期刊文献+
共找到15篇文章
< 1 >
每页显示 20 50 100
Medical Additive Manufacturing: From a Frontier Technology to the Research and Development of Products 被引量:2
1
作者 Guixing Qiu Wenjiang Ding +36 位作者 Wei Tian Ling Qin Yu Zhao Lianmeng Zhang Jian Lu Daijie Chen Guangyi Yuan Chengtie Wu Bingheng Lu Ruxu Du Jimin Chen Mo Elbestawi Zhongwei Gu Dichen Li Wei Sun Yuanjin Zhao Jie He Dadi Jin Bin Liu Kai Zhang Jianmo Li Kam WLeong Dewei Zhao Dingjun Hao Yingfang Ao Xuliang Deng Huilin Yang ShaoKeh Hsu Yingqi Chen Long Li Jianping Fan Guohui Nie Yun Chen Hui Zeng Wei Chen Yuxiao Lai 《Engineering》 SCIE EI 2020年第11期1217-1221,共5页
1.Research and development(R&D)and the challenges of raw materials for medical additive manufacturing Raw materials for medical additive manufacturing have a wide range of commonalities that are also seen in many ... 1.Research and development(R&D)and the challenges of raw materials for medical additive manufacturing Raw materials for medical additive manufacturing have a wide range of commonalities that are also seen in many other fields,making them an important basis in the field of three-dimensional(3D)printing.Problems and challenges related to material types,powder properties,formability,viscoelasticity,and so forth also share common features.For example,many metal materials are used in the field of aviation,while metals,polymers,and inorganic materials are used in the field of biomedicine.The most widely used materials in biomedicine are biocompatible.Various homogeneous and non-homogeneous composites are also available for 3D printing,and impose an additional challenge in additive manufacturing;the use of heterogeneous composites in 3D printing is particularly challenging. 展开更多
关键词 COMPOSITES PRINTING ADDITIVE
在线阅读 下载PDF
Surface vitrification of carbon by laser treatment: Insights of glass formation from molecular dynamics
2
作者 Yanhui Zhang Haifeng Yu +3 位作者 Yongying Jia Zhisheng Zhao Li-Min Wang Riping Liu 《Journal of Advanced Ceramics》 SCIE EI CAS CSCD 2024年第6期729-735,共7页
Microstructural modification of carbon materials,such as carbon fibers(Cf)and pyrolytically deposited carbon,is important for engineering applications.However,the regulation of these materials is not an effortless tas... Microstructural modification of carbon materials,such as carbon fibers(Cf)and pyrolytically deposited carbon,is important for engineering applications.However,the regulation of these materials is not an effortless task.To understand the impacts of thermal spikes from pulsed laser processing on the structural adaptation of amorphous carbon(a-C),we performed melt quenching by molecular dynamics(MD)simulations.Our results confirm that the vitrification behavior of carbon can be tuned by adjusting the cooling rate(R),which is controlled by the thermal spikes of laser processing.Moreover,we set up a two-step way to locate the critical cooling rate(R_(c))of monoatomic carbon,which is refined by the sharp change in the environmental similarity parameter.Using this novel technique,we demonstrate that the ordering degree and the local atomic motif can be largely modified by going across a bar of 100 K/ps,which is extracted as the critical cooling rate to ensure the complete amorphization of carbon.This approach provides a criterion for both experimentally processing and theoretically simulating a-C structures.Therefore,this work provides guidelines on how to tune the amorphous carbon structures of engineering materials and provides an outlook for the wonderland of amorphous carbon materials. 展开更多
关键词 molecular dynamics(MD) structural order carbon fibers(Cf) VITRIFICATION critical cooling rate(R_(c))
原文传递
Formation and crystallization behavior of Fe-based amorphous precursors with pre-existingα-Fe nanoparticles-Structure and magnetic properties of high-Cu-content Fe-Si-B-Cu-Nb nanocrystalline alloys 被引量:5
3
作者 Yanhui Li Xingjie Jia +5 位作者 Wei Zhang Yan Zhang Guoqiang Xie Zhiyong Qiu Junhua Luan Zengbao Jiao 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2021年第6期171-181,共11页
Structure,crystallization behavior,and magnetic properties of as-quenched and annealed Fe_(81.3)Si_(4)O_(13)Cu_(1.7)(Cu1.7)alloy ribbons and effects of Nb alloying have been studied.Three-dimensional atom probe and tr... Structure,crystallization behavior,and magnetic properties of as-quenched and annealed Fe_(81.3)Si_(4)O_(13)Cu_(1.7)(Cu1.7)alloy ribbons and effects of Nb alloying have been studied.Three-dimensional atom probe and transmission electron microscopy analyses reveal that high-number-density Cu-clusters and Pre-existing Nano-sized a-Fe Particles(PN-a-Fe)are coexistence in the melt-spun Cu1.7 amorphous matrix,and the PN-α-Fe form by manners of one-direction adjoining and enveloping the Cu-clusters.Two-step crystallization behavior associated with growth of the PN-a-Fe and subsequent nucleation and growth of newly-formedα-Fe is found in the primary crystallization stage of the Cu1.7 alloy.The number densities of the Cu-clusters and PN-a-Fe in melt-spun Fe8_(1.3-x)Si_(4)B_(13)Cu_(1.7)Nb_(x)alloys are gradually reduced with enriching of Nb,and a fully amorphous structure forms at 4 at.%Nb,although smaller Cu-clusters still exist.After annealing,2 at.%Nb coarsens the average size(D_(α-F)e)of theα-Fe grains from 14.0 nm of the Nb-free alloy to 21.6 nm,and 4 at.%Nb refines the D_(α-Fe)to 8.9 nm.The mechanisms of theα-Fe nucleation and growth during quenching and annealing for the alloys with large quantities of PN-α-Fe as well as after Nb alloying have been discussed,and an annealing-induced oc-Fe growth mechanism in term of the barrier co-contributed by competitive growth among the PN-a-Fe and diffusion-suppression effect of Nb atoms has been proposed.A coercivity(HC)αDα-Fe^(3)correlation has been found for the nanocrystalline alloys,and the permeability is inverse with the H_(C). 展开更多
关键词 Fe-based nanocrystalline alloy Cu-cluster Pre-existingα-Fe nanoparticle Crystallization behavior Soft magnetic property
原文传递
Tailoring nanoprecipitates for ultra-strong high-entropy alloys via machine learning and prestrain aging 被引量:5
4
作者 Tao Zheng Xiaobing Hu +9 位作者 Feng He Qjngfeng Wu Bin Han Chen Da Junjie Li Zhijun Wang Jincheng Wang Ji-jung Kai Zhenhai Xia C.T.Liu 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2021年第10期156-167,共12页
The multi-principal-component concept of high-entropy alloys(HEAs) generates numerous new alloys.Among them,nanoscale precipitated HEAs have achieved superior mechanical properties and shown the potentials for structu... The multi-principal-component concept of high-entropy alloys(HEAs) generates numerous new alloys.Among them,nanoscale precipitated HEAs have achieved superior mechanical properties and shown the potentials for structural applications.However,it is still a great challe nge to find the optimal alloy within the numerous candidates.Up to now,the reported nanoprecipitated HEAs are mainly designed by a trialand-error approach with the aid of phase diagram calculations,limiting the development of structural HEAs.In the current work,a novel method is proposed to accelerate the development of ultra-strong nanoprecipitated HEAs.With the guidance of physical metallurgy,the volume fraction of the required nanoprecipitates is designed from a machine learning of big data with thermodynamic foundation while the morphology of precipitates is kinetically tailored by prestrain aging.As a proof-of-principle study,an HEA with superior strength and ductility has been designed and systematically investigated.The newly developed γ’-strengthened HEA exhibits 1.31 GPa yield strength,1.65 GPa ultimate tensile strength,and 15% tensile elongation.Atom probe tomography and transmission electron microscope characterizations reveal the well-controlled high γ’ volume fraction(52%) and refined precipitate size(19 nm).The refinement of nanoprecipitates originates from the accelerated nucleation of the γ’ phase by prestrain aging.A deeper understanding of the excellent mechanical properties is illustrated from the aspect of strengthening mecha nisms.Finally,the versatility of the current design strategy to other precipitation-hardened alloys is discussed. 展开更多
关键词 High-entropy alloys Machine learning Prestrain aging Mechanical properties Strengthening mechanisms
原文传递
A plastic FeNi-based bulk metallic glass and its deformation behavior 被引量:3
5
作者 Jing Zhou Qianqian Wang +5 位作者 Qiaoshi Zeng Kuibo Yin ing Wang Junhua Luan Litao Sun Baolong Shen 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2021年第17期20-32,共13页
The strength and plasticity of Fe_(39)Ni_(39)B_(12.82)Si_(2.75)Nb_(2.3)P_(4.13)bulk metallic glass(BMG)are improved simultaneously by modulating atomic-scale structure through fluxing treatment.The compression strengt... The strength and plasticity of Fe_(39)Ni_(39)B_(12.82)Si_(2.75)Nb_(2.3)P_(4.13)bulk metallic glass(BMG)are improved simultaneously by modulating atomic-scale structure through fluxing treatment.The compression strength increases from 3074 to 4220 MPa,and the plastic strain is enlarged from 10.7%to more than 50%.The increased mechanical properties of the fluxed Fe Ni BSi Nb P BMG originate from the optimization of atomic-scale structure.More icosahedral-like clusters(ILCs)and crystal-like clusters(CLCs)are found in this Fe Ni-based BMG with fluxing treatment,and the ILCs are usually surrounded by CLCs.Furthermore,phase separation and a sandwich-like heterogeneous structure of SB are also observed during deformation,indicating the multiscale deformation mechanism and a stable shear-band evolution.The unique"ILC surrounded by CLCs"structure and phase separation lead to a stable plastic deformation process with strong interactions of multiple shear bands,thereby the improved plasticity and strength.This work provides useful guidelines to develop strong and plastic Fe-based BMGs from a structural aspect. 展开更多
关键词 FeNi-based BMG PLASTICITY Strength Structural heterogeneity Shear bands
原文传递
An anti-freezing biomineral hydrogel of high strain sensitivity for artificial skin applications 被引量:3
6
作者 Junda Shen Peng Du +7 位作者 Binbin Zhou Guobin Zhang Xinxue Tang Jie Pan Bo Li Jingyang Zhang Jian Lu Yang Yang Li 《Nano Research》 SCIE EI CSCD 2022年第7期6655-6661,共7页
Mineral hydrogels have caught a lot of attention for their strong competency as artificial skin-like materials.Nonetheless,it remains a great difficulty in fulfilling in one hydrogel system a range of key functionalit... Mineral hydrogels have caught a lot of attention for their strong competency as artificial skin-like materials.Nonetheless,it remains a great difficulty in fulfilling in one hydrogel system a range of key functionalities that are needed for practical artificial skin applications,i.e.,to be biocompatible,strain-sensitive,ion-conductive,elastic and robust,anti-swelling,and anti-freezing.Here we present a such type of versatile hydrogel that is not only capable to deliver all the above-mentioned key functionalities but also highly stable.This novel hydrogel is constructed by introducing a gelatinous and amorphous multi-ionic biomineral(denoted as Mg-ACCP,containing Mg^(2+),Ca^(2+),CO_(3)^(2−),and PO_(4)^(3−))into the network of biocompatible polyvinyl alcohol(PVA)and sodium alginate(SA).The presence of Mg^(2+)and PO_(4)^(3−)in this hydrogel helps prohibit the crystallization of the biominerals,leading to significantly improved stability.The hydrogel thus obtained delivers excellent mechanical performance due to the chelation between the mineral ions and the organic matrix,and high sensitivity even to subtle pressure and strain applied,such as slight finger bending and gentle tapping.Furthermore,the novel hydrogel features high ionic conductivity,high resistance to swelling,and extraordinary anti-freezing property,holding great promise for applications in different practical scenarios,particularly in aqueous or cold environments. 展开更多
关键词 mineral hydrogel artificial skin BIOMINERALS mechanical performance
原文传递
Low-carbon advanced nanostructured steels:Microstructure, mechanical properties, and applications 被引量:1
7
作者 Haojie Kong Zengbao Jiao +1 位作者 Jian Lu Chain Tsuan Liu 《Science China Materials》 SCIE EI CAS CSCD 2021年第7期1580-1597,共18页
Low-carbon advanced nanostructured steels have been developed for various structural engineering applications, including bridges, automobiles, and other strength-critical applications such as the reactor pressure vess... Low-carbon advanced nanostructured steels have been developed for various structural engineering applications, including bridges, automobiles, and other strength-critical applications such as the reactor pressure vessels in nuclear power stations. The mechanical performances and applications of these steels are strongly dependent on their microstructural features. By controlling the size,number density, distribution, and types of precipitates, it is possible to produce nanostructured steels with a tensile strength reaching as high as 2 GPa while keeping a decent tensile elongation above 10% and a reduction of area as high as 40%. Besides, through a careful control of strength contributions from multiple strengthening mechanisms, the nanostructured steels with superior strengths and low-temperature impact toughness can be obtained by avoiding the temper embrittlement regime. With appropriate Mn additions, these nanostructured steels can achieve a triple enhancement in ductility(total tensile elongation, TE of ~30%) at no expense of strengths(yield strength, YS of ~1100 to 1300 MPa, ultimate tensile strength, UTS of ~1300 to 1400 MPa). More importantly, these steels demonstrate good fabricability and weldability. In this paper, the microstructure-property relationships of these advanced nanostructured steels are comprehensively reviewed. In addition, the current limitations and future development of these nanostructured steels are carefully discussed and outlined. 展开更多
关键词 heterogeneous nano-precipitates strength-ductility paradox EMBRITTLEMENT dislocation interactions
原文传递
Design of FeSiBPCu soft magnetic alloys with good amorphous forming ability and ultra-wide crystallization window 被引量:1
8
作者 Xingdu Fan Tao Zhang +3 位作者 Weiming Yang Junhua Luan Zengbao Jiao Hui Li 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2023年第16期124-131,共8页
The Fe_(81.3)Si_(4)B_(13–x)PxCu_(1.7) soft magnetic alloys with high Cu and proper P elements addition were synthesized with the aim of ensuring the amorphous forming ability(AFA)while expanding the crystallization w... The Fe_(81.3)Si_(4)B_(13–x)PxCu_(1.7) soft magnetic alloys with high Cu and proper P elements addition were synthesized with the aim of ensuring the amorphous forming ability(AFA)while expanding the crystallization window(CW).It is found that the atomic ratio of P/Cu of∼3 is advantageous for AFA whereas a small amount of P addition promotes the precipitation ofα-Fe grains and excessive P addition induces surface crystallization behavior of the present alloys.High Cu concentration can expand the annealing temperature(Ta)window whereas proper P addition effectively expands the annealing time(ta)window.The Fe_(81.3)Si_(4)B_(13-x)PxCu_(1.7) soft magnetic alloy was successfully synthesized with a large Ta window of up to 130°C and ta window of 90 min,which is a breakthrough for nanocrystalline alloys with high saturation magnetization.Microstructure analysis reveals that the ultra-wide CW is related to the unique nucleation mechanism,that is,theα-Fe grains are precipitated attaching to the Cu or CuP clusters and enveloping the Cu clusters,resulting in the high number density ofα-Fe nanocrystals.The ultra-wide CW promises the potential material in flexibly choosing the annealing process according to the performance. 展开更多
关键词 Nanocrystalline alloys Amorphous forming ability Crystallization window Soft magnetic properties
原文传递
Asynchronous responses of mechanical and magnetic properties to structure relaxation for FeNbB bulk metallic glass
9
作者 Zhi-kai Gao An-ding Wang +6 位作者 Ping-bo Chen Cheng-liang Zhao Fu-shan Li Ai-na He Chun-tao Chang Xin-min Wang Chain-tsuan Liu 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2018年第6期637-643,共7页
Asynchronous responses of mechanical and magnetic properties to structure relaxation for the Fe71Nb6B23 bulk metallic glass were systematically investigated. It is interesting that this ternary alloy can combinedly ex... Asynchronous responses of mechanical and magnetic properties to structure relaxation for the Fe71Nb6B23 bulk metallic glass were systematically investigated. It is interesting that this ternary alloy can combinedly exhibit outstanding magnetic and mechanical properties, especially good ductility, after optimally annealing in structure relaxation stage for eliminating the internal stress and homogenizing the microstructure. The alloy exhibits low coercive force of 1.6 A/m, high effective permeability of 15 x 10^3, high fracture strength of 4.2 GPa and good plastic strAln of 1.8%. It is also found that responses of mechanical and magnetic properties to structure relaxation are asynchronous. The glass transition and crystallization will greatly deteriorate the magnetic and mechanical properties. Here we propose a physical picture and demonstrate that the primary structure factors determining magnetic and mechanical properties are different. This work will bring a promising material for application and a new perspective to study the effect of annealing-induced structure relaxation on mechanical and magnetic properties. 展开更多
关键词 Bulk metallic glass Annealing Mechanical property Magnetic property Structure relaxation
原文传递
Ultrahigh-strength steels strengthened by nanoparticles 被引量:6
10
作者 Zengbao Jiao Chain-Tsuan Liu 《Science Bulletin》 SCIE EI CAS CSCD 2017年第15期1043-1044,共2页
Ultrahigh-strength steels are highly desirable for a wide range of engineering applications.Among them,maraging steels represent an important class of high-alloyed and almost carbon-free ultrahigh-strength steels,the ... Ultrahigh-strength steels are highly desirable for a wide range of engineering applications.Among them,maraging steels represent an important class of high-alloyed and almost carbon-free ultrahigh-strength steels,the hardening of which occurs in 展开更多
关键词 超高强度钢 纳米颗粒增强 马氏体时效钢 金属纳米粒子 无碳 合金
原文传递
The combined effects of grain and sample sizes on the mechanical properties and fracture modes of gold microwires 被引量:3
11
作者 H.K.Yang K.Cao +5 位作者 Y.Han M.Wen J.M.Guo Z.L.Tan J.Lu Y.Lu 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2019年第1期76-83,共8页
Hall-Petch relation was widely applied to evaluate the grain size effect on mechanical properties of metallic material. However, the sample size effect on the Hall-Petch relation was always ignored. In the present stu... Hall-Petch relation was widely applied to evaluate the grain size effect on mechanical properties of metallic material. However, the sample size effect on the Hall-Petch relation was always ignored. In the present study, the mechanical test and microstructure observation were performed to investigate the combined effects of grain and sample sizes on the deformation behaviors of gold microwires. The polycrystalline gold microwires with diameter of 16 ?m were annealed at temperatures from 100°C to 600°C, leading to different ratios(t/d) of wire diameter(t) to grain size(d) from 0.9 to 16.7. When the t/d was lower than 10, the yield stress dropped fast and deviated from the Hall-Petch relation. The free-surface grains played key role in the yield stress softening, and the volume fraction of free-surface grains increased with the t/d decreasing. Furthermore, the effects of t/d on work-hardening behaviors and fracture modes were also studied. With t/d value decreasing from 17 to 3.4, the samples exhibited necking fracture and the dislocation pile-ups induced work-hardening stage was gradually activated.With the t/d value further decreasing(t/d < 3.4), the fracture mode turned into shear failure, and the work-hardening capability lost. As the gold microwire for wire bonding is commonly applied in the packaging of integrated circuit chips, and the fabrication of microwire suffers multi-pass cold-drawing and annealing treatments to control the grain size. The present study could provide instructive suggestion for gold microwire fabrication and bonding processes. 展开更多
关键词 GOLD MICROWIRE Wire bonding TENSILE testing GRAIN size HALL-PETCH relationship
原文传递
Micro-scaled plastic yielding and shear-banding dynamics in metallic glasses 被引量:2
12
作者 D.X.Han G.Wang +4 位作者 Q.Wang R.Feng X.D.Ma K.C.Chan C.T.Liu 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2023年第21期237-246,共10页
Shear-banding behavior in metallic glasses plays a key role in the operation of plastic deformation,which is associated with yield strength.In a micro-scale,the shear-banding behavior must be affected by many factors ... Shear-banding behavior in metallic glasses plays a key role in the operation of plastic deformation,which is associated with yield strength.In a micro-scale,the shear-banding behavior must be affected by many factors from the test machine and the substrate.Therefore,in this study,comprehensively considering a machine compliance,a geometry imperfection of micro-pillar,and a substrate sink-in the machine-sample-substrate system,we developed a plastic-strength model at a micrometer scale in this study,which is evidenced by the microscale compressive properties of 18 kinds of metallic glasses.The the-oretical model provides a guidance for the elastic limits and shear-banding dynamics of metallic glasses at the micro-scale,which can be applicable to characterize the microscale deformation behavior of other amorphous materials. 展开更多
关键词 Metallic glasses Shear-banding dynamics Micro-compression Plastic deformation
原文传递
Can orientations of directionally solidified dual-phase Al_(2)O_(3)/YAG eutectics be induced by single-phase sapphire seeds? 被引量:1
13
作者 Liangting He Xu Wang +4 位作者 Jiaze Li Wangshuai Xiang Fuxue Yan Bailing Jiang Qiaodan Hu 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2023年第11期216-224,共9页
Directionally solidified dual-phase Al_(2)O_(3)/Y_(3)Al_(5)O_(12)(YAG)eutectic ceramics(DSECs)typically exhibit strong anisotropy.To improve their properties,various single-phase sapphire seeds,including r-axis[1-102]... Directionally solidified dual-phase Al_(2)O_(3)/Y_(3)Al_(5)O_(12)(YAG)eutectic ceramics(DSECs)typically exhibit strong anisotropy.To improve their properties,various single-phase sapphire seeds,including r-axis[1-102],m-axis[10-10],c-axis[0001],and a-axis[11-20],were used as seeds to induce the orientation of the Al_(2)O_(3)/YAG DSECs.The results showed that Al_(2)O_(3) in the eutectics could be governed by the sapphire seeds.The YAG in each induced eutectic had a specific growth direction endowed by Al_(2)O_(3) in the asinduced eutectics or the sapphire seed.Herein,we calculated the planar lattice misfits and interfacial strain energies of four crystallographic orientation relationships based on the constructed lattice models.It was elucidated the constraint of the sapphire seed caused YAG to grow following the rule of mini-mizing the interfacial strain energy.This revealed the reason why Al_(2)O_(3)/YAG DSECs orientation can be successfully induced.These results may provide a novel method for the design of high-performance eu-tectic ceramic materials. 展开更多
关键词 Al_(2)O_(3)/Y_(3)Al_(5)O_(12) Directional solidification Single-phase sapphire seed Crystallographic orientation relationship Interfacial strain energy
原文传递
Compressive elastic behavior of single-crystalline 4H-silicon carbide(SiC) nanopillars 被引量:1
14
作者 FAN SuFeng LI XiaoCui +1 位作者 FAN Rong LU Yang 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2021年第1期37-43,共7页
As a wide-bandgap semiconductor, 4H-SiC is an ideal material for high-power and high-frequency devices, and plays an increasingly important role in developing our country’s future electric vehicles and 5G techniques.... As a wide-bandgap semiconductor, 4H-SiC is an ideal material for high-power and high-frequency devices, and plays an increasingly important role in developing our country’s future electric vehicles and 5G techniques. Practical applications of SiCbased devices largely depend on their mechanical performance and reliability at the micro-and nanoscales. In this paper, singlecrystal [0001]-oriented 4H-SiC nanopillars with the diameter ranging from ~200 to 700 nm were microfabricated and then characterized by in situ nanomechanical testing under SEM/TEM at room temperature. Loading-unloading compression tests were performed, and large, fully reversible elastic strain up to ~6.2% was found in nanosized pillars. Brittle fracture still occurred when the max strain reached ~7%, with corresponding compressive strength above 30 GPa, while in situ TEM observation showed few dislocations activated during compression along the [0001] direction. Besides robust microelectromechanical system(MEMS), flexible device and nanocomposite applications, the obtained large elasticity in [0001]-oriented 4H-SiC nanopillars can offer a fertile opportunity to modulate their electron mobility and bandgap structure by nanomechanical straining,the so called "elastic strain engineering", for novel electronic and optoelectronic applications. 展开更多
关键词 silicon carbide elastic deformation compressive behavior in situ SEM/TEM elastic strain engineering
原文传递
Development of soft magnetic amorphous alloys with distinctly high Fe content 被引量:1
15
作者 PingBo Chen AnDing Wang +5 位作者 ChengLiang Zhao AiNa He Gang Wang ChunTao Chang XinMin Wang Chain-Tsuan Liu 《Science China(Physics,Mechanics & Astronomy)》 SCIE EI CAS CSCD 2017年第10期45-50,共6页
This paper reports on the preparation of Fe82.7-85.7Si2-4.9B9.2-11.2P1.5.2.7C0,8 soft magnetic amorphous alloys with a distinctly high Fe content of 93.5-95.5 wt.% by component design and composition adjustment. All a... This paper reports on the preparation of Fe82.7-85.7Si2-4.9B9.2-11.2P1.5.2.7C0,8 soft magnetic amorphous alloys with a distinctly high Fe content of 93.5-95.5 wt.% by component design and composition adjustment. All alloys can be readily fabricated into completely amorphous ribbon samples with good surface quality by the single copper roller melt-spinning method. These alloys show good bending ductility and excellent magnetic properties after annealing, i.e., low coercivity (He) of 3.3-5.9 A/m, high permeability (μe) of 5000-10000 and high flux saturation density (Bs) of 1.63-1.66 T. The mechanism of the good glass forming ability (GFA)and soft-magnetic properties are explored. The amorphous alloys with the high Fe content comparable to that of the desired high Si alloy can be promising candidates for the potential application in electric devices. 展开更多
关键词 metallic glasses alloy design ANNEALING magnetic properties shear band
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部