The sleep-wake cycle stands as an integrative process essential for sustaining optimal brain function and,either directly or indirectly,overall body health,encompassing metabolic and cardiovascular well-being.Given th...The sleep-wake cycle stands as an integrative process essential for sustaining optimal brain function and,either directly or indirectly,overall body health,encompassing metabolic and cardiovascular well-being.Given the heightened metabolic activity of the brain,there exists a considerable demand for nutrients in comparison to other organs.Among these,the branched-chain amino acids,comprising leucine,isoleucine,and valine,display distinctive significance,from their contribution to protein structure to their involvement in overall metabolism,especially in cerebral processes.Among the first amino acids that are released into circulation post-food intake,branched-chain amino acids assume a pivotal role in the regulation of protein synthesis,modulating insulin secretion and the amino acid sensing pathway of target of rapamycin.Branched-chain amino acids are key players in influencing the brain's uptake of monoamine precursors,competing for a shared transporter.Beyond their involvement in protein synthesis,these amino acids contribute to the metabolic cycles ofγ-aminobutyric acid and glutamate,as well as energy metabolism.Notably,they impact GABAergic neurons and the excitation/inhibition balance.The rhythmicity of branchedchain amino acids in plasma concentrations,observed over a 24-hour cycle and conserved in rodent models,is under circadian clock control.The mechanisms underlying those rhythms and the physiological consequences of their disruption are not fully understood.Disturbed sleep,obesity,diabetes,and cardiovascular diseases can elevate branched-chain amino acid concentrations or modify their oscillatory dynamics.The mechanisms driving these effects are currently the focal point of ongoing research efforts,since normalizing branched-chain amino acid levels has the ability to alleviate the severity of these pathologies.In this context,the Drosophila model,though underutilized,holds promise in shedding new light on these mechanisms.Initial findings indicate its potential to introduce novel concepts,particularly in elucidating the intricate connections between the circadian clock,sleep/wake,and metabolism.Consequently,the use and transport of branched-chain amino acids emerge as critical components and orchestrators in the web of interactions across multiple organs throughout the sleep/wake cycle.They could represent one of the so far elusive mechanisms connecting sleep patterns to metabolic and cardiovascular health,paving the way for potential therapeutic interventions.展开更多
The second messengers 3',5'-cyclic adenosine monophosphate(cAMP)and 3',5'-cyclic guanosine monophosphate(cGMP)modulate molecular pathways that are involved in a large variety of cellular processes.In t...The second messengers 3',5'-cyclic adenosine monophosphate(cAMP)and 3',5'-cyclic guanosine monophosphate(cGMP)modulate molecular pathways that are involved in a large variety of cellular processes.In the brain,these processes include neurogenesis,neuronal differentiation,activation and function of microglia,and synaptic plasticity,finally resulting in memory formation.展开更多
Mutations in the protocadherin-19(PCDH19)gene(Xq22.1)cause the X-linked syndrome known as developmental and epileptic encephalopathy 9(DEE9,OMIM#300088)(Dibbens et al.,2008).DEE9 is characterized by early-onset cluste...Mutations in the protocadherin-19(PCDH19)gene(Xq22.1)cause the X-linked syndrome known as developmental and epileptic encephalopathy 9(DEE9,OMIM#300088)(Dibbens et al.,2008).DEE9 is characterized by early-onset clustering epilepsy associated with intellectual disability ranging from mild to profound,autism spectrum disorder,and other neuropsychiatric features including schizophrenia,anxiety,attentiondeficit/hyperactivity,and obsessive or aggressive behaviors.While seizures may become less frequent in adolescence,psychiatric comorbidities persist and often worsen with age(Dibbens et al.,2008;Kolc et al.,2020).展开更多
Security and safety remain paramount concerns for both governments and individuals worldwide.In today’s context,the frequency of crimes and terrorist attacks is alarmingly increasing,becoming increasingly intolerable...Security and safety remain paramount concerns for both governments and individuals worldwide.In today’s context,the frequency of crimes and terrorist attacks is alarmingly increasing,becoming increasingly intolerable to society.Consequently,there is a pressing need for swift identification of potential threats to preemptively alert law enforcement and security forces,thereby preventing potential attacks or violent incidents.Recent advancements in big data analytics and deep learning have significantly enhanced the capabilities of computer vision in object detection,particularly in identifying firearms.This paper introduces a novel automatic firearm detection surveillance system,utilizing a one-stage detection approach named MARIE(Mechanism for Realtime Identification of Firearms).MARIE incorporates the Single Shot Multibox Detector(SSD)model,which has been specifically optimized to balance the speed-accuracy trade-off critical in firearm detection applications.The SSD model was further refined by integrating MobileNetV2 and InceptionV2 architectures for superior feature extraction capabilities.The experimental results demonstrate that this modified SSD configuration provides highly satisfactory performance,surpassing existing methods trained on the same dataset in terms of the critical speedaccuracy trade-off.Through these innovations,MARIE sets a new standard in surveillance technology,offering a robust solution to enhance public safety effectively.展开更多
From the ethyl acetate extract of the medicinal plant Graptophyllum glandulosum Turrill, five known compounds: Lupeol (1), Oleanolic acid (2), Chrysoeriol (3), N-methyl-isonicotinamide (4) and β-sitosterol 3-O-β-D-g...From the ethyl acetate extract of the medicinal plant Graptophyllum glandulosum Turrill, five known compounds: Lupeol (1), Oleanolic acid (2), Chrysoeriol (3), N-methyl-isonicotinamide (4) and β-sitosterol 3-O-β-D-glucopyranoside (5) were isolated. In addition, oxidation reactions carried out on lupeol (1) yielded two semi-synthetic compounds, including a previously unreported: (20R)-formyloxy-29-nor-lupan-3-one (1b) and one other well-known Lupenone (1a). The structures of natural and semi-synthetic compounds were determined by analysis of 1D-(1H, 13C), 2D-(COSY, HSQC and HMBC) NMR data in conjunction with mass spectrometry (TOFESIMS and HR-TOFESIMS) and by comparison with the reported data. The evaluation of antimicrobial activities of substrate (1) as well as semi-synthetic derivatives (1a and 1b) using broth microdilution method showed that compound 1b was the most active (16 ≤ MIC ≤ 32 μg/mL) against Escherichia coli, Staphylococcus aureus and Candida albicans compared to the starting material 1 (16 ≤ MIC ≤ 64 μg/mL) and derivative 1a (32 ≤ MIC ≤ 64 μg/mL).展开更多
Magnetotactic bacteria have been the only known magnetoreceptive microorganisms for decades.Even if the existence of magnetotactic protists was suggested in 1986,this is only 30 years later that magnetotaxis was exten...Magnetotactic bacteria have been the only known magnetoreceptive microorganisms for decades.Even if the existence of magnetotactic protists was suggested in 1986,this is only 30 years later that magnetotaxis was extended to the domain of Eukaryota,thanks to the characterization of magnetotactic symbiotic assemblies composed of a flagellated protist and bacteria biomineralizing magnetic crystals.Their mutualistic ectosymbiosis relies on a collective magnetotaxis coupled to a hydrogen-based syntrophy.This new form of cooperation challenges our view of magnetic biomineralization in prokaryotes and magnetoreception in eukaryotes.In this review,we present how magnetosymbiosis was discovered and how cooperation functions.Finally,we discuss the future research and the new perspectives such discovery brought to the field of magnetotaxis.展开更多
This study evaluated the molecular characterization of different ecotypes of B. aegyptiaca populations in the four sites: Koily alpha, Labgar, Ranérou and Ballou according to the environment with the aim of devel...This study evaluated the molecular characterization of different ecotypes of B. aegyptiaca populations in the four sites: Koily alpha, Labgar, Ranérou and Ballou according to the environment with the aim of developing protection strategies. We sampled leaves of B. aegyptiaca in each individual from each site to extract and amplify a fragment of mitochondrial DNA including cytochrome b and then carefully preserved. DNA extraction, polymerase chain amplification and sequencing of MT-CYB were performed in 64 individuals. Genetic diversity and structure of B. aegyptiaca were determined using the MEGA, DNasp and Arlequin software. The results showed a high haplotype diversity and low nucleotide diversity, indicating a population expansion linked to an important gene flow. Genetic distances between populations were positively correlated with geographic distance. The importance of having highlighted this genetic differentiation of the B. aegyptiaca species between these sites is to be able to understand the degree of genetic heterogeneity of each and correlate it with adaptability because genetic diversity influences the adaptation of the species.展开更多
The accurate simulation of wave propagation in real media requires properly taking the attenuation into account,which leads to wave dissipation together with its causal companion,wave dispersion.In this study,to obtai...The accurate simulation of wave propagation in real media requires properly taking the attenuation into account,which leads to wave dissipation together with its causal companion,wave dispersion.In this study,to obtain a weak formulation of heterogenous viscoacoustic wave propagation in an infinite domain,the viscoacoustic medium is first characterized by its frequency-dependent complex bulk compliance instead of the classically used complex bulk modulus.Then,a mechanical model using serially connected standard linear solids(SSLS)is built to obtain the rational approximation of the complex bulk compliance whose parameters are calculated via an adapted nonlinear optimization method.Utilizing the obtained bulk compliance-based constitutive relation,a novel second-order viscoacoustic wave equation in the frequency domain is derived,of which the weak formulation can be physically explained as the virtual work equation and can thus be discretized using a continuous spectral element method in space.Additionally,a new method is introduced to address the convolution terms involved in the inverse Fourier transform,whose accurate time integration can then be achieved using an explicit time scheme,which avoids the transient growth that exists in the classical method.The resulting full time-space decoupling scheme can handle wave propagation in arbitrary heterogeneous media.Moreover,to treat the wave propagation in an infinite domain,a perfectly matched layer in weak formulation is derived for the truncation of the infinite domain via complex coordinate stretching of the virtual work equation.With only minor modification,the resulting perfectly matched layer can be implemented using the same time scheme as for the wave equation inside the truncated domain.The accuracy,numerical stability,and versatility of the new proposed scheme are demonstrated with numerical examples.展开更多
The valorization of Amazonian wood residues into active chemical compounds could be an eco-friendly,cost-effective and valuable way to develop wood preservative formulations to enhance the decay and termite resistance...The valorization of Amazonian wood residues into active chemical compounds could be an eco-friendly,cost-effective and valuable way to develop wood preservative formulations to enhance the decay and termite resistance of low-durable wood species.Wacapou(Vouacapoua americana.,Fabaceae)is a well-known Guianese wood spe-cies commonly used in local wood construction due to its outstanding natural durability,which results from the presence of a large panel of extractives compounds.In addition,its industrial processing generates large amounts of residues.Wacapou residues were extracted by maceration using four different solvents(water/ethanol,ethyl acetate,hexane and dichloromethane/methanol),separately and successively.The yield of each extractive fraction was determined,and their chemical compositions were analyzed by Liquid Chromatography-Mass Spectrometry(LC-MS).Ethyl acetate led to the highest extraction yield,and the active compounds were identified in the obtained extractive fraction.In this sense,the fungicidal and termite-repellent properties of these extractives were then tested using a screening laboratory(with temperate and tropical microorganisms),according to the solution concentration(1%,2.5%,5%,8%and 10%).Finally,Virola michelii Heckel wood samples(low durable species)were impregnated with the 8%concentration solution.The impregnated wood samples were then exposed to a soil bed test.The results highlighted that the nature of the solvent used during wood maceration affects the con-tent of the obtained extractive fractions.Ultra-Performance Liquid Chromatography–High-Resolution Mass Spectrometry(UHPLC-HRMS)analyses showed the influence of extraction parameters on the nature of the extracted molecules.Wacapou extracts(from ethyl acetate maceration)showed good anti-fungal and anti-termite activities.Additionally,the concentration in extractives had an impact on the anti-termite activity level for Reti-culitermesflavipes and Cryptotermes sp.Formulations based on Wacapou extractives showed a good potential for valorization in eco-friendly preservatives,aiming to confer better durability to local low-durability wood species.展开更多
To address the increasing demand for massive data storage and processing,brain-inspired neuromorphic comput-ing systems based on artificial synaptic devices have been actively developed in recent years.Among the vario...To address the increasing demand for massive data storage and processing,brain-inspired neuromorphic comput-ing systems based on artificial synaptic devices have been actively developed in recent years.Among the various materials inves-tigated for the fabrication of synaptic devices,silicon carbide(SiC)has emerged as a preferred choices due to its high electron mobility,superior thermal conductivity,and excellent thermal stability,which exhibits promising potential for neuromorphic applications in harsh environments.In this review,the recent progress in SiC-based synaptic devices is summarized.Firstly,an in-depth discussion is conducted regarding the categories,working mechanisms,and structural designs of these devices.Subse-quently,several application scenarios for SiC-based synaptic devices are presented.Finally,a few perspectives and directions for their future development are outlined.展开更多
This work is devoted to numerical analysis of thermo-hydromechanical problem and cracking process in saturated porous media in the context of deep geological disposal of radioactive waste.The fundamental background of...This work is devoted to numerical analysis of thermo-hydromechanical problem and cracking process in saturated porous media in the context of deep geological disposal of radioactive waste.The fundamental background of thermo-poro-elastoplasticity theory is first summarized.The emphasis is put on the effect of pore fluid pressure on plastic deformation.A micromechanics-based elastoplastic model is then presented for a class of clayey rocks considered as host rock.Based on linear and nonlinear homogenization techniques,the proposed model is able to systematically account for the influences of porosity and mineral composition on macroscopic elastic properties and plastic yield strength.The initial anisotropy and time-dependent deformation are also taken into account.The induced cracking process is described by using a non-local damage model.A specific hybrid formulation is proposed,able to conveniently capture tensile,shear and mixed cracks.In particular,the influences of pore pressure and confining stress on the shear cracking mechanism are taken into account.The proposed model is applied to investigating thermo-hydromechanical responses and induced damage evolution in laboratory tests at the sample scale.In the last part,an in situ heating experiment is analyzed by using the proposed model.Numerical results are compared with experimental data and field measurements in terms of temperature variation,pore fluid pressure change and induced damaged zone.展开更多
The integration of dual-mesoporous structures,the construction of heterojunctions,and the incorporation of highly concentrated oxygen vacancies are pivotal for advancing metal oxide-based gas sensors.Nonetheless,achie...The integration of dual-mesoporous structures,the construction of heterojunctions,and the incorporation of highly concentrated oxygen vacancies are pivotal for advancing metal oxide-based gas sensors.Nonetheless,achieving an optimal design that simultaneously combines mesoporous structures,precise heterojunction modulation,and controlled oxygen vacancies through a one-step process remains challenging.This study proposes an innovative method for fabricating zinc stannate semiconductors featuring dual-mesoporous structures and tunable oxygen vacancies via a direct solution precursor plasma spray technique.As a proof of concept,the resulting zinc stannate-based coatings are applied to detect 2-undecanone,a key biomarker for rice aging.Remarkably,the zinc oxide/zinc stannate heterojunctions with a well-defined secondary pore structure exhibit exceptional gas-sensing performance for 2-undecanone at room temperature.Furthermore,practical experiments indicate that the developed sensor effectively identifies adulteration in various rice varieties.These results underscore the potential of this method for designing metal oxides with tailored properties for high-performance gas sensors.The enhanced adsorption capacity and dual-mesoporous features of this semiconductor make it a promising candidate for sensing applications in agricultural food safety inspections.展开更多
Decision support systems(DSS)based on physically based numerical models are standard tools used by water services and utilities.However,few DSS based on holistic approaches combining distributed hydrological,hydraulic...Decision support systems(DSS)based on physically based numerical models are standard tools used by water services and utilities.However,few DSS based on holistic approaches combining distributed hydrological,hydraulic,and hydrogeological models are operationally exploited.This holistic approach was adopted for the development of the AquaVar DSS,used for water resource management in the French Mediterranean Var watershed.The year 2019 marked the initial use of the DSS in its operational environment.Over the next 5 years,multiple hydrological events allowed to test the performance of the DSS.The results show that the tool is capable of simulating peak flows associated with two extreme rainfall events(storms Alex and Aline).For a moderate flood,the real-time functionality was able to simulate forecast discharges 26 h before the flood peak,with a maximum local error of 30%.Finally,simulations for the drought period 2022-2023 highlighted the essential need for DSS to evolve in line with changing climatic conditions,which give rise to unprecedented hydrological processes.The lessons learned from these first 5 years of AquaVar use under operational conditions are synthesized,addressing various topics such as DSS modularity,evolution,data positioning,technology,and governance.展开更多
Background:Besides seizures,a myriad of overlapping neuropsychiatric and cognitive comorbidities occur in patients with epilepsy,which further debilitates their quality of life.This study provides an in-depth characte...Background:Besides seizures,a myriad of overlapping neuropsychiatric and cognitive comorbidities occur in patients with epilepsy,which further debilitates their quality of life.This study provides an in-depth characterization of the impact of brivaracetam and rufinamide individually and in combination at 10 and 20 mg/kg doses,respec-tively,on corneal kindling-induced generalized seizures and behavioral alterations.Furthermore,observed convulsive frequency and behavioral changes were corre-lated to post-kindling-induced changes in the activity of markers of oxidative stress.Methods:Adult C57BL/6 mice were kindled via twice-daily transcorneal 50-Hz elec-trical stimulations(3 mA)for 3 s for 12 days until animals reached a fully kindled state.After the kindling procedure,animals were tested using a set of behavioral tests,and neurochemical alterations were assessed.Results:Corneal-kindled animals exhibited intense generalized convulsions,altered behavioral phenotypes typified by positive symptoms(hyperlocomotion),negative symptoms(anxiety and anhedonia),and deficits in semantic and working memory.BRV 10+RFM 20 dual regime increased convulsive threshold and propensity toward the start of stage 4–5 seizures and improved phenotypical deficits,that is,anxiety,depression,and memory impairments.Moreover,this combination therapy mitigated kindling-induced redox impairments as evidenced by reduced malondialdehyde and acetylcholinesterase levels and increased glutathione antioxidant activity in the brain of animals subjected to repetitive brain insult.Conclusion:Based on our outcomes,this dual therapy provides supporting evidence in alleviating epilepsy-induced neurobehavioral comorbidities and changes in redox homeostasis.展开更多
Background:Scientific evidence to guide clinicians on the use of different antiseizure drugs in combination therapy is either very limited or lacking.In this study,the impact of lacosamide and perampanel alone and in ...Background:Scientific evidence to guide clinicians on the use of different antiseizure drugs in combination therapy is either very limited or lacking.In this study,the impact of lacosamide and perampanel alone and in combination was tested in corneal kindling model in mice,which is a cost-effective mechanism for screening of antiseizure drugs.Methods:The impact of lacosamide(5 mg/kg)and perampanel(0.125 mg/kg)alone and their combination was tested in corneal kindling process(3-mA current for 3 s applied twice daily for consecutive 12 days)in male BALB/c mice.Post-kindling,mice were subjected to a battery of behavioral tests assessing anxiety,memory,and depression-like behaviors.Brain tissues were then harvested for analysis of oxidative stress biomarkers.Results:Our results showed that the combination therapy of lacosamide and perampanel was more effective in reducing seizure progression than monotherapy of these drugs.Animals treated with combination therapy showed significant behavioral improvements,as reduced anxiety and depression were noticed,and their cognitive abilities were notably better compared to animals of all other groups.Moreover,biochemical assays of isolated brains from combination-treated group revealed lesser amount of oxidative stress.In addition,outcomes of dual regime were comparable to the phenytoin in seizure control but showed superior benefits in mitigation of kindling-prompted behavioral dysfunction and oxidative stress.Conclusions:This study suggests that the lacosamide and perampanel combination therapy worked noticeably better in halting the corneal kindling process in mice and improved the epilepsy-associated psychiatric disorders that might be due to antioxidant effects of both drugs.展开更多
Battery health evaluation and management are vital for the long-term reliability and optimal performance of lithium-ion batteries in electric vehicles.Electrochemical impedance spectroscopy(EIS)offers valuable insight...Battery health evaluation and management are vital for the long-term reliability and optimal performance of lithium-ion batteries in electric vehicles.Electrochemical impedance spectroscopy(EIS)offers valuable insights into battery degradation analysis and modeling.However,previous studies have not adequately addressed the impedance uncertainties,particularly during battery operating conditions,which can substantially impact the robustness and accuracy of state of health(SOH)estimation.Motivated by this,this paper proposes a comprehensive feature optimization scheme that integrates impedance validity assessment with correlation analysis.By utilizing metrics such as impedance residuals and correlation coefficients,the proposed method effectively filters out invalid and insignificant impedance data,thereby enhancing the reliability of the input features.Subsequently,the extreme gradient boosting(XGBoost)modeling framework is constructed for estimating the battery degradation trajectories.The XGBoost model incorporates a diverse range of hyperparameters,optimized by a genetic algorithm to improve its adaptability and generalization performance.Experimental validation confirms the effectiveness of the proposed feature optimization scheme,demonstrating the superior estimation performance of the proposed method in comparison with four baseline techniques.展开更多
Low-electrode capacitive deionization(FCDI)is an emerging desalination technology with great potential for removal and/or recycling ions from a range of waters.However,it still suffers from inefficient charge transfer...Low-electrode capacitive deionization(FCDI)is an emerging desalination technology with great potential for removal and/or recycling ions from a range of waters.However,it still suffers from inefficient charge transfer and ion transport kinetics due to weak turbulence and low electric intensity in flow electrodes,both restricted by the current collectors.Herein,a new tip-array current collector(designated as T-CC)was developed to replace the conventional planar current collectors,which intensifies both the charge transfer and ion transport significantly.The effects of tip arrays on flow and electric fields were studied by both computational simulations and electrochemical impedance spectroscopy,which revealed the reduction of ion transport barrier,charge transport barrier and internal resistance.With the voltage increased from 1.0 to 1.5 and 2.0 V,the T-CC-based FCDI system(T-FCDI)exhibited average salt removal rates(ASRR)of 0.18,0.50,and 0.89μmol cm^(-2) min^(-1),respectively,which are 1.82,2.65,and 2.48 folds higher than that of the conventional serpentine current collectors,and 1.48,1.67,and 1.49 folds higher than that of the planar current collectors.Meanwhile,with the solid content in flow electrodes increased from 1 to 5 wt%,the ASRR for T-FCDI increased from 0.29 to 0.50μmol cm^(-2) min^(-1),which are 1.70 and 1.67 folds higher than that of the planar current collectors.Additionally,a salt removal efficiency of 99.89%was achieved with T-FCDI and the charge efficiency remained above 95%after 24 h of operation,thus showing its superior long-term stability.展开更多
基金supported by a grant from the French Society of Sleep Research and Medicine(to LS)The China Scholarship Council(to HL)The CNRS,INSERM,Claude Bernard University Lyon1(to LS)。
文摘The sleep-wake cycle stands as an integrative process essential for sustaining optimal brain function and,either directly or indirectly,overall body health,encompassing metabolic and cardiovascular well-being.Given the heightened metabolic activity of the brain,there exists a considerable demand for nutrients in comparison to other organs.Among these,the branched-chain amino acids,comprising leucine,isoleucine,and valine,display distinctive significance,from their contribution to protein structure to their involvement in overall metabolism,especially in cerebral processes.Among the first amino acids that are released into circulation post-food intake,branched-chain amino acids assume a pivotal role in the regulation of protein synthesis,modulating insulin secretion and the amino acid sensing pathway of target of rapamycin.Branched-chain amino acids are key players in influencing the brain's uptake of monoamine precursors,competing for a shared transporter.Beyond their involvement in protein synthesis,these amino acids contribute to the metabolic cycles ofγ-aminobutyric acid and glutamate,as well as energy metabolism.Notably,they impact GABAergic neurons and the excitation/inhibition balance.The rhythmicity of branchedchain amino acids in plasma concentrations,observed over a 24-hour cycle and conserved in rodent models,is under circadian clock control.The mechanisms underlying those rhythms and the physiological consequences of their disruption are not fully understood.Disturbed sleep,obesity,diabetes,and cardiovascular diseases can elevate branched-chain amino acid concentrations or modify their oscillatory dynamics.The mechanisms driving these effects are currently the focal point of ongoing research efforts,since normalizing branched-chain amino acid levels has the ability to alleviate the severity of these pathologies.In this context,the Drosophila model,though underutilized,holds promise in shedding new light on these mechanisms.Initial findings indicate its potential to introduce novel concepts,particularly in elucidating the intricate connections between the circadian clock,sleep/wake,and metabolism.Consequently,the use and transport of branched-chain amino acids emerge as critical components and orchestrators in the web of interactions across multiple organs throughout the sleep/wake cycle.They could represent one of the so far elusive mechanisms connecting sleep patterns to metabolic and cardiovascular health,paving the way for potential therapeutic interventions.
文摘The second messengers 3',5'-cyclic adenosine monophosphate(cAMP)and 3',5'-cyclic guanosine monophosphate(cGMP)modulate molecular pathways that are involved in a large variety of cellular processes.In the brain,these processes include neurogenesis,neuronal differentiation,activation and function of microglia,and synaptic plasticity,finally resulting in memory formation.
基金supported by a grant from Telethon Foundation(grant No.GGP20056 to SB)The generation of Pcdh19 floxed mouse model was funded by Cariplo Foundation(grant No.2014-0972 to SB)。
文摘Mutations in the protocadherin-19(PCDH19)gene(Xq22.1)cause the X-linked syndrome known as developmental and epileptic encephalopathy 9(DEE9,OMIM#300088)(Dibbens et al.,2008).DEE9 is characterized by early-onset clustering epilepsy associated with intellectual disability ranging from mild to profound,autism spectrum disorder,and other neuropsychiatric features including schizophrenia,anxiety,attentiondeficit/hyperactivity,and obsessive or aggressive behaviors.While seizures may become less frequent in adolescence,psychiatric comorbidities persist and often worsen with age(Dibbens et al.,2008;Kolc et al.,2020).
文摘Security and safety remain paramount concerns for both governments and individuals worldwide.In today’s context,the frequency of crimes and terrorist attacks is alarmingly increasing,becoming increasingly intolerable to society.Consequently,there is a pressing need for swift identification of potential threats to preemptively alert law enforcement and security forces,thereby preventing potential attacks or violent incidents.Recent advancements in big data analytics and deep learning have significantly enhanced the capabilities of computer vision in object detection,particularly in identifying firearms.This paper introduces a novel automatic firearm detection surveillance system,utilizing a one-stage detection approach named MARIE(Mechanism for Realtime Identification of Firearms).MARIE incorporates the Single Shot Multibox Detector(SSD)model,which has been specifically optimized to balance the speed-accuracy trade-off critical in firearm detection applications.The SSD model was further refined by integrating MobileNetV2 and InceptionV2 architectures for superior feature extraction capabilities.The experimental results demonstrate that this modified SSD configuration provides highly satisfactory performance,surpassing existing methods trained on the same dataset in terms of the critical speedaccuracy trade-off.Through these innovations,MARIE sets a new standard in surveillance technology,offering a robust solution to enhance public safety effectively.
文摘From the ethyl acetate extract of the medicinal plant Graptophyllum glandulosum Turrill, five known compounds: Lupeol (1), Oleanolic acid (2), Chrysoeriol (3), N-methyl-isonicotinamide (4) and β-sitosterol 3-O-β-D-glucopyranoside (5) were isolated. In addition, oxidation reactions carried out on lupeol (1) yielded two semi-synthetic compounds, including a previously unreported: (20R)-formyloxy-29-nor-lupan-3-one (1b) and one other well-known Lupenone (1a). The structures of natural and semi-synthetic compounds were determined by analysis of 1D-(1H, 13C), 2D-(COSY, HSQC and HMBC) NMR data in conjunction with mass spectrometry (TOFESIMS and HR-TOFESIMS) and by comparison with the reported data. The evaluation of antimicrobial activities of substrate (1) as well as semi-synthetic derivatives (1a and 1b) using broth microdilution method showed that compound 1b was the most active (16 ≤ MIC ≤ 32 μg/mL) against Escherichia coli, Staphylococcus aureus and Candida albicans compared to the starting material 1 (16 ≤ MIC ≤ 64 μg/mL) and derivative 1a (32 ≤ MIC ≤ 64 μg/mL).
基金Supported by the French National Research Agency(ANR SymbioMagnet-21-CE02-0034-01)。
文摘Magnetotactic bacteria have been the only known magnetoreceptive microorganisms for decades.Even if the existence of magnetotactic protists was suggested in 1986,this is only 30 years later that magnetotaxis was extended to the domain of Eukaryota,thanks to the characterization of magnetotactic symbiotic assemblies composed of a flagellated protist and bacteria biomineralizing magnetic crystals.Their mutualistic ectosymbiosis relies on a collective magnetotaxis coupled to a hydrogen-based syntrophy.This new form of cooperation challenges our view of magnetic biomineralization in prokaryotes and magnetoreception in eukaryotes.In this review,we present how magnetosymbiosis was discovered and how cooperation functions.Finally,we discuss the future research and the new perspectives such discovery brought to the field of magnetotaxis.
文摘This study evaluated the molecular characterization of different ecotypes of B. aegyptiaca populations in the four sites: Koily alpha, Labgar, Ranérou and Ballou according to the environment with the aim of developing protection strategies. We sampled leaves of B. aegyptiaca in each individual from each site to extract and amplify a fragment of mitochondrial DNA including cytochrome b and then carefully preserved. DNA extraction, polymerase chain amplification and sequencing of MT-CYB were performed in 64 individuals. Genetic diversity and structure of B. aegyptiaca were determined using the MEGA, DNasp and Arlequin software. The results showed a high haplotype diversity and low nucleotide diversity, indicating a population expansion linked to an important gene flow. Genetic distances between populations were positively correlated with geographic distance. The importance of having highlighted this genetic differentiation of the B. aegyptiaca species between these sites is to be able to understand the degree of genetic heterogeneity of each and correlate it with adaptability because genetic diversity influences the adaptation of the species.
基金National Natural Science Foundation of China under Grant No.U2039209the National Key R&D Program of China under Grant No.2022YFC3004303+1 种基金the Heilongjiang Natural Science Foundation for Distinguished Young Scholars under Grant No.JQ2022E006Heilongjiang Natural Science Foundation Joint Guidance Project under Grant No.LH2021E122。
文摘The accurate simulation of wave propagation in real media requires properly taking the attenuation into account,which leads to wave dissipation together with its causal companion,wave dispersion.In this study,to obtain a weak formulation of heterogenous viscoacoustic wave propagation in an infinite domain,the viscoacoustic medium is first characterized by its frequency-dependent complex bulk compliance instead of the classically used complex bulk modulus.Then,a mechanical model using serially connected standard linear solids(SSLS)is built to obtain the rational approximation of the complex bulk compliance whose parameters are calculated via an adapted nonlinear optimization method.Utilizing the obtained bulk compliance-based constitutive relation,a novel second-order viscoacoustic wave equation in the frequency domain is derived,of which the weak formulation can be physically explained as the virtual work equation and can thus be discretized using a continuous spectral element method in space.Additionally,a new method is introduced to address the convolution terms involved in the inverse Fourier transform,whose accurate time integration can then be achieved using an explicit time scheme,which avoids the transient growth that exists in the classical method.The resulting full time-space decoupling scheme can handle wave propagation in arbitrary heterogeneous media.Moreover,to treat the wave propagation in an infinite domain,a perfectly matched layer in weak formulation is derived for the truncation of the infinite domain via complex coordinate stretching of the virtual work equation.With only minor modification,the resulting perfectly matched layer can be implemented using the same time scheme as for the wave equation inside the truncated domain.The accuracy,numerical stability,and versatility of the new proposed scheme are demonstrated with numerical examples.
基金PROTEXTWOOD (ID 2202-102) funded through LabEx AGRO ANR-10-LABX-0001-01 (under ISiteUniversité de Montpellier framework)the project PANTHER2-Guyane funded through AgenceNationale de la Recherche (ANR-22-CE43-0019)+2 种基金“Investissement d’Avenir” grant managed by Agence Nationale de la Recherche (CEBA, ref. ANR-10-LABX-25-01)supported by the FEDER (European Regional Development Fund)research project “EcovaloBois” (Project number: GY0015430)by the CNRS peps INSIS2018 research project “GuyavaloFibres”.
文摘The valorization of Amazonian wood residues into active chemical compounds could be an eco-friendly,cost-effective and valuable way to develop wood preservative formulations to enhance the decay and termite resistance of low-durable wood species.Wacapou(Vouacapoua americana.,Fabaceae)is a well-known Guianese wood spe-cies commonly used in local wood construction due to its outstanding natural durability,which results from the presence of a large panel of extractives compounds.In addition,its industrial processing generates large amounts of residues.Wacapou residues were extracted by maceration using four different solvents(water/ethanol,ethyl acetate,hexane and dichloromethane/methanol),separately and successively.The yield of each extractive fraction was determined,and their chemical compositions were analyzed by Liquid Chromatography-Mass Spectrometry(LC-MS).Ethyl acetate led to the highest extraction yield,and the active compounds were identified in the obtained extractive fraction.In this sense,the fungicidal and termite-repellent properties of these extractives were then tested using a screening laboratory(with temperate and tropical microorganisms),according to the solution concentration(1%,2.5%,5%,8%and 10%).Finally,Virola michelii Heckel wood samples(low durable species)were impregnated with the 8%concentration solution.The impregnated wood samples were then exposed to a soil bed test.The results highlighted that the nature of the solvent used during wood maceration affects the con-tent of the obtained extractive fractions.Ultra-Performance Liquid Chromatography–High-Resolution Mass Spectrometry(UHPLC-HRMS)analyses showed the influence of extraction parameters on the nature of the extracted molecules.Wacapou extracts(from ethyl acetate maceration)showed good anti-fungal and anti-termite activities.Additionally,the concentration in extractives had an impact on the anti-termite activity level for Reti-culitermesflavipes and Cryptotermes sp.Formulations based on Wacapou extractives showed a good potential for valorization in eco-friendly preservatives,aiming to confer better durability to local low-durability wood species.
基金supported by the Natural Science Foundation of Zhejiang Province(Grant No.LQ24F040007)the National Natural Science Foundation of China(Grant No.U22A2075)the Opening Project of State Key Laboratory of Polymer Materials Engineering(Sichuan University)(Grant No.sklpme2024-1-21).
文摘To address the increasing demand for massive data storage and processing,brain-inspired neuromorphic comput-ing systems based on artificial synaptic devices have been actively developed in recent years.Among the various materials inves-tigated for the fabrication of synaptic devices,silicon carbide(SiC)has emerged as a preferred choices due to its high electron mobility,superior thermal conductivity,and excellent thermal stability,which exhibits promising potential for neuromorphic applications in harsh environments.In this review,the recent progress in SiC-based synaptic devices is summarized.Firstly,an in-depth discussion is conducted regarding the categories,working mechanisms,and structural designs of these devices.Subse-quently,several application scenarios for SiC-based synaptic devices are presented.Finally,a few perspectives and directions for their future development are outlined.
基金supported by the French National Agency for radioactive waste management(ANDRA).
文摘This work is devoted to numerical analysis of thermo-hydromechanical problem and cracking process in saturated porous media in the context of deep geological disposal of radioactive waste.The fundamental background of thermo-poro-elastoplasticity theory is first summarized.The emphasis is put on the effect of pore fluid pressure on plastic deformation.A micromechanics-based elastoplastic model is then presented for a class of clayey rocks considered as host rock.Based on linear and nonlinear homogenization techniques,the proposed model is able to systematically account for the influences of porosity and mineral composition on macroscopic elastic properties and plastic yield strength.The initial anisotropy and time-dependent deformation are also taken into account.The induced cracking process is described by using a non-local damage model.A specific hybrid formulation is proposed,able to conveniently capture tensile,shear and mixed cracks.In particular,the influences of pore pressure and confining stress on the shear cracking mechanism are taken into account.The proposed model is applied to investigating thermo-hydromechanical responses and induced damage evolution in laboratory tests at the sample scale.In the last part,an in situ heating experiment is analyzed by using the proposed model.Numerical results are compared with experimental data and field measurements in terms of temperature variation,pore fluid pressure change and induced damaged zone.
基金supported by the Outstanding Youth Foundation of Jiangsu Province of China(Grant No.BK20211548)the Yangzhou Science and Technology Plan Project(Grant No.YZ2023246)。
文摘The integration of dual-mesoporous structures,the construction of heterojunctions,and the incorporation of highly concentrated oxygen vacancies are pivotal for advancing metal oxide-based gas sensors.Nonetheless,achieving an optimal design that simultaneously combines mesoporous structures,precise heterojunction modulation,and controlled oxygen vacancies through a one-step process remains challenging.This study proposes an innovative method for fabricating zinc stannate semiconductors featuring dual-mesoporous structures and tunable oxygen vacancies via a direct solution precursor plasma spray technique.As a proof of concept,the resulting zinc stannate-based coatings are applied to detect 2-undecanone,a key biomarker for rice aging.Remarkably,the zinc oxide/zinc stannate heterojunctions with a well-defined secondary pore structure exhibit exceptional gas-sensing performance for 2-undecanone at room temperature.Furthermore,practical experiments indicate that the developed sensor effectively identifies adulteration in various rice varieties.These results underscore the potential of this method for designing metal oxides with tailored properties for high-performance gas sensors.The enhanced adsorption capacity and dual-mesoporous features of this semiconductor make it a promising candidate for sensing applications in agricultural food safety inspections.
文摘Decision support systems(DSS)based on physically based numerical models are standard tools used by water services and utilities.However,few DSS based on holistic approaches combining distributed hydrological,hydraulic,and hydrogeological models are operationally exploited.This holistic approach was adopted for the development of the AquaVar DSS,used for water resource management in the French Mediterranean Var watershed.The year 2019 marked the initial use of the DSS in its operational environment.Over the next 5 years,multiple hydrological events allowed to test the performance of the DSS.The results show that the tool is capable of simulating peak flows associated with two extreme rainfall events(storms Alex and Aline).For a moderate flood,the real-time functionality was able to simulate forecast discharges 26 h before the flood peak,with a maximum local error of 30%.Finally,simulations for the drought period 2022-2023 highlighted the essential need for DSS to evolve in line with changing climatic conditions,which give rise to unprecedented hydrological processes.The lessons learned from these first 5 years of AquaVar use under operational conditions are synthesized,addressing various topics such as DSS modularity,evolution,data positioning,technology,and governance.
基金The authors extend their appreciation to the Distinguished Scientist Fellowship program at King Saud University,Riyadh,Saudi Arabia,for funding this work through Research Supporting Project Number RSP2024R131.
文摘Background:Besides seizures,a myriad of overlapping neuropsychiatric and cognitive comorbidities occur in patients with epilepsy,which further debilitates their quality of life.This study provides an in-depth characterization of the impact of brivaracetam and rufinamide individually and in combination at 10 and 20 mg/kg doses,respec-tively,on corneal kindling-induced generalized seizures and behavioral alterations.Furthermore,observed convulsive frequency and behavioral changes were corre-lated to post-kindling-induced changes in the activity of markers of oxidative stress.Methods:Adult C57BL/6 mice were kindled via twice-daily transcorneal 50-Hz elec-trical stimulations(3 mA)for 3 s for 12 days until animals reached a fully kindled state.After the kindling procedure,animals were tested using a set of behavioral tests,and neurochemical alterations were assessed.Results:Corneal-kindled animals exhibited intense generalized convulsions,altered behavioral phenotypes typified by positive symptoms(hyperlocomotion),negative symptoms(anxiety and anhedonia),and deficits in semantic and working memory.BRV 10+RFM 20 dual regime increased convulsive threshold and propensity toward the start of stage 4–5 seizures and improved phenotypical deficits,that is,anxiety,depression,and memory impairments.Moreover,this combination therapy mitigated kindling-induced redox impairments as evidenced by reduced malondialdehyde and acetylcholinesterase levels and increased glutathione antioxidant activity in the brain of animals subjected to repetitive brain insult.Conclusion:Based on our outcomes,this dual therapy provides supporting evidence in alleviating epilepsy-induced neurobehavioral comorbidities and changes in redox homeostasis.
基金The authors extended their appreciation to Distinguished Scientist Fellowship program at King Saud University,Riyadh,Saudi Arabia,for funding this work through research supporting project number(RSP2024R131).
文摘Background:Scientific evidence to guide clinicians on the use of different antiseizure drugs in combination therapy is either very limited or lacking.In this study,the impact of lacosamide and perampanel alone and in combination was tested in corneal kindling model in mice,which is a cost-effective mechanism for screening of antiseizure drugs.Methods:The impact of lacosamide(5 mg/kg)and perampanel(0.125 mg/kg)alone and their combination was tested in corneal kindling process(3-mA current for 3 s applied twice daily for consecutive 12 days)in male BALB/c mice.Post-kindling,mice were subjected to a battery of behavioral tests assessing anxiety,memory,and depression-like behaviors.Brain tissues were then harvested for analysis of oxidative stress biomarkers.Results:Our results showed that the combination therapy of lacosamide and perampanel was more effective in reducing seizure progression than monotherapy of these drugs.Animals treated with combination therapy showed significant behavioral improvements,as reduced anxiety and depression were noticed,and their cognitive abilities were notably better compared to animals of all other groups.Moreover,biochemical assays of isolated brains from combination-treated group revealed lesser amount of oxidative stress.In addition,outcomes of dual regime were comparable to the phenytoin in seizure control but showed superior benefits in mitigation of kindling-prompted behavioral dysfunction and oxidative stress.Conclusions:This study suggests that the lacosamide and perampanel combination therapy worked noticeably better in halting the corneal kindling process in mice and improved the epilepsy-associated psychiatric disorders that might be due to antioxidant effects of both drugs.
文摘Battery health evaluation and management are vital for the long-term reliability and optimal performance of lithium-ion batteries in electric vehicles.Electrochemical impedance spectroscopy(EIS)offers valuable insights into battery degradation analysis and modeling.However,previous studies have not adequately addressed the impedance uncertainties,particularly during battery operating conditions,which can substantially impact the robustness and accuracy of state of health(SOH)estimation.Motivated by this,this paper proposes a comprehensive feature optimization scheme that integrates impedance validity assessment with correlation analysis.By utilizing metrics such as impedance residuals and correlation coefficients,the proposed method effectively filters out invalid and insignificant impedance data,thereby enhancing the reliability of the input features.Subsequently,the extreme gradient boosting(XGBoost)modeling framework is constructed for estimating the battery degradation trajectories.The XGBoost model incorporates a diverse range of hyperparameters,optimized by a genetic algorithm to improve its adaptability and generalization performance.Experimental validation confirms the effectiveness of the proposed feature optimization scheme,demonstrating the superior estimation performance of the proposed method in comparison with four baseline techniques.
基金supported by the Shenzhen Science and Technology Program(JCYJ20230808105111022,JCYJ20220818095806013)Natural Science Foundation of Guangdong(2023A1515012267)+1 种基金the National Natural Science Foundation of China(22178223)the Royal Society/NSFC cost share program(IEC\NSFC\223372).
文摘Low-electrode capacitive deionization(FCDI)is an emerging desalination technology with great potential for removal and/or recycling ions from a range of waters.However,it still suffers from inefficient charge transfer and ion transport kinetics due to weak turbulence and low electric intensity in flow electrodes,both restricted by the current collectors.Herein,a new tip-array current collector(designated as T-CC)was developed to replace the conventional planar current collectors,which intensifies both the charge transfer and ion transport significantly.The effects of tip arrays on flow and electric fields were studied by both computational simulations and electrochemical impedance spectroscopy,which revealed the reduction of ion transport barrier,charge transport barrier and internal resistance.With the voltage increased from 1.0 to 1.5 and 2.0 V,the T-CC-based FCDI system(T-FCDI)exhibited average salt removal rates(ASRR)of 0.18,0.50,and 0.89μmol cm^(-2) min^(-1),respectively,which are 1.82,2.65,and 2.48 folds higher than that of the conventional serpentine current collectors,and 1.48,1.67,and 1.49 folds higher than that of the planar current collectors.Meanwhile,with the solid content in flow electrodes increased from 1 to 5 wt%,the ASRR for T-FCDI increased from 0.29 to 0.50μmol cm^(-2) min^(-1),which are 1.70 and 1.67 folds higher than that of the planar current collectors.Additionally,a salt removal efficiency of 99.89%was achieved with T-FCDI and the charge efficiency remained above 95%after 24 h of operation,thus showing its superior long-term stability.