
Honeycomb-like carbon materials derived from coffee extract via a “salty” thermal treatment for high-performance Li-I2 batteries 被引量:7
16
作者 Zhong Su Han Yeu Ling +4 位作者 Meng Li Shangshu Qian Hao Chen Chao Lai Shanqing Zhang 《Carbon Energy》 CAS 2020年第2期265-275,共11页
Sustainable,conductive,and porous carbon materials are ideal for energy storage materials.In this study,honeycomb-like carbon materials(HCM)are synthesized via a“salty”thermal treatment of abundant and sustainable c... Sustainable,conductive,and porous carbon materials are ideal for energy storage materials.In this study,honeycomb-like carbon materials(HCM)are synthesized via a“salty”thermal treatment of abundant and sustainable coffee extract.Systematic materials characterization indicates that the as-prepared HCM consists of heteroatoms(N and O,etc.)doped ultra-thin carbon framework,possesses remarkable specific surface area,and excellent electrical conductivity.Such properties bestow HCM outstanding materials to be the blocking layer for Li-I2 battery,significantly eliminating the dissolution of I2 in the cathode region and stopping the I2 from shutting to anode compartment.Furthermore,our electrochemical investigation suggests that HCM could incur surface pseudo-capacitive iodine-ions charge storage and contribute additional energy storage capacity.As a result,the resultant Li-I2 battery achieves a robust and highly reversible capacity of 224.5 mAh·g−1 at the rate of 10 C.Even under a high rate of 50 C,the remarkable capacity of the as-prepared Li-I2 battery can still be maintained at 120.2 mAh·g−1 after 4000 cycles. 展开更多
关键词 adsorption blocking layer honeycomb-like carbon materials Li-I2 battery pseudo-capacity
在线阅读 下载PDF
Nanoporous SiO_x coated amorphous silicon anode material with robust mechanical behavior for high-performance rechargeable Li-ion batteries 被引量:2
17
作者 Hansinee S. Sitinamaluwa Henan Li +4 位作者 Kimal C. Wasalathilake Annalena Wolff Tuquabo Tesfamichael Shanqing Zhang Cheng Yan 《Nano Materials Science》 CAS 2019年第1期70-76,共7页
Silicon is a promising anode material for rechargeable Li-ion battery (LIB) due to its high energy density and relatively low operating voltage. However, silicon based electrodes suffer from rapid capacity degradation... Silicon is a promising anode material for rechargeable Li-ion battery (LIB) due to its high energy density and relatively low operating voltage. However, silicon based electrodes suffer from rapid capacity degradation during electrochemical cycling. The capacity decay is predominantly caused by (i) cracking due to large volume variations during lithium insertion/extraction and (ii) surface degradation due to excessive solid electrolyte interface (SEI) formation. In this work, we demonstrate that coating of a-Si thin film with a Li-active, nanoporous SiOx layer can result in exceptional electrochemical performance in Li-ion battery. The SiOx layer provides improved cracking resistance to the thin film and prevent the active material loss due to excessive SEI formation, benefiting the electrode cycling stability. Half-cell experiments using this anode material show an initial reversible capacity of 2173 mAh g^-1 with an excellent coulombic efficiency of 90.9%. Furthermore, the electrode shows remarkable capacity retention of ~97% after 100 cycles at C/2 charging rate. The proposed anode architecture is free from Liinactive binders and conductive additives and provides mechanical stability during the charge/discharge process. 展开更多
关键词 Amorphous SILICON Thin film Solid electrolyte INTERPHASE SILICON oxide Anode LI-ION battery
在线阅读 下载PDF
Ultrafine Fe/Fe3C decorated on Fe-N_(x)-C as bifunctional oxygen electrocatalysts for efficient Zn-air batteries 被引量:2
18
作者 Lingbo Zong Xin Chen +17 位作者 Siliang Liu Kaicai Fan Shuming Dou Jie Xu Xiaoxian Zhao Wenjun Zhang Yaowen Zhang Weicui Wu Fenghong Lu Lixiu Cui Xiaofei Jia Qi Zhang Yu Yang Jian Zhao Xia Li Yida Deng Yanan Chen Lei Wang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第5期72-79,共8页
Efficient bifunctional oxygen electrocatalysts for ORR and OER are fundamental to the development of high performance metal-air batteries.Herein,a facile cost-efficient two-step pyrolysis strategy for the fabrication ... Efficient bifunctional oxygen electrocatalysts for ORR and OER are fundamental to the development of high performance metal-air batteries.Herein,a facile cost-efficient two-step pyrolysis strategy for the fabrication of a bifunctional oxygen electrocatalyst has been proposed.The efficient non-preciousmetal-based electrocatalyst,Fe/Fe_(3)C@Fe-N_(x)-C consists of highly curved onion-like carbon shells that encapsulate Fe/Fe_(3)C nanoparticles,distributed on an extensively porous graphitic carbon aerogel.The obtained Fe/Fe_(3)C@Fe-N_(x)-C aerogel exhibited superb electrochemical activity,excellent durability,and high methanol tolerance.The experimental results indicated that the assembly of onion-like carbon shells with encapsulated Fe/Fe_(3)C yielded highly curved carbon surfaces with abundant Fe-Nxactive sites,a porous structure,and enhanced electrocatalytic activity towards ORR and OER,hence displaying promising potential for application as an air cathode in rechargeable Zn-air batteries.The constructed Zn-air battery possessed an exceptional peak power density of~147 mW cm^(-2),outstanding cycling stability(200 cycles,1 h per cycle),and a small voltage gap of 0.87 V.This study offers valuable insights regarding the construction of low-cost and highly active bifunctional oxygen electrocatalysts for efficient air batteries. 展开更多
关键词 Non-precious metal Nitrogen-rich carbon Fe/Fe_(3)C Fe-N_(x)-C Bifunctional oxygen electrocatalysts
在线阅读 下载PDF
Molten salt assisted fabrication of Fe@Fe_(SA)-N-C oxygen electrocatalyst for high performance Zn-air battery 被引量:2
19
作者 Wenjun Zhang Kaicai Fan +5 位作者 Cheng-Hao Chuang Porun Liu Jian Zhao Dongchen Qi Lingbo Zong Lei Wang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第10期612-621,I0016,共11页
Non-noble-metal-based electrocatalysts with superior oxygen reduction reaction(ORR)activity to platinum(Pt)are highly desirable but their fabrications are challenging and thus impeding their applications in metal-air ... Non-noble-metal-based electrocatalysts with superior oxygen reduction reaction(ORR)activity to platinum(Pt)are highly desirable but their fabrications are challenging and thus impeding their applications in metal-air batteries and fuel cells.Here,we report a facile molten salt assisted two-step pyrolysis strategy to construct carbon nanosheets matrix with uniformly dispersed Fe_(3) N/Fe nanoparticles and abundant nitrogen-coordinated Fe single atom moieties(Fe@Fe_(SA)-N-C).Thermal exfoliation and etching effect of molten salt contribute to the formation of carbon nanosheets with high porosity,large surface area and abundant uniformly immobilized active sites.Aberration-corrected high-angle annular dark-field scanning transmission electron microscopy(HAADF-STEM)image,X-ray absorption fine spectroscopy,and X-ray photoelectron spectroscopy indicate the generation of Fe(mainly Fe_(3) N/Fe)and Fe_(SA)-N-C moieties,which account for the catalytic activity for ORR.Further study on modulating the crystal structure and composition of Fe_(3) N/Fe nanoparticles reveals that proper chemical environment of Fe in Fe_(3) N/Fe notably optimizes the ORR activity.Consequently,the presence of abundant Fe_(SA)-N-C moieties,and potential synergies of Fe_(3) N/Fe nanoparticles and carbon shells,markedly promote the reaction kinetics.The as-developed Fe@Fe_(SA)-N-C-900 electrocatalyst displays superior ORR performance with a half-wave potential(E_(1/2))of 0.83 V versus reversible hydrogen electrode(RHE)and a diffusion limited current density of 5.6 mA cm^(-2).In addition,a rechargeable Zn-air battery device assembled by the Fe@Fe_(SA)-N-C-900 possesses remarkably stable performance with a small voltage gap without obvious voltage loss after500 h of operation.The facile synthesis strategy for the high-performance composites represents another viable avenue to stable and low-cost electrocatalysts for ORR catalysis. 展开更多
关键词 Molten salt Oxygen reduction reaction Long-term durability Zn-air batteries
在线阅读 下载PDF
Amylopectin from Glutinous Rice as a Sustainable Binder for High-Performance Silicon Anodes 被引量:2
20
作者 Han Yeu Ling Chengrui Wang +8 位作者 Zhong Su Su Chen Hao Chen Shangshu Qian Dong-Sheng Li Cheng Yan Milton Kiefel Chao Lai Shanqing Zhang 《Energy & Environmental Materials》 SCIE CSCD 2021年第2期263-268,共6页
Silicon(Si)has been investigated as a promising anode material because of its high theoretical capacity(4200 m Ah g^(-1)).However,silicon anode suffers from huge volume changes during repeated charge–discharge cycles... Silicon(Si)has been investigated as a promising anode material because of its high theoretical capacity(4200 m Ah g^(-1)).However,silicon anode suffers from huge volume changes during repeated charge–discharge cycles.In this work,inspired by a remarkable success of the glutinous rice mortar in the Great Wall with ca.2000-year history,amylopectin(AP),the key ingredient responsible for the strong bonding force,is extracted from glutinous rice and utilized as a flexible,aqueous,and resilient binder to address the most challenging drastic volume-expansion and pulverization issues of silicon anode.Additionally,the removal of toxic N-methyl-2-pyrrolidone(NMP)organic solvent makes the electrode fabrication process environmentally friendly and healthy.The as-prepared Si-AP electrode with 60 wt%of Si can uphold a high discharge capacity of 1517.9 m Ah g^(-1)at a rate of 0.1 C after 100 cycles.The cycling stability of the Si-AP has been remarkably improved in comparison with both traditional polyvinylidene fluoride(PVDF)and aqueous carboxymethylcellulose(CMC)binders.Moreover,when the content of silicon in the Si-AP electrode increases to 70 wt%,a high discharge capacity of 1463.1 m Ah g^(-1)can still be obtained after 50 cycles at 0.1°C.These preliminary results suggest that the sustainably available and environmentally benign amylopectin binders could be a promising choice for the construction of highly stable silicon anodes. 展开更多
关键词 AMYLOPECTIN BINDER glutinous rice silicon anode sticky rice
在线阅读 下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部