期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Air Pollution Exposure Based on Nighttime Light Remote Sensing and Multi-source Geographic Data in Beijing
1
作者 ZHANG Zheyuan WANG Jia +2 位作者 XIONG Nina LIANG Boyi WANG Zong 《Chinese Geographical Science》 SCIE CSCD 2023年第2期320-332,共13页
Air pollution is a problem that directly affects human health,the global environment and the climate.The air quality index(AQI)indicates the degree of air pollution and effect on human health;however,when assessing ai... Air pollution is a problem that directly affects human health,the global environment and the climate.The air quality index(AQI)indicates the degree of air pollution and effect on human health;however,when assessing air pollution only based on AQI monitoring data the fact that the same degree of air pollution is more harmful in more densely populated areas is ignored.In the present study,multi-source data were combined to map the distribution of the AQI and population data,and the analyze their pollution population exposure of Beijing in 2018 was analyzed.Machine learning based on the random forest algorithm was adopted to calculate the monthly average AQI of Beijing in 2018.Using Luojia-1 nighttime light remote sensing data,population statistics data,the population of Beijing in 2018 and point of interest data,the distribution of the permanent population in Beijing was estimated with a high precision of 200 m×200 m.Based on the spatialization results of the AQI and population of Beijing,the air pollution exposure levels in various parts of Beijing were calculated using the population-weighted pollution exposure level(PWEL)formula.The results show that the southern region of Beijing had a more serious level of air pollution,while the northern region was less polluted.At the same time,the population was found to agglomerate mainly in the central city and the peripheric areas thereof.In the present study,the exposure of different districts and towns in Beijing to pollution was analyzed,based on high resolution population spatialization data,it could take the pollution exposure issue down to each individual town.And we found that towns with higher exposure such as Yongshun Town,Shahe Town and Liyuan Town were all found to have a population of over 200000 which was much higher than the median population of townships of51741 in Beijing.Additionally,the change trend of air pollution exposure levels in various regions of Beijing in 2018 was almost the same,with the peak value being in winter and the lowest value being in summer.The exposure intensity in population clusters was relatively high.To reduce the level and intensity of pollution exposure,relevant departments should strengthen the governance of areas with high AQI,and pay particular attention to population clusters. 展开更多
关键词 air quality index(AQI) population pollution exposure nighttime light remote sensing Luojia-1 random forest
在线阅读 下载PDF
Volatile Solid and Bury Period Influence on Odorous Material Production in Simulating Landfill Treatment
2
作者 Peng Lu Yuanyuan Zhang +5 位作者 Linan Xing Ying Wang Hong Lu Dongbei Yue Wei Cheng Jin Liu 《Journal of Geoscience and Environment Protection》 2024年第1期120-129,共10页
Odor pollution in landfill area has attracted more social attention in China. It is very important to control the generation of odor pollutants in situ. Analyzing odorous materials production form buried waste, simula... Odor pollution in landfill area has attracted more social attention in China. It is very important to control the generation of odor pollutants in situ. Analyzing odorous materials production form buried waste, simulated columns of different volatile solid (VS) content and different buried period waste were designed. Gas compounds produced from the columns were collected and analyzed by comprehensive two-dimensional gas chromatography (GC × GC) method. It has remarkable relationship between VS content and concentrations of odorous material. When VS content more than 40%, the total amount of odorous compounds increases remarkably. It can be inferred that reduced VS content of original waste may effective decreasing odorous materials production in landfill area. The old rubbish produced more odorous compounds than that of fresh one in simulated columns. 展开更多
关键词 Volatile Solid Odorous Material Bury Period
在线阅读 下载PDF
Simultaneous degradation of sulfadiazine and dissolved organic matter based on low-impact development facilities 被引量:2
3
作者 Donghai Yuan Siyu Xiong +3 位作者 Chenling Yan Linxiao Zhai Yanqi Cui Yingying Kou 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2023年第8期223-233,共11页
Sulfadiazine(SD)is a common antibiotic administered to treat bacterial infections in livestock,and its fate andmigration are greatly affected by dissolved organicmatter(DOM).The soil infiltration system[a typical low-... Sulfadiazine(SD)is a common antibiotic administered to treat bacterial infections in livestock,and its fate andmigration are greatly affected by dissolved organicmatter(DOM).The soil infiltration system[a typical low-impact development(LID)facility]can significantly alterDOMproperties during runoff pollution,thus affecting the complexation of SDwithDOM.Here,the binding characteristics of different DOM components and SD in the soil infiltration system were explored using spectroscopic techniques(excitation–emission matrices,parallel factor analysis,and synchronous fluorescence spectroscopy).Combined with the weakening of DOM fluorescence intensity and 78.63%reduction in mean SD concentration following treatment,synchronous degradation may have occurred.The binding sequence of SD and DOM fluorophores was further explored using two-dimensional correlation spectroscopy.Effluent DOM showed greater sensitivity to SD and more binding sites than influent DOM.Moreover,hydrophobic protein-like substances exhibited higher log K_(M) values than other fluorescent components,indicating that protein-like components play significant roles in SD complexation.The soil percolation system improved the complexation stability and binding sequence of fulvic-like substances.Thus,SD–DOM can be intercepted and degraded using LID facilities to reduce the risk of SD in aquatic environments. 展开更多
关键词 Sulfadiazine(SD) Low-impact development(LID) Agricultural non-point sources Dissolved organic matter (DOM) Parallel factor analysis(PARAFAC)
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部