期刊文献+
共找到125篇文章
< 1 2 7 >
每页显示 20 50 100
Nanoparticles for the treatment of spinal cord injury
1
作者 Qiwei Yang Di Lu +8 位作者 Jiuping Wu Fuming Liang Huayi Wang Junjie Yang Ganggang Zhang Chen Wang Yanlian Yang Ling Zhu Xinzhi Sun 《Neural Regeneration Research》 SCIE CAS 2025年第6期1665-1680,共16页
Spinal cord injuries lead to significant loss of motor, sensory, and autonomic functions, presenting major challenges in neural regeneration. Achieving effective therapeutic concentrations at injury sites has been a s... Spinal cord injuries lead to significant loss of motor, sensory, and autonomic functions, presenting major challenges in neural regeneration. Achieving effective therapeutic concentrations at injury sites has been a slow process, partly due to the difficulty of delivering drugs effectively. Nanoparticles, with their targeted delivery capabilities, biocompatibility, and enhanced bioavailability over conventional drugs, are garnering attention for spinal cord injury treatment. This review explores the current mechanisms and shortcomings of existing treatments, highlighting the benefits and progress of nanoparticle-based approaches. We detail nanoparticle delivery methods for spinal cord injury, including local and intravenous injections, oral delivery, and biomaterial-assisted implantation, alongside strategies such as drug loading and surface modification. The discussion extends to how nanoparticles aid in reducing oxidative stress, dampening inflammation, fostering neural regeneration, and promoting angiogenesis. We summarize the use of various types of nanoparticles for treating spinal cord injuries, including metallic, polymeric, protein-based, inorganic non-metallic, and lipid nanoparticles. We also discuss the challenges faced, such as biosafety, effectiveness in humans, precise dosage control, standardization of production and characterization, immune responses, and targeted delivery in vivo. Additionally, we explore future directions, such as improving biosafety, standardizing manufacturing and characterization processes, and advancing human trials. Nanoparticles have shown considerable progress in targeted delivery and enhancing treatment efficacy for spinal cord injuries, presenting significant potential for clinical use and drug development. 展开更多
关键词 ANTIOXIDANTS axon regeneration biocompatible materials drug carriers NANOPARTICLES nerve regeneration neuroinflammatory diseases NEUROPROTECTION spinal cord injury stem cells
在线阅读 下载PDF
Alleviating the sluggish kinetics of all-solid-state batteries via cathode single-crystallization and multi-functional interface modification
2
作者 Wen-Zhe Liu Xin-Hai Meng +4 位作者 Zi-Yi Zhou Qiang Zheng Ji-Lei Shi Yue Gong Yu-Guo Guo 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第11期123-133,共11页
The application of Li-rich Mn-based cathodes, the most promising candidates for high-energy-density Liion batteries, in all-solid-state batteries can further enhance the safety and stability of battery systems.However... The application of Li-rich Mn-based cathodes, the most promising candidates for high-energy-density Liion batteries, in all-solid-state batteries can further enhance the safety and stability of battery systems.However, the utilization of high-capacity Li-rich cathodes has been limited by sluggish kinetics and severe interfacial issues in all-solid-state batteries. Here, a multi-functional interface modification strategy involving dispersed submicron single-crystal structure and multi-functional surface modification layer obtained through in-situ interfacial chemical reactions was designed to improve the electrochemical performance of Li-rich Mn-based cathodes in all-solid-state batteries. The design of submicron single-crystal structure promotes the interface contact between the cathode particles and the solid-state electrolyte,and thus constructs a more complete ion and electron conductive network in the composite cathode.Furthermore, the Li-gradient layer and the lithium molybdate coating layer constructed on the surface of single-crystal Li-rich particles accelerate the transport of Li ions at the interface, suppress the side reactions between cathodes and electrolyte, and inhibit the oxygen release on the cathode surface. The optimized Li-rich cathode materials exhibit excellent electrochemical performance in halide all-solid-state batteries. This study emphasizes the vital importance of reaction kinetics and interfacial stability of Lirich cathodes in all-solid-state batteries and provides a facile modification strategy to enhance the electrochemical performance of all-solid-state batteries based on Li-rich cathodes. 展开更多
关键词 All-solid-state Li-ion batteries Li-rich Mn-based cathode materials KINETICS Interface Anion redox
在线阅读 下载PDF
Research progress of low-dimensional metal halide perovskites for lasing applications 被引量:4
3
作者 Zhen Liu Chun Li +10 位作者 Qiu-Yu Shang Li-Yun Zhao Yang-Guang Zhong Yan Gao Wen-Na Du Yang Mi Jie Chen Shuai Zhang Xin-Feng Liu Ying-Shuang Fu Qing Zhang 《Chinese Physics B》 SCIE EI CAS CSCD 2018年第11期147-157,共11页
Metal halide perovskites have been regarded as remarkable materials for next-generation light-harvesting and light emission devices.Due to their unique optical properties,such as high absorption coefficient,high optic... Metal halide perovskites have been regarded as remarkable materials for next-generation light-harvesting and light emission devices.Due to their unique optical properties,such as high absorption coefficient,high optical gain,low trappingstate density,and ease of band gap engineering,perovskites promise to be used in lasing devices.In this article,the recent progresses of microlasers based on reduced-dimensional structures including nanoplatelets,nanowires,and quantum dots are reviewed from both fundamental photophysics and device applications.Furthermore,perovskite-based plasmonic nanolasers and polariton lasers are summarized.Perspectives on perovskite-based small lasers are also discussed.This review can serve as an overview and evaluation of state-of-the-art micro/nanolaser science. 展开更多
关键词 PEROVSKITE NANOSTRUCTURE laser MICROLASER EMISSION
在线阅读 下载PDF
Degrees of freedom for energy storage material 被引量:3
4
作者 Yue Gong Lin Gu 《Carbon Energy》 SCIE CAS 2022年第4期633-644,共12页
Building a bridge between properties and structures has always been the key focus of any materials research.Nowadays,energy storage materials,especially lithium-ion batteries,are crucial both in daily life and for the... Building a bridge between properties and structures has always been the key focus of any materials research.Nowadays,energy storage materials,especially lithium-ion batteries,are crucial both in daily life and for the research community.Therefore,there is an urgent need to discover the functionality origin of battery performances to improve and design better material systems.Functionality originates from local symmetry and field.Local symmetry can be described by four fundamental degrees of freedom:lattice,charge,orbital,and spin.On the basis of this,detailed descriptions of the battery's properties in terms of lattice,charge,orbital,and spin are presented from the perspective of frontier transmission electron microscopy in this review.Besides,frontier in situ methods are introduced to record the dynamic structural evolution process during the battery cycle.Future discussion from the perspectives of both materials and characterizations is provided at the end of this review. 展开更多
关键词 CHARGE in situ LATTICE ORBITAL SPIN transmission electron microscopy
在线阅读 下载PDF
Identifying EGFR-Expressed Cells and Detecting EGFR Multi-Mutations at Single-Cell Level by Microfluidic Chip 被引量:2
5
作者 Ren Li Mingxing Zhou +7 位作者 Jine Li Zihua Wang Weikai Zhang Chunyan Yue Yan Ma Hailin Peng Zewen Wei Zhiyuan Hu 《Nano-Micro Letters》 SCIE EI CAS 2018年第1期148-157,共10页
EGFR mutations companion diagnostics have been proved to be crucial for the efficacy of tyrosine kinase inhibitor targeted cancer therapies. To uncover multiple mutations occurred in minority of EGFR-mutated cells,whi... EGFR mutations companion diagnostics have been proved to be crucial for the efficacy of tyrosine kinase inhibitor targeted cancer therapies. To uncover multiple mutations occurred in minority of EGFR-mutated cells,which may be covered by the noises from majority of unmutated cells, is currently becoming an urgent clinical requirement. Here we present the validation of a microfluidic-chip-based method for detecting EGFR multimutations at single-cell level. By trapping and immunofluorescently imaging single cells in specifically designed silicon microwells, the EGFR-expressed cellswere easily identified. By in situ lysing single cells, the cell lysates of EGFR-expressed cells were retrieved without cross-contamination. Benefited from excluding the noise from cells without EGFR expression, the simple and cost-effective Sanger's sequencing, but not the expensive deep sequencing of the whole cell population, was used to discover multi-mutations. We verified the new method with precisely discovering three most important EGFR drugrelated mutations from a sample in which EGFR-mutated cells only account for a small percentage of whole cell population. The microfluidic chip is capable of discovering not only the existence of specific EGFR multi-mutations,but also other valuable single-cell-level information: on which specific cells the mutations occurred, or whether different mutations coexist on the same cells. This microfluidic chip constitutes a promising method to promote simple and cost-effective Sanger's sequencing to be a routine test before performing targeted cancer therapy. 展开更多
关键词 EGFR mutation Single-cell analysis Microfluidic chip Tyrosine kinase inhibitor
在线阅读 下载PDF
Phase behaviors of binary mixtures composed of electron-rich and electron-poor triphenylene discotic liquid crystals 被引量:1
6
作者 安玲玲 景敏 +3 位作者 肖波 白小燕 曾庆祷 赵可清 《Chinese Physics B》 SCIE EI CAS CSCD 2016年第9期143-148,共6页
Disk-like liquid crystals(DLCs) can self-assemble to ordered columnar mesophases and are intriguing onedimensional organic semiconductors with high charge carrier mobility.To improve their applicable property of mes... Disk-like liquid crystals(DLCs) can self-assemble to ordered columnar mesophases and are intriguing onedimensional organic semiconductors with high charge carrier mobility.To improve their applicable property of mesomorphic temperature ranges,we exploit the binary mixtures of electronic donor-acceptor DLC materials.The electron-rich2,3,6,7,10,11-hexakis(alkoxy)triphenylenes(C4,C6,C8,C10,C12) and an electron-deficient tetrapentyl triphenylene-2,3,6,10-tetracarboxylate have been prepared and their binary mixtures have been investigated.The mesomorphism of the1:1(molar ratio) mixtures has been characterized by polarizing optical microscopy(POM),differential scanning calorimetry(DSC),and small angel x-ray scattering(SAXS).The self-assembled monolayer structure of a discogen on a solid-liquid interface has been imaged by the high resolution scanning tunneling microscopy(STM).The match of peripheral chain length has important influence on the mesomorphism of the binary mixtures. 展开更多
关键词 binary mixtures discotic liquid crystals triphenylene mesomorphism
在线阅读 下载PDF
Ag/reduced graphene oxide(RGO) nanocomposites for detection of TNT
7
作者 DONG JunYing CHEN DongLiang +3 位作者 CHEN Jing YI Rui ZHANG DongSheng XU Peng 《北京化工大学学报(自然科学版)》 CAS CSCD 北大核心 2019年第5期8-15,共8页
The modified Hummers method was employed to generate graphene oxide,and Ag /reduced graphene oxide (RGO) nanocomposites were synthesized at different temperatures by using sodium citrate as the reductant. Scanning ele... The modified Hummers method was employed to generate graphene oxide,and Ag /reduced graphene oxide (RGO) nanocomposites were synthesized at different temperatures by using sodium citrate as the reductant. Scanning electron microscopy (SEM),transmission electron microscopy (TEM),X-ray diffraction (XRD),X-ray photoelectron spectroscopy (XPS) and Raman spectroscopy were employed to characterize the reaction products. The results indicate that RGO has been synthesized successfully,and Ag particles are distributed evenly on the surface of RGO.The RGO prepared at a reaction temperature of 120℃ shows the best surface-enhanced Raman scattering (SERS) activity.The Ag /RGO nanocomposites modified by 10^- 5 mol /L 4-aminothiophenol (PATP) successfully detect a 10^- 5 mol /L 2,4,6-trinitrotoluene (TNT) alcohol solution. 展开更多
关键词 SODIUM CITRATE reduced graphene oxide AG /RGO surface-enhanced RAMAN scattering (SERS) trinitrotoluene(TNT)
在线阅读 下载PDF
Spectroscopy and carrier dynamics of one-dimensional nanostructures
8
作者 Yutong Zhang Zhuoya Zhu +3 位作者 Shuai Zhang Xianxin Wu Wenna Du Xinfeng Liu 《Journal of Semiconductors》 EI CAS CSCD 2022年第12期12-21,共10页
In recent years,one-dimensional(1D)nanomaterials have raised researcher's interest because of their unique structur-al characteristic to generate and confine the optical signal and their promising prospects in pho... In recent years,one-dimensional(1D)nanomaterials have raised researcher's interest because of their unique structur-al characteristic to generate and confine the optical signal and their promising prospects in photonic applications.In this re-view,we summarized the recent research advances on the spectroscopy and carrier dynamics of 1D nanostructures.First,the condensation and propagation of exciton-polaritons in nanowires(NWs)are introduced.Second,we discussed the properties of 1D photonic crystal(PC)and applications in photonic-plasmonic structures.Third,the observation of topological edge states in 1D topological structures is introduced.Finally,the perspective on the potential opportunities and remaining chal-lenges of 1D nanomaterials is proposed. 展开更多
关键词 one-dimensional nanostructures carrier dynamics NANOWIRES EXCITON-POLARITONS photonic crystals topological struc-tures
在线阅读 下载PDF
Tcn and Tcn@C70 Endohedral Metalofullerenes: ab initio Spin-density-functional Calculations
9
作者 Li-jing Zeng Ke Deng 《Chinese Journal of Chemical Physics》 SCIE CAS CSCD 2015年第4期-,共8页
关键词 Density functional theory Endohedral metalofullerenes Tcn@C70 Vienna ab initio simulation package
在线阅读 下载PDF
Epitaxial growth of antimony nanofilms on HOPG and thermal desorption to control the film thickness
10
作者 Shuya Xing Le Lei +8 位作者 Haoyu Dong Jianfeng Guo Feiyue Cao Shangzhi Gu Sabir Hussain Fei Pang Wei Ji Rui Xu Zhihai Cheng 《Chinese Physics B》 SCIE EI CAS CSCD 2020年第9期164-171,共8页
Group-V elemental nanofilms were predicted to exhibit interesting physical properties such as nontrivial topological properties due to their strong spin-orbit coupling,the quantum confinement,and surface effect.It was... Group-V elemental nanofilms were predicted to exhibit interesting physical properties such as nontrivial topological properties due to their strong spin-orbit coupling,the quantum confinement,and surface effect.It was reported that the ultrathin Sb nanofilms can undergo a series of topological transitions as a function of the film thickness h:from a topological semimetal(h>7.8 nm)to a topological insulator(7.8 nm>h>2.7 nm),then a quantum spin Hall(QSH)phase(2.7 nm>h>1.0 nm)and a topological trivial semiconductor(h<1.0 nm).Here,we report a comprehensive investigation on the epitaxial growth of Sb nanofilms on highly oriented pyrolytic graphite(HOPG)substrate and the controllable thermal desorption to achieve their specific thickness.The morphology,thickness,atomic structure,and thermal-strain effect of the Sb nanofilms were characterized by a combination study of scanning electron microscopy(SEM),atomic force microscopy(AFM),and scanning tunneling microscopy(STM).The realization of Sb nanofilms with specific thickness paves the way for the further exploring their thickness-dependent topological phase transitions and exotic physical properties. 展开更多
关键词 epitaxial growth antimony films scanning tunneling microscope(STM) thermal desorption
在线阅读 下载PDF
Simultaneous hydrogen and peroxide production by photocatalytic water splitting 被引量:13
11
作者 Lichao Wang Shuang Cao +3 位作者 Kai Guo Zhijiao Wu Zhi Ma Lingyu Piao 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2019年第3期470-475,共6页
Photocatalytic oxidation of water is a promising method to realize large-scale H2O2 production without a hazardous and energy-intensive process. In this study, we introduce a Pt/TiO2(anatase) photocatalyst to construc... Photocatalytic oxidation of water is a promising method to realize large-scale H2O2 production without a hazardous and energy-intensive process. In this study, we introduce a Pt/TiO2(anatase) photocatalyst to construct a simple and environmentally friendly system to achieve simultaneous H2 and H2O2 production. Both H2 and H2O2 are high-value chemicals, and their separation is automatic. Even without the assistance of a sacrificial agent, the system can reach an efficiency of 7410 and 5096 μmol g^-1 h^–1 (first 1 h) for H2 and H2O2, respectively, which is much higher than that of a commercial Pt/TiO2(anatase) system that has a similar morphology. This exceptional activity is attributed to the more favorable two-electron oxidation of water to H2O2, compared with the four-electron oxidation of water to O2. 展开更多
关键词 Photocatalytic water splitting HYDROGEN Hydrogen peroxide Anatase TiO2
在线阅读 下载PDF
Combined peripheral natural killer cell and circulating tumor cell enumeration enhance prognostic efficiency in patients with metastatic triple-negative breast cancer 被引量:6
12
作者 Xiaoran Liu Ran Ran +13 位作者 Bin Shao Hope S.Rugo Yanlian Yang Zhiyuan Hu Zewen Wei Fengling Wan Weiyao Kong Guohong Song Hanfang Jiang Xu Liang Ruyan Zhang Ying Yan Guobing Xu Huiping Li 《Chinese Journal of Cancer Research》 SCIE CAS CSCD 2018年第3期315-326,共12页
Objective:Triple-negative breast cancer(TNBC)is a heterogeneous disease with poor prognosis.Circulating tumor cells(CTCs)are a promising predictor for breast cancer prognoses but their reliability regarding progr... Objective:Triple-negative breast cancer(TNBC)is a heterogeneous disease with poor prognosis.Circulating tumor cells(CTCs)are a promising predictor for breast cancer prognoses but their reliability regarding progression-free survival(PFS)is controversial.We aim to verify their predictive value in TNBC.Methods:In present prospective cohort study,we used the Pep@MNPs method to enumerate CTCs in baseline blood samples from 75 patients with TNBC(taken at inclusion in this study)and analyzed correlations between CTC numbers and outcomes and other clinical parameters.Results:Median PFS was 6.0(range:1.0–25.0)months for the entire cohort,in whom we found no correlations between baseline CTC status and initial tumor stage(P=0.167),tumor grade(P=0.783)or histological type(P=0.084).However,among those getting first-line treatment,baseline CTC status was positively correlated with ratio of peripheral natural killer(NK)cells(P=0.032),presence of lung metastasis(P=0.034)and number of visceral metastatic site(P=0.037).Baseline CTC status was predictive for PFS in first-line TNBC(P=0.033),but not for the cohort as a whole(P=0.118).This prognostic limitation of CTC could be ameliorated by combining CTC and NK cell enumeration(P=0.049).Conclusions:Baseline CTC status was predictive of lung metastasis,peripheral NK cell ratio and PFS in TNBC patients undergoing first-line treatment.We have developed a combined CTC-NK enumeration strategy that allows us to predict PFS in TNBC without any preconditions. 展开更多
关键词 Breast cancer NANOTECHNOLOGY circulating tumor cell IMMUNOLOGY
在线阅读 下载PDF
Photoinduced degradation of organic solar cells with different microstructures 被引量:1
13
作者 路春希 闫鹏 +3 位作者 王金泽 刘爱民 宋德 江潮 《Chinese Physics B》 SCIE EI CAS CSCD 2014年第8期189-192,共4页
An in situ measurement setup is established to investigate the photoinduced degradation effects in a controllable inert gas ambient environment for the two different microstructures of poly(3-hexylthiophene) (P3HT... An in situ measurement setup is established to investigate the photoinduced degradation effects in a controllable inert gas ambient environment for the two different microstructures of poly(3-hexylthiophene) (P3HT) and [6,6]-phenyl-C61- butyricacid methyl ester (PCBM) bulk-heterojunction organic solar cells. The two devices are fabricated with the solvent vapor drying process followed by a thermal annealing (vapor drying device) and only a normal thermal annealing process (control device), respectively. Their power conversion efficiencies (PCEs) and aging features are compared. Their different degradation behaviors in light absorption are confirmed. In addition, irradiation-induced changes in both nanostructure and surface morphology of the P3HT:PCBM blend films treated with two different fabrication processes are observed through scanning electron microscopy and atomic force microscopy. Aggregated bulbs are observed at the surfaces for control devices after light irradiation for 50 h, while the vapor drying devices exhibit smooth film surfaces, and the corresponding device features are not easy to degrade under the aging measurement. Thus the devices having solvent vapor drying and thermal annealing show better device stabilities than those having only the thermal annealing process. 展开更多
关键词 organic solar cells PHOTODEGRADATION solvent vapor drying STABILITY
在线阅读 下载PDF
Controllable synthesis of Au-TiO2 nanodumbbell photocatalysts with spatial redox region 被引量:1
14
作者 Ye Liu Zhaozhong Xiao +2 位作者 Shuang Cao Jinhui Li Lingyu Piao 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2020年第1期219-226,共8页
Photocatalytic water splitting has increasingly attracted attention as one of the most useful methods of converting solar energy into chemical fuel.However,the undesirable reverse reaction significantly limits the enh... Photocatalytic water splitting has increasingly attracted attention as one of the most useful methods of converting solar energy into chemical fuel.However,the undesirable reverse reaction significantly limits the enhancement of efficiency.Herein,we fabricated an Au nanorods/TiO2 nanodumbbells structure photocatalyst(Au NRs/TiO2 NDs)via a facile synthetic strategy,which has spatially separated oxidation and reduction reaction zones.Owing to the unique structure,the charge separation of these photocatalysts can be significantly improved and the reverse reaction can be efficiently inhibited.The photogenerated electrons were injected from the TiO2 to the Au NRs,and a positively charged TiO2 region and negatively charged Au region were formed under UV irradiation.An enhanced hydrogen production performance was obtained compared with that seen in normal Au-TiO2 heterostructure.Under optimized conditions,the H2-production rate can reach up to 60,264μmol/g/h,about six times higher than previously reported Au/TiO2 photocatalysts.Besides this,our work also demonstrates the key factors of precise synthesis of the Au NRs/TiO2 NDs structure,which provides a new perspective and experience for the design of similar catalysts. 展开更多
关键词 Au nanorods Dumbbell structure Photocatalytic water splitting Controllable synthesis
在线阅读 下载PDF
Optical second-harmonic generation of Janus MoSSe monolayer 被引量:1
15
作者 Ce Bian Jianwei Shi +3 位作者 Xinfeng Liu Yang Yang Haitao Yang Hongjun Gao 《Chinese Physics B》 SCIE EI CAS CSCD 2022年第9期488-492,共5页
The transition metal dichalcogenides(TMD)monolayers have shown strong second-harmonic generation(SHG)ow-ing to their lack of inversion symmetry.These ultrathin layers then serve as the frequency converters that can be... The transition metal dichalcogenides(TMD)monolayers have shown strong second-harmonic generation(SHG)ow-ing to their lack of inversion symmetry.These ultrathin layers then serve as the frequency converters that can be intergraded on a chip.Here,taking MoSSe as an example,we report the first detailed experimental study of the SHG of Janus TMD monolayer,in which the transition metal layer is sandwiched by the two distinct chalcogen layers.It is shown that the SHG effectively arises from an in-plane second-harmonic polarization under paraxial focusing and detection.Based on this,the orientation-resolved SHG spectroscopy is realized to readily determine the zigzag and armchair axes of the Janus crystal with an accuracy better than±0.6°.Moreover,the SHG intensity is wavelength-dependent and can be greatly enhanced(~60 times)when the two-photon transition is resonant with the C-exciton state.Our findings uncover the SHG properties of Janus MoSSe monolayer,therefore lay the basis for its integrated frequency-doubling applications. 展开更多
关键词 Janus MoSSe monolayer second-harmonic generation(SHG) orientation-resolved spectroscopy C-exciton resonance
在线阅读 下载PDF
Magnetic polaron-related optical properties in Ni(Ⅱ)-doped Cd S nanobelts: Implication for spin nanophotonic devices
16
作者 Fu-Jian Ge Hui Peng +5 位作者 Ye Tian Xiao-Yue Fan Shuai Zhang Xian-Xin Wu Xin-Feng Liu Bing-Suo Zou 《Chinese Physics B》 SCIE EI CAS CSCD 2022年第1期590-597,共8页
Emissions by magnetic polarons and spin-coupled d-d transitions in diluted magnetic semiconductors(DMSs)have become a popular research field due to their unusual optical behaviors.In this work,high-quality NiI_(2)(Ⅱ)... Emissions by magnetic polarons and spin-coupled d-d transitions in diluted magnetic semiconductors(DMSs)have become a popular research field due to their unusual optical behaviors.In this work,high-quality NiI_(2)(Ⅱ)-doped CdS nanobelts are synthesized via chemical vapor deposition(CVD),and then characterized by scanning electron microscopy(SEM),x-ray diffraction,x-ray photoelectron spectroscopy(XPS),and Raman scattering.At low temperatures,the photoluminescence(PL)spectra of the Ni-doped nanobelts demonstrate three peaks near the band edge:the free exciton(FX)peak,the exciton magnetic polaron(EMP)peak out of ferromagnetically coupled spins coupled with FXs,and a small higher-energy peak from the interaction of antiferromagnetic coupled Ni pairs and FXs,called antiferromagnetic magnetic polarons(AMPs).With a higher Ni doping concentration,in addition to the d-d transitions of single Ni ions at 620 nm and 760 nm,two other PL peaks appear at 530 nm and 685 nm,attributed to another EMP emission and the d-d transitions of the antiferromagnetic coupled Ni^(2+)-Ni^(2+)pair,respectively.Furthermore,single-mode lasing at the first EMP is excited by a femtosecond laser pulse,proving a coherent bosonic lasing of the EMP condensate out of complicated states.These results show that the coupled spins play an important role in forming magnetic polaron and implementing related optical responses. 展开更多
关键词 dilute magnetic semiconductor exciton magnetic polaron photoluminescence antiferromagnetic magnetic polaron
在线阅读 下载PDF
Topologically engineering of π-conjugated macrocycles: Tunable emission and photochemical reaction toward multi-cyclic polymers
17
作者 Yi Liu Peng Lei +8 位作者 Yang Feng Shiwei Fu Xiaoqing Liu Siqi Zhang Bin Tu Chen Chen Yifan Li Lei Wang Qing-Dao Zeng 《Chinese Chemical Letters》 SCIE CAS CSCD 2024年第10期233-240,共8页
The topology of conjugated macrocycles had significant impacts on their photo-physical and photochemical properties.Herein,a series ofπ-conjugated macrocycles with diverse topology were synthesized via intramolecular... The topology of conjugated macrocycles had significant impacts on their photo-physical and photochemical properties.Herein,a series ofπ-conjugated macrocycles with diverse topology were synthesized via intramolecular McMurry coupling.Their chemical structure and macrocyclic topology were unambiguously confirmed via NMR,MALDI-TOF mass spectra,crystal analysis and scanning tunneling microscopy(STM).Depending on the structural topology and structural rigidity,these cyclic compounds display obviously distinctive emission behavior and photochemical reactions in the solution and in the solid state.Monocyclic phenylene vinylene macrocycle(denoted as MST)exhibiting aggregation-induced emission behavior,was more vulnerable to photo-cyclization in solution and triplet sensitizer promoted photodimerization due to lower strain and more flourishing intramolecular motions.After UV light irradiation,relatively more flexible MST could yield the anti-dimer via triplet excimer on the HOPG surface confirmed by STM investigation.By contrast,highly constrained bicyclic analogue(named as DMTPE)with central tetraphenylethene core,displayed high emission quantum yields of 68%both in solution and in the solid state,and was relatively inert to photochemical reactions and yield syn-dimer on the surface via singlet excimer involved[2+2]photo-dimerization.Based on the solution-mediated photo-polymerization of MST moiety,multicyclic porous carbon-rich ribbon connected with four-membered ring was successfully constructed and validated via STM imaging. 展开更多
关键词 Conjugated macrocycle Scanning tunneling microscopy Aggregation-induced emission PHOTOCHEMISTRY Multicyclicribbon
原文传递
The effect of multiple pairs of meta-dicarboxyl groups on molecular self-assembly and the selective adsorption of coronene by hydrogen bonding and van der Waals forces 被引量:3
18
作者 Jianqiao Li Wendi Luo +4 位作者 Siqi Zhang Chunyu Ma Xunwen Xiao Wubiao Duan Qingdao Zeng 《Nano Research》 SCIE EI CSCD 2022年第2期1691-1697,共7页
The prediction of two-dimensional molecular self-assembly structures has always been a problem to be solved.The molecules with meta-dicarboxyl groups can self-assemble into a specific hexagonal cavity,which has an imp... The prediction of two-dimensional molecular self-assembly structures has always been a problem to be solved.The molecules with meta-dicarboxyl groups can self-assemble into a specific hexagonal cavity,which has an important influence on the prediction of molecular self-assembly structures and the application of functional molecules with meta-dicarboxyl groups.Two kinds of molecules with four pairs of meta-dicarboxyl groups,1,3,6,8-tet「akis(3,5-isophthalic acid)pyrene(H_(8)TIAPy)and 4′,4′",4′"",4""-(ethene-1,1,2,2-tetrayl)tetrakis(([1,1′-biphenyl]-3,5-dicarboxylic acid))(H8ETTB)molecules were chosen to observe the self-assembly behavior at the heptanoic acid/highly oriented pyrolytic graphite(HA/HOPG)interface.H8TIAPy molecules self-assembled into well-ordered quadrilateral structures and could be regulated into kagome networks with hexagonal pores by coronene(COR)molecules.H8ETTB molecules self-assembled into lamellar structures and transformed into acid-COR-acid-COR co-assembled structures at low concentration of COR solution and acid-COR dimer-acid-COR dimer co-assembled structures at high concentration of COR solution.The reason that H8ETTB molecules could not be regulated into hexagonal porous architecture was attributed to the steric hindrance by the similar length and width of H8ETTB molecules.The H8ETTB templates had stronger adsorption for COR than that of hexaphenylbenzene(HPB),regardless of the order of molecular introduction. 展开更多
关键词 meta-dicarboxyl groups hexagonal cavity selective adsorption self-assembly steric hindrance
原文传递
Hot carrier cooling in lead halide perovskites probed by two-pulse photovoltage correlation spectroscopy
19
作者 Yuqing Huang Chaoyu Guo +9 位作者 Lei Gao Wenna Du Haotian Zheng Da Wu Zhengpu Zhao Chu-Wei Zhang Qin Wang Xin-Feng Liu Qingfeng Yan Ying Jiang 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第10期116-119,共4页
The next-generation hot-carrier solar cells,which can overcome the Shockley-Queisser limit by harvesting excessenergy from hot carriers,are receiving increasing attention.Lead halide perovskite(LHP)materials are consi... The next-generation hot-carrier solar cells,which can overcome the Shockley-Queisser limit by harvesting excessenergy from hot carriers,are receiving increasing attention.Lead halide perovskite(LHP)materials are considered aspromising candidates due to their exceptional photovoltaic properties,good stability and low cost.The cooling rate of hotcarriers is a key parameter influencing the performance of hot-carrier solar cells.In this work,we successfully detected hotcarrier dynamics in operando LHP devices using the two-pulse photovoltage correlation technique.To enhance the signalto-noise ratio,we applied the delay-time modulation method instead of the traditional power modulation.This advancementallowed us to detect the intraband hot carrier cooling time for the organic LHP CH_(3)NH_(3)PbBr_(3),which is as short as 0.21 ps.In comparison,the inorganic Cs-based LHP CsPbBr_(3)exhibited a longer cooling time of around 0.59 ps due to differentphonon contributions.These results provide us new insights into the optimal design of hot-carrier solar cells and highlightthe potential of LHP materials in advancing solar cell technology. 展开更多
关键词 two-pulse correlation spectroscopy lead halide perovskites hot carrier cooling ultrafast dynamics
在线阅读 下载PDF
Ferroxidase-like activity of Au nanorod/Pt nanodot structures and implications for cellular oxidative stress 被引量:2
20
作者 Jianbo Liu Xiumei Jiang +6 位作者 Liming Wang Zhijian Hu Tao Wen Wenqi Liu Junjie Yin Chunying Chen Xiaochun Wu 《Nano Research》 SCIE EI CAS CSCD 2015年第12期4024-4037,共14页
Platinum nanoparticles (NPs) are reported to mimic various anfioxidant enzymes and thus may produce a positive biological effect by reducing reactive oxygen species (ROS) levels. In this manuscript, we report Pt N... Platinum nanoparticles (NPs) are reported to mimic various anfioxidant enzymes and thus may produce a positive biological effect by reducing reactive oxygen species (ROS) levels. In this manuscript, we report Pt NPs as an enzyme mimic of ferroxidase by depositing platinum nanodots on gold nanorods (Au@Pt NDRs). Au@Pt NDRs show pH-dependent ferroxidase-like activity and have higher activity at neutral pH values. Cytotoxicity results with human cell lines (lung adenocarcinoma A549 and normal bronchial epithelial cell line HBE) show that Au@Pt NDRs are taken up into cells via endocytosis and translocate into the endosome/lysosome. Au@Pt NDRs have good biocompatibility at NDR particle concentrations lower than 0.15 nM. However, in the presence of H202, lysosome- located NDRs exhibit peroxidase-like activity and therefore increase cytotoxicity. In the presence of FeE+, the ferroxidase-like activity of the NDRs protects cells from oxidative stress by consuming H202. Thorough consideration should be given to this behavior when employinK Au@Pt NDRs in biological svstems. 展开更多
关键词 Au@Pt nanostructure ferroxidase PEROXIDASE antioxidant activity biological effect
原文传递
上一页 1 2 7 下一页 到第
使用帮助 返回顶部