期刊文献+
共找到965篇文章
< 1 2 49 >
每页显示 20 50 100
Two-Dimensional Metallophthalocyanine Nanomaterials for Electrocatalytic Energy Conversion
1
作者 Xinqi Wang Shaohui Sun +3 位作者 Jiahao Yao Hao Wan Renzhi Ma Wei Ma 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2024年第4期364-385,共22页
Growing energy demand drives the rapid development of clean and reliable energy sources.In the past years,the exploration of novel materials with considerable efficiency and durability has drawn attention in the area ... Growing energy demand drives the rapid development of clean and reliable energy sources.In the past years,the exploration of novel materials with considerable efficiency and durability has drawn attention in the area of electrochemical energy conversion.Transition metal macrocyclic metallophthalocyanines(MPcs)-based catalysts with a peculiar 2D constitution have emerged with a promising future account of their highly structural tailorability and molecular functionality which greatly extend their functionalities as electrocatalytic materials for energy conversion.This review summarizes the systematic engineering of synthesis of MPcs and their analogs in detail,and mostly pays attention to the frontier research of MPc-based high-performance catalysts toward different electrocatalytic processes concerning hydrogen,oxygen,water,carbon dioxide,and nitrogen,with a particular focus on discussing the interrelationship between the electrocatalytic activity and component/structure,as well as functional applications of MPcs.Finally,we give the gaps that need to be addressed after much thought. 展开更多
关键词 conjugated nanostructure ELECTROCATALYSIS 2D metallophthalocyanines
在线阅读 下载PDF
2D Phthalocyanine-based covalent organic frameworks for infrared light-mediated photocatalysis
2
作者 Xiaoning Zhan Yucheng Jin +9 位作者 Bin Han Ziwen Zhou Baotong Chen Xu Ding Fushun Li Zhiru Suo Rong Jiang Dongdong Qi Kang Wang Jianzhuang Jiang 《Chinese Journal of Catalysis》 2025年第2期271-281,共11页
Covalent organic frameworks(COFs)based photocatalysts utilizing infrared light remains unexplored due to the limitation of electronic absorption.Herein,two novel two-dimensional(2D)polyimide-linked phthalocyanine COFs... Covalent organic frameworks(COFs)based photocatalysts utilizing infrared light remains unexplored due to the limitation of electronic absorption.Herein,two novel two-dimensional(2D)polyimide-linked phthalocyanine COFs,namely MPc-DPA-COFs(M=Zn/Cu),were prepared from the imidization reaction of metal tetraanhydrides of 2,3,9,10,16,17,23,24-octacarboxyphthalocyaninato(M(TAPc))with 9,10-diphenyl anthracene(DPA).Both COFs possess highly crystalline eclipsed AA stacking structure with neighboring layer distance of 0.33 nm on the basis of powder X-ray diffraction analysis and high-resolution transmission electron microscopy.Effective π–π interaction between phthalocyanine chromophores in neighboring layers of 2D COFs leads to significant bathochromic-shift of narrow Q band from 697 nm for M(TAPc)to the infrared light absorption range of 760–1000 nm for MPc-DPA-COFs according to solid UV-vis diffuse reflectance spectra.This endows them in particular ZnPc-DPA-COF with excellent reactive oxygen species of•O_(2)^(–)and 1O_(2) generation activity under infrared light radiation(λ>760 nm)based on the electron spin resonance spectroscopy measurement,in turn resulting in the excellent photocatalytic capacity towards oxidation of sulfides under infrared light radiation.Corresponding quenching experiments reveal the contribution of both•O_(2)^(–)and 1O_(2) to the oxidation of sulfides,but the former•O_(2)^(–)species plays a leading role in this photocatalytic process.The present result not only provides a new efficient infrared light photocatalyst but also unveils the good potentials of phthalocyanine-based COFs in photocatalysis. 展开更多
关键词 Covalent organic framework Infrared light PHOTOCATALYSIS Reactive oxygen species Oxidation of sulfides
在线阅读 下载PDF
Insights into Structure-Activity Relationships between Y Zeolites and their n-C_(10)Hydrocracking Performances via Machine Learning Approaches
3
作者 Qianli Ma Hong Nie +4 位作者 Ping Yang Jianqiang Liu Hongyi Gao Wei Wang Songtao Dong 《Chinese Journal of Catalysis》 2025年第4期187-196,共10页
Hydrocracking technology represents a crucial position in the conversion of heavy oil and the transformation development from oil refining to the chemical industry.The properties of catalysts are one of the key factor... Hydrocracking technology represents a crucial position in the conversion of heavy oil and the transformation development from oil refining to the chemical industry.The properties of catalysts are one of the key factors in the hydrocracking process.As the main acidic component of hydrocracking catalyst,the influence of zeolite properties on the reaction performance has been the focus of research.In this study,a series of NiMo/Al_(2)O_(3)-Y catalysts were prepared using different Y zeolites as acidic components,and their performances in the hydrocracking of n-C_(10)were also evaluated.The structure-activity relationship between Y zeolite and the cracking performance of n-C_(10)was investigated with machine learning.First,a database of the physical and chemical properties of Y zeolite and their performance was established,and the correlation analysis was also conducted.Parameters such as the cell constant,acid content,acid strength,B/L ratio,mesopore volume,micropore volume of Y zeolite,and the reaction temperature were selected as independent variables.The conversion of n-C_(10)and the ratios of products C_(3)/C_(7)and i-C_(4)/n-C_(4)were selected as dependent variables.A model was established by the random forest algorithm and a new zeolite was predicted based on it.The results of model prediction were in good agreement with the experimental results.The R^(2)of the n-C_(10)conversion,C_(3)/C_(7)ratio,and i-C_(4)/n-C_(4)ratio were 0.9866,0.9845,and 0.9922,and the minimum root mean square error values were 0.0163,0.101,and 0.0211,respectively.These results can provide reference for the development of high performance hydrocracking catalyst and technology. 展开更多
关键词 HYDROCRACKING Machine learning Y zeolite N-DECANE ACID Pore structure
在线阅读 下载PDF
Magnetically-responsive phase change thermal storage materials:Mechanisms,advances,and beyond
4
作者 Yan Gao Yang Li +3 位作者 Jinjie Lin Panpan Liu Xiao Chen Ge Wang 《Journal of Energy Chemistry》 2025年第2期485-510,I0010,共27页
Rapid advances in thermal management technology and the increasing need for multi-energy conversion have placed stringent energy efficiency requirements on next-generation shape-stable composite phase change materials... Rapid advances in thermal management technology and the increasing need for multi-energy conversion have placed stringent energy efficiency requirements on next-generation shape-stable composite phase change materials(PCMs).Magnetically-responsive phase change thermal storage materials are considered an emerging concept for energy storage systems,enabling PCMs to perform unprecedented functions(such as green energy utilization,magnetic thermotherapy,drug release,etc.).The combination of multifunctional magnetic nanomaterials and PCMs is a milestone in the creation of advanced multifunctional composite PCMs.However,a timely and comprehensive review of composite PCMs based on magnetic nanoparticle modification is still missing.Herein,we furnish an exhaustive exposition elucidating the cutting-edge advancements in magnetically responsive composite PCMs.We delve deeply into the multifarious roles assumed by distinct nanoparticles within composite PCMs of varying dimensions,meticulously scrutinizing the intricate interplay between their architectures and thermophysical attributes.Moreover,we prognosticate future research trajectories,delineate alternative stratagems,and illuminate prospective avenues.This review is intended to stimulate broader academic interest in interdisciplinary fields and provide valuable insights into the development of next-generation magnetically-responsive composite PCMs. 展开更多
关键词 Phase change materials Magnetic-thermal conversion Magnetic nanoparticles Thermal energy storage Response mechanism
在线阅读 下载PDF
Encapsulating perovskite quantum dots into 3D COF for visible light-driven CO_(2) reducti
5
作者 Xinxin Wang Yucheng Jin +5 位作者 Xiya Yang Qingyu Luan Tianyu Wang Dongdong Qi Kang Wang Jianzhuang Jiang 《Science China Chemistry》 2025年第4期1478-1485,共8页
Lead halide perovskite quantum dots(LHP QDs)have been revealed to possess great potential in photocatalytic applications including CO_(2)reduction;which however suffer from poor stability.Herein;a high crystalline hyd... Lead halide perovskite quantum dots(LHP QDs)have been revealed to possess great potential in photocatalytic applications including CO_(2)reduction;which however suffer from poor stability.Herein;a high crystalline hydrazine-linked three-dimensional(3D)covalent organic framework;USTB-17;was fabricated from the reaction between 12-connected building block and 4-connected 3;5;7-tetrakis(4-aldophenyl)-adamantane.Post-modification with Ni2+affords the metallic framework USTB-17(Ni)followed by sequential deposition of the CH_(3)NH_(2)PbI3(MAPbI3)perovskite QDs into its pores;generating the USTB-17(Ni)@MAPbI3 composite.Powder X-ray diffraction analysis together with theoretical simulations and transmission electron microscopy discloses the crystalline nature of USTB-17;USTB-17(Ni);and USTB-17(Ni)@MAPbI3 with an unprecedented noninterpenetrated hpt topology.The close contact of QDs inside the COF pores with the Ni catalytic site locating at the pore surface of COF allows a rapid transfer of the photogenerated electrons in QDs to the Ni catalytic sites;enhancing the photocatalytic activity for CO_(2)reduction.This endows USTB-17(Ni)@MAPbI3 with efficient photocatalysis performance for photocatalytic CO_(2)reduction with CO generation rate of 365μmol g^(-1)h^(-1)and CO selectivity up to 96%under visible-light irradiation;7 times higher than that of USTB-17(Ni).After four cycles of reactions;the photocatalytic CO generation rate remains almost unchanged;demonstrating its excellent cycle stability. 展开更多
关键词 lead halide perovskite quantum dots 3D covalent organic frameworks hpt topology photocatalytic CO_(2)reduction
原文传递
Segregation behaviors in{101^(-)1}compressive twin boundaries of Mg-RE alloy under deformation at room temperature
6
作者 Yujie Cui Lili Guo +6 位作者 Yunwei Gui Kenta Aoyagi Haotian Tong Qinqin Wei Fangzhou Liu Yuichiro Hayasaka Akihiko Chiba 《Journal of Magnesium and Alloys》 2025年第1期330-337,共8页
Solute atoms and precipitates significantly influence the mechanical properties of Mg alloys.Previous studies have mainly focused on the segregation behaviors of Mg alloys after annealing.In this study,we investigated... Solute atoms and precipitates significantly influence the mechanical properties of Mg alloys.Previous studies have mainly focused on the segregation behaviors of Mg alloys after annealing.In this study,we investigated the segregation behaviors of an Mg-RE alloy under deformation.We found that the enrichment of solute atoms occurred in{101^(-)1}compressive twin boundaries under compression at 298 K without any annealing in an Mg-RE alloy by scanning transmission electron microscopy and energy-dispersive X-ray analysis.The segregated solutes and precipitates impeded the twin growth,partially contributing to the formation of small-sized{101^(-)1}compressive twins.This research indicates the twin boundaries can be strengthened by segregated solutes and precipitates formed under deformation at room temperature. 展开更多
关键词 Magnesium alloys Compression test Scanning/transmission electron microscopy(STEM) SEGREGATION Twin boundaries
在线阅读 下载PDF
Recent advances in electrospun electrode materials for sodium-ion batteries 被引量:11
7
作者 Yao Wang Yukun Liu +6 位作者 Yongchang Liu Qiuyu Shen Chengcheng Chen Fangyuan Qiu Ping Li Lifang Jiao Xuanhui Qu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第3期225-241,共17页
Sodium-ion batteries(SIBs)have been considered as an ideal choice for the next generation large-scale energy storage applications owing to the rich sodium resources and the analogous working principle to that of lithi... Sodium-ion batteries(SIBs)have been considered as an ideal choice for the next generation large-scale energy storage applications owing to the rich sodium resources and the analogous working principle to that of lithium-ion batteries(LIBs).Nevertheless,the larger size and heavier mass of Na^(+)ion than those of Li^(+)ion often lead to sluggish reaction kinetics and inferior cycling life in SIBs compared to the LIB counterparts.The pursuit of promising electrode materials that can accommodate the rapid and stable Na-ion insertion/extraction is the key to promoting the development of SIBs toward a commercial prosperity.One-dimensional(1 D)nanomaterials demonstrate great prospects in boosting the rate and cycling performances because of their large active surface areas,high endurance for deformation stress,short ions diffusion channels,and oriented electrons transfer paths.Electrospinning,as a versatile synthetic technology,features the advantages of controllable preparation,easy operation,and mass production,has been widely applied to fabricate the 1 D nanostructured electrode materials for SIBs.In this review,we comprehensively summarize the recent advances in the sodium-storage cathode and anode materials prepared by electrospinning,discuss the effects of modulating the spinning parameters on the materials’micro/nano-structures,and elucidate the structure-performance correlations of the tailored electrodes.Finally,the future directions to harvest more breakthroughs in electrospun Na-storage materials are pointed out. 展开更多
关键词 Sodium-ion batteries ELECTROSPINNING Electrode materials NANOSTRUCTURES Structure-performance correlations
在线阅读 下载PDF
Editorial for Special Issue on Materials Genome Engineering 被引量:10
8
作者 Haizhou Wang Jianxin Xie 《Engineering》 SCIE EI 2020年第6期585-586,共2页
With the rapid advancement of computing and information technology at the turn of the 21st century,the power of data collection and processing has multiplied tremendously.Based on this a game-changing advancement,scie... With the rapid advancement of computing and information technology at the turn of the 21st century,the power of data collection and processing has multiplied tremendously.Based on this a game-changing advancement,science is at the advent of the “fourth paradigm”of massive data plus artificial intelligence,in which the efficiency of scientific research is continuously improved,research time is shortened,and research cost is reduced[1]. 展开更多
关键词 artificial MASSIVE shortened
在线阅读 下载PDF
Advances in biomineralization-inspired materials for hard tissue repair 被引量:4
9
作者 Shuxian Tang Zhiyun Dong +2 位作者 Xiang Ke Jun Luo Jianshu Li 《International Journal of Oral Science》 SCIE CAS CSCD 2021年第4期345-369,共25页
Biomineralization is the process by which organisms form mineralized tissues with hierarchical structures and excellent properties,including the bones and teeth in vertebrates.The underlying mechanisms and pathways of... Biomineralization is the process by which organisms form mineralized tissues with hierarchical structures and excellent properties,including the bones and teeth in vertebrates.The underlying mechanisms and pathways of biomineralization provide inspiration for designing and constructing materials to repair hard tissues.In particular,the formation processes of minerals can be partly replicated by utilizing bioinspired artificial materials to mimic the functions of biomolecules or stabilize intermediate mineral phases involved in biomineralization.Here,we review recent advances in biomineralization-inspired materials developed for hard tissue repair.Biomineralization-inspired materials are categorized into different types based on their specific applications,which include bone repair,dentin remineralization,and enamel remineralization.Finally,the advantages and limitations of these materials are summarized,and several perspectives on future directions are discussed. 展开更多
关键词 utilizing LIMITATIONS summarized
在线阅读 下载PDF
Editorial for special issue on advanced materials for energy storage and conversion 被引量:5
10
作者 Qiao-bao Zhang Yong-chang Liu Xiao-bo Ji 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2021年第10期1545-1548,共4页
The ever-increasing environmental problems and energy challenges have called urgent demand for utilizing green,efficient,and sustainable energy,thus promoting the development of new technologies associated with energy... The ever-increasing environmental problems and energy challenges have called urgent demand for utilizing green,efficient,and sustainable energy,thus promoting the development of new technologies associated with energy storage and conversion systems.Amongst a wealth of energy storage devices,Li/Na/K/Zn/Mg ion batteries,metal-air batteries,and lithium-sulfur/all-solid-state batteries together with supercapacitors as advanced power sources have attracted considerable interest due to their conspicuous merits of high energy density,long cycle life,and good rate capability. 展开更多
关键词 ENERGY utilizing LITHIUM
在线阅读 下载PDF
Will high-entropy carbides and borides be enabling materials for extreme environments? 被引量:2
11
作者 Fei Wang Frederic Monteverde Bai Cui 《International Journal of Extreme Manufacturing》 SCIE EI CAS CSCD 2023年第2期23-34,共12页
The concept of multi-principal component has created promising opportunities for the development of novel high-entropy ceramics for extreme environments encountered in advanced turbine engines, nuclear reactors, and h... The concept of multi-principal component has created promising opportunities for the development of novel high-entropy ceramics for extreme environments encountered in advanced turbine engines, nuclear reactors, and hypersonic vehicles, as it expands the compositional space of ceramic materials with tailored properties within a single-phase solid solution. The unique physical properties of some high-entropy carbides and borides, such as higher hardness, high-temperature strength, lower thermal conductivity, and improved irradiation resistance than the constitute ceramics, have been observed. These promising properties may be attributed to the compositional complexity, atomic-level disorder, lattice distortion, and other fundamental processes related to defect formation and phonon scattering.This manuscript serves as a critical review of the recent progress in high-entropy carbides and borides, focusing on synthesis and evaluations of their performance in extreme high-temperature, irradiation, and gaseous environments. 展开更多
关键词 high-entropy ceramics high-entropy materials extreme environments CERAMICS
在线阅读 下载PDF
Computational screening of doping schemes for LiTi2(PO4)3 as cathode coating materials 被引量:1
12
作者 Yu-Qi Wang Xiao-Rui Sun +1 位作者 Rui-Juan Xiao Li-Quan Chen 《Chinese Physics B》 SCIE EI CAS CSCD 2020年第3期7-12,共6页
In all-solid-state lithium batteries,the impedance at the cathode/electrolyte interface shows close relationship with the cycle performance.Cathode coatings are helpful to reduce the impedance and increase the stabili... In all-solid-state lithium batteries,the impedance at the cathode/electrolyte interface shows close relationship with the cycle performance.Cathode coatings are helpful to reduce the impedance and increase the stability at the interface effectively.LiTi2(PO4)3(LTP),a fast ion conductor with high ionic conductivity approaching 10^(-3)S·cm^(-1),is adopted as the coating materials in this study.The crystal and electronic structures,as well as the Li^+ion migration properties are evaluated for LTP and its doped derivatives based on density functional theory(DFT)and bond valence(BV)method.Substituting part of Ti sites with element Mn,Fe,or Mg in LTP can improve the electronic conductivity of LTP while does not decrease its high ionic conductivity.In this way,the coating materials with both high ionic conductivities and electronic conductivities can be prepared for all-solid-state lithium batteries to improve the ion and electron transport properties at the interface. 展开更多
关键词 LITHIUM battery materials HIGH-THROUGHPUT CALCULATIONS density functional theory virtual SCREENING
在线阅读 下载PDF
Tightened1D/3Dcarbonheterostructure infiltratingphase change materials for solar-thermoelectric energy harvesting:Faster and better 被引量:2
13
作者 Zhaodi Tang Piao Cheng +3 位作者 Panpan Liu Yan Gao Xiao Chen Ge Wang 《Carbon Energy》 SCIE CSCD 2023年第6期104-117,共14页
Extensive use of thermal energy in daily life is ideal for reducing carbon emissions to achieve carbon neutrality;however,the effective collection of thermal energy is a major hurdle.Thermoelectric(TE)conversion techn... Extensive use of thermal energy in daily life is ideal for reducing carbon emissions to achieve carbon neutrality;however,the effective collection of thermal energy is a major hurdle.Thermoelectric(TE)conversion technology based on the Seebeck effect and thermal energy storage technology based on phase change materials(PCMs)represent smart,feasible,and research-worthy approaches to overcome this hurdle.However,the integration of multiple thermal energy sources freely existing in the environment for storage and output of thermal and electrical energy simultaneously still remains a huge challenge.Herein,three-dimensional(3D)nanostructured metal-organic frameworks(MOFs)are in situ nucleated and grown onto carbon nanotubes(CNTs)via coordination bonding.After calcination,the prepared core-shell structural CNTs@MOFs are transformed into tightened 1D/3D carbon heterostructure loading Co nanoparticles for efficient solar-thermoelectric energy harvesting.Surprisingly,the corresponding composite PCMs show a record-breaking solar-thermal conversion efficiency of 98.1%due to the tightened carbon heterostructure and the local surface plasmon resonance effect of Co nanoparticles.Moreover,our designed all-in-one composite PCMs are also capable of creating an electrical potential of 0.5 mV based on the Seebeck effect without a TE generator.This promising approach can store thermal and electrical energy simultaneously,providing a new direction in the design of advanced all-in-one multifunctional PCMs for thermal energy storage and utilization. 展开更多
关键词 carbon neutrality metal-organic framework phase change materials solar-thermoelectric conversion thermal energy storage
在线阅读 下载PDF
Accelerated strategy for fast ion conductor materials screening and optimal doping scheme exploration 被引量:1
14
作者 Yuqi Wang Siyuan Wu +4 位作者 Wei Shao Xiaorui Sun Qiang Wang Ruijuan Xiao Hong Li 《Journal of Materiomics》 SCIE 2022年第5期1038-1047,共10页
Fast ion conductor materials screening based on high-throughput calculations involves enormous computing tasks.The process usually includes structural optimization,energy calculation,charge analysis and ionic migratio... Fast ion conductor materials screening based on high-throughput calculations involves enormous computing tasks.The process usually includes structural optimization,energy calculation,charge analysis and ionic migration performance estimation.The first one involves looking for the equilibrium atomic positions in huge amount of candidate compounds or derivative structures,and the computational cost is always high because of the task-intensive features.The last one relates to the kinetic problems,for which the time-consuming transition state theory and the molecular dynamics are the main simulation methods.In this work,two predictive models,ionic migration activation energy model and structural optimization model,are developed based on machine learning(ML)techniques to accelerate the process of estimating activation energy and relaxing the doped crystal structures,respectively.By training 3136 energy barrier data calculated by bond valence(BV)method,an ionic migration activation energy model(Ea model)with mean absolute error(MAE)of 0.26 eV on testing data set is obtained.We apply this model and filter LiBiOS as a promising fast Li^(+)conductor from 49 Licontaining hetero-anionic compounds.Although the model-predicted result shows relatively low energy barrier,further analysis indicates that the high carrier formation energy restricts the ionic transportability.Therefore,we substitute fractional Li^(+)with Mg^(2+)in LiBiOS to relieve the large difficulty of forming carriers in the structure.In order to fast explore the optimal doping scheme,we develop the structural optimization model(E-f model)containing the ML-based energy and force prediction to accelerate the structural optimization under various LieMg ratio and doping configurations.Decent doping scheme Li_(1-2x)Mg_(x)BiOS(x=0.1875)shows much better Li^(+)migration performance compared with LiBiOS without substitution.This method of screening fast ion conductor materials and finding optimal doping scheme will extremely accelerate materials explorations. 展开更多
关键词 Fast ion conductor Optimal doping scheme Machine learning High-throughput computation
原文传递
Critical factors to inhibit water-splitting side reaction in carbon-based electrode materials for zinc metal anodes 被引量:2
15
作者 Dong Hyuk Kang Eunji Lee +11 位作者 Beom Sik Youn Son Ha Jong Chan Hyun Juhee Yoon Dawon Jang Kyoung Sun Kim Hyungsub Kim Sang Moon Lee Sungho Lee Hyoung-Joon Jin Hyung-Kyu Lim Young Soo Yun 《Carbon Energy》 SCIE CAS 2022年第6期1080-1092,共13页
Zinc metal anodes(ZMA)have high theoretical capacities(820 mAh g−1 and 5855 mAh cm−3)and redox potential(−0.76 V vs.standard hydrogen electrode),similar to the electrochemical voltage window of the hydrogen evolution ... Zinc metal anodes(ZMA)have high theoretical capacities(820 mAh g−1 and 5855 mAh cm−3)and redox potential(−0.76 V vs.standard hydrogen electrode),similar to the electrochemical voltage window of the hydrogen evolution reaction(HER)in a mild acidic electrolyte system,facilitating aqueous zinc batteries competitive in next-generation energy storage devices.However,the HER and byproduct formation effectuated by water-splitting deteriorate the electrochemical performance of ZMA,limiting their application.In this study,a key factor in promoting the HER in carbon-based electrode materials(CEMs),which can provide a larger active surface area and guide uniform zinc metal deposition,was investigated using a series of threedimensional structured templating carbon electrodes(3D-TCEs)with different local graphitic orderings,pore structures,and surface properties.The ultramicropores of CEMs are the determining critical factors in initiating HER and clogging active surfaces by Zn(OH)2 byproduct formation,through a systematic comparative study based on the 3D-TCE series samples.When the 3D-TCEs had a proper graphitic structure with few ultramicropores,they showed highly stable cycling performances over 2000 cycles with average Coulombic efficiencies of≥99%.These results suggest that a well-designed CEM can lead to high-performance ZMA in aqueous zinc batteries. 展开更多
关键词 aqueous batteries carbon electrode hydrogen evolution reaction multivalent ion zinc metal anode
在线阅读 下载PDF
Design Strategies for Aqueous Zinc Metal Batteries with High Zinc Utilization: From Metal Anodes to Anode-Free Structures 被引量:3
16
作者 Xianfu Zhang Long Zhang +2 位作者 Xinyuan Jia Wen Song Yongchang Liu 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第4期305-349,共45页
Aqueous zinc metal batteries(AZMBs)are promising candidates for next-generation energy storage due to the excellent safety, environmental friendliness, natural abundance, high theoretical specific capacity, and low re... Aqueous zinc metal batteries(AZMBs)are promising candidates for next-generation energy storage due to the excellent safety, environmental friendliness, natural abundance, high theoretical specific capacity, and low redox potential of zinc(Zn) metal. However,several issues such as dendrite formation, hydrogen evolution, corrosion, and passivation of Zn metal anodes cause irreversible loss of the active materials. To solve these issues, researchers often use large amounts of excess Zn to ensure a continuous supply of active materials for Zn anodes. This leads to the ultralow utilization of Zn anodes and squanders the high energy density of AZMBs. Herein, the design strategies for AZMBs with high Zn utilization are discussed in depth, from utilizing thinner Zn foils to constructing anode-free structures with theoretical Zn utilization of 100%, which provides comprehensive guidelines for further research. Representative methods for calculating the depth of discharge of Zn anodes with different structures are first summarized. The reasonable modification strategies of Zn foil anodes, current collectors with pre-deposited Zn, and anode-free aqueous Zn metal batteries(AF-AZMBs) to improve Zn utilization are then detailed. In particular, the working mechanism of AF-AZMBs is systematically introduced. Finally, the challenges and perspectives for constructing high-utilization Zn anodes are presented. 展开更多
关键词 Aqueous zinc metal batteries Zinc anodes High zinc utilization Depth of discharge Anode-free structures
在线阅读 下载PDF
Alloy design for laser powder bed fusion additive manufacturing:a critical review 被引量:6
17
作者 Zhuangzhuang Liu Qihang Zhou +4 位作者 Xiaokang Liang Xiebin Wang Guichuan Li Kim Vanmeensel Jianxin Xie 《International Journal of Extreme Manufacturing》 SCIE EI CAS CSCD 2024年第2期29-63,共35页
Metal additive manufacturing(AM)has been extensively studied in recent decades.Despite the significant progress achieved in manufacturing complex shapes and structures,challenges such as severe cracking when using exi... Metal additive manufacturing(AM)has been extensively studied in recent decades.Despite the significant progress achieved in manufacturing complex shapes and structures,challenges such as severe cracking when using existing alloys for laser powder bed fusion(L-PBF)AM have persisted.These challenges arise because commercial alloys are primarily designed for conventional casting or forging processes,overlooking the fast cooling rates,steep temperature gradients and multiple thermal cycles of L-PBF.To address this,there is an urgent need to develop novel alloys specifically tailored for L-PBF technologies.This review provides a comprehensive summary of the strategies employed in alloy design for L-PBF.It aims to guide future research on designing novel alloys dedicated to L-PBF instead of adapting existing alloys.The review begins by discussing the features of the L-PBF processes,focusing on rapid solidification and intrinsic heat treatment.Next,the printability of the four main existing alloys(Fe-,Ni-,Al-and Ti-based alloys)is critically assessed,with a comparison of their conventional weldability.It was found that the weldability criteria are not always applicable in estimating printability.Furthermore,the review presents recent advances in alloy development and associated strategies,categorizing them into crack mitigation-oriented,microstructure manipulation-oriented and machine learning-assisted approaches.Lastly,an outlook and suggestions are given to highlight the issues that need to be addressed in future work. 展开更多
关键词 laser powder bed fusion alloy design PRINTABILITY crack mitigation
在线阅读 下载PDF
Spark plasma sintering of tungsten-based WTaVCr refractory high entropy alloys for nuclear fusion applications 被引量:1
18
作者 Yongchul Yoo Xiang Zhang +4 位作者 Fei Wang Xin Chen Xing-Zhong Li Michael Nastasi Bai Cui 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CSCD 2024年第1期146-154,共9页
W-based WTaVCr refractory high entropy alloys (RHEA) may be novel and promising candidate materials for plasma facing components in the first wall and diverter in fusion reactors. This alloy has been developed by a po... W-based WTaVCr refractory high entropy alloys (RHEA) may be novel and promising candidate materials for plasma facing components in the first wall and diverter in fusion reactors. This alloy has been developed by a powder metallurgy process combining mechanical alloying and spark plasma sintering (SPS). The SPSed samples contained two phases, in which the matrix is RHEA with a body-centered cubic structure, while the oxide phase was most likely Ta2VO6through a combined analysis of X-ray diffraction (XRD),energy-dispersive spectroscopy (EDS), and selected area electron diffraction (SAED). The higher oxygen affinity of Ta and V may explain the preferential formation of their oxide phases based on thermodynamic calculations. Electron backscatter diffraction (EBSD) revealed an average grain size of 6.2μm. WTaVCr RHEA showed a peak compressive strength of 2997 MPa at room temperature and much higher micro-and nano-hardness than W and other W-based RHEAs in the literature. Their high Rockwell hardness can be retained to at least 1000°C. 展开更多
关键词 refractory high entropy alloy plasma-facing material fusion reactor spark plasma sintering
在线阅读 下载PDF
Defect engineering in transition-metal(Fe,Co,andNi)-based electrocatalysts for water splitting 被引量:1
19
作者 Kaili Wu Chaojie Lyu +5 位作者 Jiarun Cheng Weifan Ding Jiwen Wu Qian Wang Woon-Ming Lau Jinlong Zheng 《Carbon Energy》 SCIE EI CAS CSCD 2024年第6期165-199,共35页
Electrocatalytic water splitting seems to be an efficient strategy to deal with increasingly serious environmental problems and energy crises but still suffers from the lack of stable and efficient electrocatalysts.De... Electrocatalytic water splitting seems to be an efficient strategy to deal with increasingly serious environmental problems and energy crises but still suffers from the lack of stable and efficient electrocatalysts.Designing practical electrocatalysts by introducing defect engineering,such as hybrid structure,surface vacancies,functional modification,and structural distortions,is proven to be a dependable solution for fabricating electrocatalysts with high catalytic activities,robust stability,and good practicability.This review is an overview of some relevant reports about the effects of defect engineering on the electrocatalytic water splitting performance of electrocatalysts.In detail,the types of defects,the preparation and characterization methods,and catalytic performances of electrocatalysts are presented,emphasizing the effects of the introduced defects on the electronic structures of electrocatalysts and the optimization of the intermediates'adsorption energy throughout the review.Finally,the existing challenges and personal perspectives of possible strategies for enhancing the catalytic performances of electrocatalysts are proposed.An in-depth understanding of the effects of defect engineering on the catalytic performance of electrocatalysts will light the way to design high-efficiency electrocatalysts for water splitting and other possible applications. 展开更多
关键词 defect engineering electrocatalytic water splitting element doping interfacial engineering VACANCY
在线阅读 下载PDF
Microstructure evolution and strengthening mechanism of high -performance powder metallurgy TA15 titanium alloy by hot rolling 被引量:1
20
作者 Ying Gao Ce Zhang +1 位作者 Jiazhen Zhang Xin Lu 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第6期1426-1436,共11页
Hot deformation of sintered billets by powder metallurgy(PM)is an effective preparation technique for titanium alloys,which is more significant for high-alloying alloys.In this study,Ti–6.5Al–2Zr–Mo–V(TA15)titaniu... Hot deformation of sintered billets by powder metallurgy(PM)is an effective preparation technique for titanium alloys,which is more significant for high-alloying alloys.In this study,Ti–6.5Al–2Zr–Mo–V(TA15)titanium alloy plates were prepared by cold press-ing sintering combined with high-temperature hot rolling.The microstructure and mechanical properties under different process paramet-ers were investigated.Optical microscope,electron backscatter diffraction,and others were applied to characterize the microstructure evolution and mechanical properties strengthening mechanism.The results showed that the chemical compositions were uniformly dif-fused without segregation during sintering,and the closing of the matrix craters was accelerated by increasing the sintering temperature.The block was hot rolled at 1200℃ with an 80%reduction under only two passes without annealing.The strength and elongation of the plate at 20–25℃ after solution and aging were 1247 MPa and 14.0%,respectively,which were increased by 24.5%and 40.0%,respect-ively,compared with the as-sintered alloy at 1300℃.The microstructure was significantly refined by continuous dynamic recrystalliza-tion,which was completed by the rotation and dislocation absorption of the substructure surrounded by low-angle grain boundaries.After hot rolling combined with heat treatment,the strength and plasticity of PM-TA15 were significantly improved,which resulted from the dense,uniform,and fine recrystallization structure and the synergistic effect of multiple slip systems. 展开更多
关键词 elemental powder powder metallurgy titanium alloy hot rolling strength and plasticity
在线阅读 下载PDF
上一页 1 2 49 下一页 到第
使用帮助 返回顶部