Developing effective and long-term treatment strategies for rare and complex neurodegenerative diseases is challenging. One of the major roadblocks is the extensive heterogeneity among patients. This hinders understan...Developing effective and long-term treatment strategies for rare and complex neurodegenerative diseases is challenging. One of the major roadblocks is the extensive heterogeneity among patients. This hinders understanding the underlying disease-causing mechanisms and building solutions that have implications for a broad spectrum of patients. One potential solution is to develop personalized medicine approaches based on strategies that target the most prevalent cellular events that are perturbed in patients. Especially in patients with a known genetic mutation, it may be possible to understand how these mutations contribute to problems that lead to neurodegeneration. Protein–protein interaction analyses offer great advantages for revealing how proteins interact, which cellular events are primarily involved in these interactions, and how they become affected when key genes are mutated in patients. This line of investigation also suggests novel druggable targets for patients with different mutations. Here, we focus on alsin and spastin, two proteins that are identified as “causative” for amyotrophic lateral sclerosis and hereditary spastic paraplegia, respectively, when mutated. Our review analyzes the protein interactome for alsin and spastin, the canonical pathways that are primarily important for each protein domain, as well as compounds that are either Food and Drug Administration–approved or are in active clinical trials concerning the affected cellular pathways. This line of research begins to pave the way for personalized medicine approaches that are desperately needed for rare neurodegenerative diseases that are complex and heterogeneous.展开更多
Recent advances in photocatalysis have enabled radical methods with complementary chemoselectivity to established two electron bond forming approaches.While this radical strategy has previously been limited to substra...Recent advances in photocatalysis have enabled radical methods with complementary chemoselectivity to established two electron bond forming approaches.While this radical strategy has previously been limited to substrates with favorable redox potentials,Brønsted/Lewis acid activation has emerged as a means of facilitating otherwise difficult reductions.We report herein our investigations into the Lewis acid-promoted redox activation ofβ-ketocarbonyls in a model photocatalytic radical alkylation reaction.Rapid evaluation of substrates and reactions conditions was achieved by high throughput experimentation using 96-well plate photoreactors.展开更多
基金funded by NIH-NIA R01AG061708 (to PHO)Patrick Grange Memorial Foundation (to PHO)+1 种基金A Long Swim (to PHO)CureSPG4 Foundation (to PHO)。
文摘Developing effective and long-term treatment strategies for rare and complex neurodegenerative diseases is challenging. One of the major roadblocks is the extensive heterogeneity among patients. This hinders understanding the underlying disease-causing mechanisms and building solutions that have implications for a broad spectrum of patients. One potential solution is to develop personalized medicine approaches based on strategies that target the most prevalent cellular events that are perturbed in patients. Especially in patients with a known genetic mutation, it may be possible to understand how these mutations contribute to problems that lead to neurodegeneration. Protein–protein interaction analyses offer great advantages for revealing how proteins interact, which cellular events are primarily involved in these interactions, and how they become affected when key genes are mutated in patients. This line of investigation also suggests novel druggable targets for patients with different mutations. Here, we focus on alsin and spastin, two proteins that are identified as “causative” for amyotrophic lateral sclerosis and hereditary spastic paraplegia, respectively, when mutated. Our review analyzes the protein interactome for alsin and spastin, the canonical pathways that are primarily important for each protein domain, as well as compounds that are either Food and Drug Administration–approved or are in active clinical trials concerning the affected cellular pathways. This line of research begins to pave the way for personalized medicine approaches that are desperately needed for rare neurodegenerative diseases that are complex and heterogeneous.
基金We thank Northwestern University and the National Institute of General Medical Sciences(Nos.R01 GM131431 and R35 GM136440)for support of this work.
文摘Recent advances in photocatalysis have enabled radical methods with complementary chemoselectivity to established two electron bond forming approaches.While this radical strategy has previously been limited to substrates with favorable redox potentials,Brønsted/Lewis acid activation has emerged as a means of facilitating otherwise difficult reductions.We report herein our investigations into the Lewis acid-promoted redox activation ofβ-ketocarbonyls in a model photocatalytic radical alkylation reaction.Rapid evaluation of substrates and reactions conditions was achieved by high throughput experimentation using 96-well plate photoreactors.