期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Influence of welding parameters on temperature field characteristics during laser welding of TA15 by infrared thermography 被引量:4
1
作者 Duan Aiqin Gong Shuili Huang Song 《China Welding》 EI CAS 2018年第2期1-12,共12页
Using an infrared thermographic technique, the temperature field during laser welding of TA15 is quantitatively measured and investigated. The ilffluenee of two welding parameters on the weld temperature distribution ... Using an infrared thermographic technique, the temperature field during laser welding of TA15 is quantitatively measured and investigated. The ilffluenee of two welding parameters on the weld temperature distribution is analyzed and the meehanisnl is discussed. New conclusions are drawn that are different from conventional weld temperature distributions. For the face of the weld, changes in welding speed induce changes in the temperature distribution because of different heat inputs and the cooling effect. Sinfilar temperature features in the welds are observed for all speeds, which exhibit a relatively low temperature area below 1 500 ℃ between the high temperature area in the position of laser incidence and the sub-high temperature area at the end of the molten pool. For the ilffluenee of laser power on the face of the weld, the temperature on the weld is higher for P = 2.8 kW compared to P = 2.0 kW, especially the temperature in the sub-high temperature area. However, for the temperature field of the back of the weld, the ilffluenee of welding speeds is quite different compared to the results for the face of the weld. The highest temperature does not locate in the keyhole area, but instead in the middle of the molten pool. And there are different temperature features at different speeds. When v = 6 m/min, the temperature field is like a uniform color belt and the temperature along the center of the weld fluctuates between 300 and 450 ℃. When v = 4 m/rain, the transient temperature distribution is not uniform and is unstable at different times. However, for v = 2.4 m/rain and lower speeds, the temperature field becomes stable. The ilffluenee of laser power on the back of the weld temperature field is more complex. The measured temperature does not increase with increasing laser power, which seems to eolffliet with the conventional thermal conduction theory-. This may be related with the characteristics of the keyhole area. 展开更多
关键词 YAG laser welding temperature field infrared thennography Ti alloy
在线阅读 下载PDF
Mechanics analysis of axisymmetric thin-walled part in warm sheet hydroforming 被引量:2
2
作者 Yang Xiying Lang Lihui +1 位作者 Liu Kangning Liu Baosheng 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2015年第5期1546-1554,共9页
To obtain the influence of fluid pressure and temperature on warm hydroforming of 5A06-O aluminum alloy sheet, the unified mechanics equilibrium equations, which take through- thickness normal stress and friction into... To obtain the influence of fluid pressure and temperature on warm hydroforming of 5A06-O aluminum alloy sheet, the unified mechanics equilibrium equations, which take through- thickness normal stress and friction into account, were established in spherical coordinate system. The distribution of through-thickness normal stress in the thickness direction was determined. The relation between through-thickness normal stress and fluid pressure was also analyzed in different regions of cylindrical cup. Based on the method of subtracting one increasing function from another, the constitutive equation of 5A06-O applied to warm hydroforming was established and in a good agreement with uniaxial tensile data. Based on whether the thickness variation was taken into account, two mechanic models were established to do the comparative study. The results for the studied case show that the calculated stress values are pretty close according to the two models and consistent with results of finite element analysis; the thickness distribution in flange computed by the second model conforms to the experimental data. Finally, the influences of fluid pressure on the flange thickness and radial stress were analyzed. 展开更多
关键词 5A06-O aluminum alloy:Constitutive equations:Fluid pressure:Through-thickness normalstress Warm sheet hydroforming
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部