Optimizing Flow Path Design(FPD)is a popular research area in transportation system design,but its application to Overhead Transportation Systems(OTSs)has been limited.This study focuses on optimizing a double-spine f...Optimizing Flow Path Design(FPD)is a popular research area in transportation system design,but its application to Overhead Transportation Systems(OTSs)has been limited.This study focuses on optimizing a double-spine flow path design for OTSs with 10 stations by minimizing the total travel distance for both loaded and empty flows.We employ transportation methods,specifically the North-West Corner and Stepping-Stone methods,to determine empty vehicle travel flows.Additionally,the Tabu Search(TS)algorithm is applied to branch the 10 stations into two main layout branches.The results obtained from our proposed method demonstrate a reduction in the objective function value compared to the initial feasible solution.Furthermore,we explore howchanges in the parameters of the TS algorithm affect the optimal result.We validate the feasibility of our approach by comparing it with relevant literature and conducting additional tests on layouts with 20 and 30 stations.展开更多
A sensing system is developed to measure the weld pool boundary and pool suoface deformation in gas tungsten arc welding. LaserStrobe technique is used to eliminate the strong arc light inteoference, and specular refl...A sensing system is developed to measure the weld pool boundary and pool suoface deformation in gas tungsten arc welding. LaserStrobe technique is used to eliminate the strong arc light inteoference, and specular reflection from the pool suoface is sensed to describe the relation between the deformed stripes and pool surface depression. Clear images of both the pool boundary and the deformed stripes edges are obtained during gas tungsten arc welding process, which lays foundation for realtime monitoring the pool suoface depression and weld penetration.展开更多
A new kind of control system for keyhole plasma arc welding (K-PAW) was developed based on the computer and the Graphics Language--LabVIEW. It can set and output the required current waveforms with desired decreasin...A new kind of control system for keyhole plasma arc welding (K-PAW) was developed based on the computer and the Graphics Language--LabVIEW. It can set and output the required current waveforms with desired decreasing slopes so that the corresponding "opening and closing" of keyhole can occur periodically. With this control strategy of welding current waveforms, the workpiece is fully penetrated while no burn-through Occurs. Keyhole plasma arc welding experiments were conducted to verify the stability and reliability of the developed system.展开更多
Conducting polymers have achieved remarkable attentions owing to their exclusive characteristics,for instance,electrical conductivity,high ionic conductivity,visual transparency,and mechanical tractability.Surface and...Conducting polymers have achieved remarkable attentions owing to their exclusive characteristics,for instance,electrical conductivity,high ionic conductivity,visual transparency,and mechanical tractability.Surface and nanostructure engineering of conjugated conducting polymers offers an exceptional pathway to facilitate their implementation in a variety of scientific claims,comprising energy storage and production devices,flexible and wearable optoelectronic devices.A two-step tactic to assemble high-performance polypyrrole(PPy)-based microsupercapacitor(MSC)is utilized by transforming the current collectors to suppress structural pulverization and increase the adhesion of PPy,and then electrochemical co-deposition of PPy-CNT nanostructures on rGO@Au current collectors is performed.The resulting fine patterned MSC conveyed a high areal capacitance of 65.9 mF cm^(−2)(at a current density of 0.1 mA cm^(−2)),an exceptional cycling performance of retaining 79%capacitance after 10,000 charge/discharge cycles at 5 mA cm^(−2).Benefiting from the intermediate graphene,current collector free PPy-CNT@rGO flexible MSC is produced by a facile transfer method on a flexible substrate,which delivered an areal capacitance of 70.25 mF cm^(−2) at 0.1 mA cm^(−2) and retained 46%of the initial capacitance at a current density of 1.0 mA cm^(−2).The flexible MSC is utilized as a skin compatible capacitive micro-strain sensor with excellent electromechanochemical characteristics.展开更多
The motions of points, lines, and planes, embedded in a rigid body are expressed in a unified algebraic framework using a Clifford algebra. A Clifford algebra based displacement operator is addressed and its higher de...The motions of points, lines, and planes, embedded in a rigid body are expressed in a unified algebraic framework using a Clifford algebra. A Clifford algebra based displacement operator is addressed and its higher derivatives from which the coordinate-independent characteristic numbers with simple geometric meaning are defined. Because of the coordinate independent feature, no tedious coordinate transformation typically found in the conventional instantaneous invariants methods is needed.展开更多
In this review,we propose a comprehensive overview of additive manufacturing(AM)technologies and design possibilities in manufacturing metamaterials for various applications in the biomedical field,of which many are i...In this review,we propose a comprehensive overview of additive manufacturing(AM)technologies and design possibilities in manufacturing metamaterials for various applications in the biomedical field,of which many are inspired by nature itself.It describes how new AM technologies(e.g.continuous liquid interface production and multiphoton polymerization,etc)and recent developments in more mature AM technologies(e.g.powder bed fusion,stereolithography,and extrusion-based bioprinting(EBB),etc)lead to more precise,efficient,and personalized biomedical components.EBB is a revolutionary topic creating intricate models with remarkable mechanical compatibility of metamaterials,for instance,stress elimination for tissue engineering and regenerative medicine,negative or zero Poisson’s ratio.By exploiting the designs of porous structures(e.g.truss,triply periodic minimal surface,plant/animal-inspired,and functionally graded lattices,etc),AM-made bioactive bone implants,artificial tissues,and organs are made for tissue replacement.The material palette of the AM metamaterials has high diversity nowadays,ranging from alloys and metals(e.g.cobalt-chromium alloys and titanium,etc)to polymers(e.g.biodegradable polycaprolactone and polymethyl methacrylate,etc),which could be even integrated within bioactive ceramics.These advancements are driving the progress of the biomedical field,improving human health and quality of life.展开更多
This special issue of Engineering contains six papers, including one research paper, one perspective paper, and four review papers, that have been contributed by influential experts from four countries. These papers f...This special issue of Engineering contains six papers, including one research paper, one perspective paper, and four review papers, that have been contributed by influential experts from four countries. These papers focus on recent advances in a wide variety of intelligent manufacturing fields, such as controlling methods and strategy.展开更多
According to the strategy of controlled pulse key-holing,a new sensing and control system was developed for monitoring and controlling the keyhole condition during plasma arc welding(PAW). Through sensing and processi...According to the strategy of controlled pulse key-holing,a new sensing and control system was developed for monitoring and controlling the keyhole condition during plasma arc welding(PAW). Through sensing and processing the efflux plasma voltage signals,the quantitative relationship among the welding current,efflux plasma voltage and backside weld width of the weld was established. PAW experiments show that the efflux plasma voltage can reflect the state of keyhole and backside weld width accurately. The closed-loop control tests validate the stability and reliability of the developed keyhole PAW system.展开更多
An adaptive heat source mode is proposed to account for the keyhole effect and the characteristics of volumetric distribution along the direction of the workpiece thickness. Finite element analysis of the temperature ...An adaptive heat source mode is proposed to account for the keyhole effect and the characteristics of volumetric distribution along the direction of the workpiece thickness. Finite element analysis of the temperature field in keyhole plasma arc welding is conducted and the weld geometry is obtained. The predicted results are in agreement with the measured ones.展开更多
Modification of conventional gas metal arc welding (GMAW) process is of great potential to achieve high productivity with low cost and strong usability. Double-Electrode GMAW (DE-GMAW) is such a modified arc weldi...Modification of conventional gas metal arc welding (GMAW) process is of great potential to achieve high productivity with low cost and strong usability. Double-Electrode GMAW (DE-GMAW) is such a modified arc welding process which is formed by adding a bypass torch (gas tungsten arc welding torch) to a conventional GMAW system. The mechanism of metal transfer in DE-GMAW was proposed and verified in this paper. Experiments show that the critical current is decreased so that spray transfer can be obtained at a lower current level in DE-GMAW. Analysis of this significant change in metal transfer phenomena is conducted, and explanation is given out. It is found that the bypass arc in DE-GMAW lifts the anode point on the droplets such that the electromagnetic force becomes larger and squeezes the droplets so that spray transfer can take place under welding current lower than that in conventional GMAW.展开更多
Keyhole plasma arc welding experiments are conducted to measure the weld geometry and penetration at different moments during the initial phase from igniting arc to quasi-steady state. Indirect information on keyhole ...Keyhole plasma arc welding experiments are conducted to measure the weld geometry and penetration at different moments during the initial phase from igniting arc to quasi-steady state. Indirect information on keyhole formation and evolution in plasma arc welding can be extracted based on the weld macrophotograph at cross section. It has laid foundation to verify the mathematical models of keyhole plasma arc welding.展开更多
During stable keyhole plasma arc welding, the pilot arc and the transferred arc exist at the meantime, and the arcs can be considered as a composition of two parts inside and outside the nozzle, respectively. Under th...During stable keyhole plasma arc welding, the pilot arc and the transferred arc exist at the meantime, and the arcs can be considered as a composition of two parts inside and outside the nozzle, respectively. Under the mechanical constriction and thermal contraction effects, the inside arc has certain arc length, electron density and arc profile etc. inducing constant tungsten-to-nozzle voltage. However, the arc outside the nozzle diverges at about 5 degrees and has certain characteristics similar to the free arcs. The nozzle-to-workpiece voltage (NTWV) depends mainly on the length of the arc, which gets bigger as increasing of the weld penetration and keyhole size. The NTWV sensor is developed for monitoring NTWV in real time. The welding experiments are designed to get different penetrations and keyhole sizes. It is found that as the weld penetration and the keyhole size increase, NTWV also increases linearly. The NTWV signals can be used as the feedback variable in automatic control of keyhole plasma arc welding.展开更多
基金funded by Ho Chi Minh City University of Technology(HCMUT),VNU-HCM under Grant Number B2021-20-04.
文摘Optimizing Flow Path Design(FPD)is a popular research area in transportation system design,but its application to Overhead Transportation Systems(OTSs)has been limited.This study focuses on optimizing a double-spine flow path design for OTSs with 10 stations by minimizing the total travel distance for both loaded and empty flows.We employ transportation methods,specifically the North-West Corner and Stepping-Stone methods,to determine empty vehicle travel flows.Additionally,the Tabu Search(TS)algorithm is applied to branch the 10 stations into two main layout branches.The results obtained from our proposed method demonstrate a reduction in the objective function value compared to the initial feasible solution.Furthermore,we explore howchanges in the parameters of the TS algorithm affect the optimal result.We validate the feasibility of our approach by comparing it with relevant literature and conducting additional tests on layouts with 20 and 30 stations.
文摘A sensing system is developed to measure the weld pool boundary and pool suoface deformation in gas tungsten arc welding. LaserStrobe technique is used to eliminate the strong arc light inteoference, and specular reflection from the pool suoface is sensed to describe the relation between the deformed stripes and pool surface depression. Clear images of both the pool boundary and the deformed stripes edges are obtained during gas tungsten arc welding process, which lays foundation for realtime monitoring the pool suoface depression and weld penetration.
文摘A new kind of control system for keyhole plasma arc welding (K-PAW) was developed based on the computer and the Graphics Language--LabVIEW. It can set and output the required current waveforms with desired decreasing slopes so that the corresponding "opening and closing" of keyhole can occur periodically. With this control strategy of welding current waveforms, the workpiece is fully penetrated while no burn-through Occurs. Keyhole plasma arc welding experiments were conducted to verify the stability and reliability of the developed system.
基金support of the National Key R&D Program of China(Grant No.2021YFB3200701,2018YFA0208501)the National Natural Science Foundation of China(Grant No.52272098,21875260,21671193,91963212,51773206,21731001,22272182)Beijing Natural Science Foundation(No.2202069).
文摘Conducting polymers have achieved remarkable attentions owing to their exclusive characteristics,for instance,electrical conductivity,high ionic conductivity,visual transparency,and mechanical tractability.Surface and nanostructure engineering of conjugated conducting polymers offers an exceptional pathway to facilitate their implementation in a variety of scientific claims,comprising energy storage and production devices,flexible and wearable optoelectronic devices.A two-step tactic to assemble high-performance polypyrrole(PPy)-based microsupercapacitor(MSC)is utilized by transforming the current collectors to suppress structural pulverization and increase the adhesion of PPy,and then electrochemical co-deposition of PPy-CNT nanostructures on rGO@Au current collectors is performed.The resulting fine patterned MSC conveyed a high areal capacitance of 65.9 mF cm^(−2)(at a current density of 0.1 mA cm^(−2)),an exceptional cycling performance of retaining 79%capacitance after 10,000 charge/discharge cycles at 5 mA cm^(−2).Benefiting from the intermediate graphene,current collector free PPy-CNT@rGO flexible MSC is produced by a facile transfer method on a flexible substrate,which delivered an areal capacitance of 70.25 mF cm^(−2) at 0.1 mA cm^(−2) and retained 46%of the initial capacitance at a current density of 1.0 mA cm^(−2).The flexible MSC is utilized as a skin compatible capacitive micro-strain sensor with excellent electromechanochemical characteristics.
基金This material is based upon work supported by the National Science Foundation under Grant No. DMI-0219859 and MSS-9301975.
文摘The motions of points, lines, and planes, embedded in a rigid body are expressed in a unified algebraic framework using a Clifford algebra. A Clifford algebra based displacement operator is addressed and its higher derivatives from which the coordinate-independent characteristic numbers with simple geometric meaning are defined. Because of the coordinate independent feature, no tedious coordinate transformation typically found in the conventional instantaneous invariants methods is needed.
基金sponsored by the Science and Technology Program of Hubei Province,China(2022EHB020,2023BBB096)support provided by Centre of the Excellence in Production Research(XPRES)at KTH。
文摘In this review,we propose a comprehensive overview of additive manufacturing(AM)technologies and design possibilities in manufacturing metamaterials for various applications in the biomedical field,of which many are inspired by nature itself.It describes how new AM technologies(e.g.continuous liquid interface production and multiphoton polymerization,etc)and recent developments in more mature AM technologies(e.g.powder bed fusion,stereolithography,and extrusion-based bioprinting(EBB),etc)lead to more precise,efficient,and personalized biomedical components.EBB is a revolutionary topic creating intricate models with remarkable mechanical compatibility of metamaterials,for instance,stress elimination for tissue engineering and regenerative medicine,negative or zero Poisson’s ratio.By exploiting the designs of porous structures(e.g.truss,triply periodic minimal surface,plant/animal-inspired,and functionally graded lattices,etc),AM-made bioactive bone implants,artificial tissues,and organs are made for tissue replacement.The material palette of the AM metamaterials has high diversity nowadays,ranging from alloys and metals(e.g.cobalt-chromium alloys and titanium,etc)to polymers(e.g.biodegradable polycaprolactone and polymethyl methacrylate,etc),which could be even integrated within bioactive ceramics.These advancements are driving the progress of the biomedical field,improving human health and quality of life.
文摘This special issue of Engineering contains six papers, including one research paper, one perspective paper, and four review papers, that have been contributed by influential experts from four countries. These papers focus on recent advances in a wide variety of intelligent manufacturing fields, such as controlling methods and strategy.
基金Project(50540420570) supported by the National Natural Science Foundation of ChinaProject(07-12-002) supported by the Innovative Conception Fund of the Welding Institution of Chinese Mechanical Engineering Society
文摘According to the strategy of controlled pulse key-holing,a new sensing and control system was developed for monitoring and controlling the keyhole condition during plasma arc welding(PAW). Through sensing and processing the efflux plasma voltage signals,the quantitative relationship among the welding current,efflux plasma voltage and backside weld width of the weld was established. PAW experiments show that the efflux plasma voltage can reflect the state of keyhole and backside weld width accurately. The closed-loop control tests validate the stability and reliability of the developed keyhole PAW system.
文摘An adaptive heat source mode is proposed to account for the keyhole effect and the characteristics of volumetric distribution along the direction of the workpiece thickness. Finite element analysis of the temperature field in keyhole plasma arc welding is conducted and the weld geometry is obtained. The predicted results are in agreement with the measured ones.
基金the National Science Foundation of USA under grant DMI-0355324the National Natural Science Foundation of China under grantNo. 50675119
文摘Modification of conventional gas metal arc welding (GMAW) process is of great potential to achieve high productivity with low cost and strong usability. Double-Electrode GMAW (DE-GMAW) is such a modified arc welding process which is formed by adding a bypass torch (gas tungsten arc welding torch) to a conventional GMAW system. The mechanism of metal transfer in DE-GMAW was proposed and verified in this paper. Experiments show that the critical current is decreased so that spray transfer can be obtained at a lower current level in DE-GMAW. Analysis of this significant change in metal transfer phenomena is conducted, and explanation is given out. It is found that the bypass arc in DE-GMAW lifts the anode point on the droplets such that the electromagnetic force becomes larger and squeezes the droplets so that spray transfer can take place under welding current lower than that in conventional GMAW.
基金The authors are grateful to the financial support to this research from the National Natural Science Foundation of China under Grant No. 50540420570.
文摘Keyhole plasma arc welding experiments are conducted to measure the weld geometry and penetration at different moments during the initial phase from igniting arc to quasi-steady state. Indirect information on keyhole formation and evolution in plasma arc welding can be extracted based on the weld macrophotograph at cross section. It has laid foundation to verify the mathematical models of keyhole plasma arc welding.
基金the financial support for this research from the National Natural Science Foundation of China (Grant No 50540420570)the Innovative Conception Fund of Chinese Welding Society (No 07-12-002)
文摘During stable keyhole plasma arc welding, the pilot arc and the transferred arc exist at the meantime, and the arcs can be considered as a composition of two parts inside and outside the nozzle, respectively. Under the mechanical constriction and thermal contraction effects, the inside arc has certain arc length, electron density and arc profile etc. inducing constant tungsten-to-nozzle voltage. However, the arc outside the nozzle diverges at about 5 degrees and has certain characteristics similar to the free arcs. The nozzle-to-workpiece voltage (NTWV) depends mainly on the length of the arc, which gets bigger as increasing of the weld penetration and keyhole size. The NTWV sensor is developed for monitoring NTWV in real time. The welding experiments are designed to get different penetrations and keyhole sizes. It is found that as the weld penetration and the keyhole size increase, NTWV also increases linearly. The NTWV signals can be used as the feedback variable in automatic control of keyhole plasma arc welding.