The method of establishing data structures plays an important role in the efficiency of parallel multilevel fast multipole algorithm(PMLFMA).Considering the main complements of multilevel fast multipole algorithm(M...The method of establishing data structures plays an important role in the efficiency of parallel multilevel fast multipole algorithm(PMLFMA).Considering the main complements of multilevel fast multipole algorithm(MLFMA) memory,a new parallelization strategy and a modified data octree construction scheme are proposed to further reduce communication in order to improve parallel efficiency.For far interaction,a new scheme called dynamic memory allocation is developed.To analyze the workload balancing performance of a parallel implementation,the original concept of workload balancing factor is introduced and verified by numerical examples.Numerical results show that the above measures improve the parallel efficiency and are suitable for the analysis of electrical large-scale scattering objects.展开更多
Nitrogen can increase the strength of steels without weakening the toughness and improve the corrosion resistance at the same time. Compared with conventional nitrogen-free die steels, a new type of nitrogen-containin...Nitrogen can increase the strength of steels without weakening the toughness and improve the corrosion resistance at the same time. Compared with conventional nitrogen-free die steels, a new type of nitrogen-containing die steel was developed with many superior properties, such as high strength, high hardness, and good toughness. This paper focused on the effects of heat treatment on the microstruc- tures and mechanical properties of the new type of nitrogen-containing die steel, which were investigated by the optimized deformation process and heat treatment. Isothermal spheroidal annealing and high-temperature quenching as well as high-temperature tempering were ap- plied in the experiment by means of an orthogonal method after the steel was multiply forged. The mechanical properties of nitro- gen-containing die steel forgings are better than the standard of NADCA #207-2003.展开更多
The aerodynamic and aeroacoustic characteristics of a scissor tail-rotor in a forward flight are numerically calculated.A novel computational fluid dynamics(CFD)model based on Navier-Stokes(N-S)equations is presented ...The aerodynamic and aeroacoustic characteristics of a scissor tail-rotor in a forward flight are numerically calculated.A novel computational fluid dynamics(CFD)model based on Navier-Stokes(N-S)equations is presented to simulate the unsteady flowfield and the aerodynamic characteristics of a scissor tail-rotor in the forward flight.Then the Farassat Formulation 1 Aderived from the FW-H equation is coupled into the CFD model in order to compute the aeroacoustic characteristics of the scissor tail-rotor.In addition,two different scissor tail-rotor configurations,i.e.,the L-and U-configuration,are analyzed in details and compared with a conventional one.The influence of scissor angles on the aerodynamic and aeroacoustic characteristics of the scissor tail-rotor is also investigated.The simulation results demonstrate that the flowfield,aerodynamic force and aeroacoustic characteristics of a scissor tail-rotor are significantly different from the conventional one,and the aerodynamic interaction decreases with the increase of scissor angle,which leads to a reduction of amplitude variation of the tail-rotor thrust in the forward flight.The scissor angle has an important effect on the aerodynamics and aeroacoustics of the scissor tail-rotor.展开更多
In order to better study the dynamic characteristics and the control strategy of parafoil systems,considering the effect of flap deflection as the control mechanism and regarding the parafoil and the payload as a rigi...In order to better study the dynamic characteristics and the control strategy of parafoil systems,considering the effect of flap deflection as the control mechanism and regarding the parafoil and the payload as a rigid body,a six degrees-of-freedom(DOF)dynamic model of a parafoil system including three DOF for translational motion and three DOF for rotational motion,is established according to the K rchhoff motion equation.Since the flexible winged paafoil system flying at low altitude is more susceptibleto winds,the motion characteristics of the parafoil system Wth and Wthout winds are simulated and analyzed.Furthermore,the ardropm test is used to further verify the model.The comparison results show that the simulation trajectory roughly overlaps with the actual flight track.The horzontnl velocity of the simulation model is in good accordance with the airdrop test,with a deviation less than0.5m/s,while its simulated vertical velocity fuctuates slightly under the infuence of the wind,and shows a similar trend to the ardrop test.It is concludedthat the established model can well describe the characteristics of the parafoil system.展开更多
Experimental investigation is performed to investigate the cooling characteristics in the front zone of effusion configuration. Effects of blowing ratio,multi-hole arrangement mode,hole-to-hole pitch and jet orientati...Experimental investigation is performed to investigate the cooling characteristics in the front zone of effusion configuration. Effects of blowing ratio,multi-hole arrangement mode,hole-to-hole pitch and jet orientation angle on the adiabatic film cooling effectiveness are concentrated on. The results show that the film layer displays an obvious"developing"feature in the front zone of effusion cooling scheme,for either the staggered or inline multi-hole arrangement. The varying gradient of the laterally-averaged adiabatic cooling effectiveness along the streamwise direction is greater for the staggered arrangement than that for the inline arrangement. The holes array arranged in staggered mode with small hole-tohole pitches is in favor of obtaining developed film coverage layer rapidly.展开更多
Experimental investigation of active flow control on the aerodynamic performance of a flying wing is conducted. Subsonic wind tunnel tests are performed using a model of a 35° swept flying wing with an nanosecond...Experimental investigation of active flow control on the aerodynamic performance of a flying wing is conducted. Subsonic wind tunnel tests are performed using a model of a 35° swept flying wing with an nanosecond dielectric barrier discharge (NS-DBD) plasma actuator, which is installed symmetrically on the wing leading edge. The lift and drag coefficient, lift-to- drag ratio and pitching moment coefficient are tested by a six-component force balance for a range of angles of attack. The results indicate that a 44.5% increase in the lift coefficient, a 34.2% decrease in the drag coefficient and a 22.4% increase in the maximum lift-to-drag ratio can be achieved as compared with the baseline case. The effects of several actuation parameters are also investigated, and the results show that control efficiency demonstrates a strong dependence on actuation location and frequency. Furthermore, we highlight the use of distributed plasma actuators at the leading edge to enhance the aerodynamic performance, giving insight into the different mechanism of separation control and vortex control, which shows tremendous potential in practical flow control for a broad range of angles of attack.展开更多
Large-strain deformation by single electroplastic rolling (EPR) was imposed on AZ31 magnesium alloy strips. During EPR at low temperature (150-250℃), numerous twins formed in the alloy. After EPR at a high temper...Large-strain deformation by single electroplastic rolling (EPR) was imposed on AZ31 magnesium alloy strips. During EPR at low temperature (150-250℃), numerous twins formed in the alloy. After EPR at a high temperature (350℃), the number of twins reduced and some dynamic recrystallization (DRX) grains formed at grain boundaries and twinned regions. The synergic thermal and athermal effects generated by electropulsing, which promoted dislocation motion, induced a few small DRX grains, and ductile bandings were mainly re- sponsible for large-strain deformation during EPR. The inclination angle of the basal pole stemmed from the counterbalance of the inclina- tion direction of the basal pole between the DRX grains and deformed coarse grains.展开更多
Chip-sized alkali atom vapor cells with high hermeticity are successfully fabricated through deep silicon etching and two anodic bonding processes.A self-built absorption spectrum testing system is used to test the ab...Chip-sized alkali atom vapor cells with high hermeticity are successfully fabricated through deep silicon etching and two anodic bonding processes.A self-built absorption spectrum testing system is used to test the absorption spectra of the ru-bidium atoms in alkali atom vapor cells.The influence of silicon cavity size,filling amount of rubidium atoms and temperature on the absorption spectra of rubidium atom vapor in the atom vapor cells are studied in depth through a theoretical analysis.This study provides a reference for the design and preparation of high quality chip-sized atom vapor cells.展开更多
Experimental investigation is conducted to investigate the flow and heat transfer performances of jet impingement cooling inside a semi-confined smooth channel.Effects of jet Reynolds number(varied from 10 000to 45000...Experimental investigation is conducted to investigate the flow and heat transfer performances of jet impingement cooling inside a semi-confined smooth channel.Effects of jet Reynolds number(varied from 10 000to 45000),orifice-to-target spacing(zn=1d—4d)and jet-to-jet pitches(xn=3d—5d,yn=3d—5d)on the convective heat transfer coefficient and discharge coefficient are revealed.For a single-row jets normal impingement,the impingement heat transfer is enhanced with the increase of impingement Reynolds number or the decrease of spanwise jet-to-jet pitch.The highest local heat transfer is achieved when zn/dis 2.For the double-row jets normal impingement,the laterally-averaged Nusselt number distributions in the vicinity of the first row jets impinging stagnation do not fit well with the single-row case.The highest local heat transfer is obtained when zn/dis 1.A smaller jetto-jet pitch generally results in a lower discharge coefficient.The discharge coefficient in the double-row case is decreased relative to the single-row case at the same impingement Reynolds number.展开更多
Many factors,such as deck motion and air wave,influence the determination of the approach speed which has an important effect on landing safety. Until recently,there are no design criteria about approach speed of carr...Many factors,such as deck motion and air wave,influence the determination of the approach speed which has an important effect on landing safety. Until recently,there are no design criteria about approach speed of carrier aircraft in the current standards and available publications. Therefore,the requirements of stall margin, longitudinal acceleration ability,altitude correction and field-of-view on approach speed were researched. Based on the flight dynamics model,the flight simulations were conducted to study the effect of the response time of engine,wave off requirements,elevator efficiency and deflection rate on the approach speed. The results presented that the approach longitudinal acceleration and altitude correction ability had crucial influence on the approach speed envelope of the aircraft. The limitations of the control requirements,field- of- view requirements and gear were also given through the simulation and analysis. Based on the above results,the approach speed envelope were determined.展开更多
Homing trajectory planning is a core task of autonomous homing of parafoil system.This work analyzes and establishes a simplified kinematic mathematical model,and regards the homing trajectory planning problem as a ki...Homing trajectory planning is a core task of autonomous homing of parafoil system.This work analyzes and establishes a simplified kinematic mathematical model,and regards the homing trajectory planning problem as a kind of multi-objective optimization problem.Being different from traditional ways of transforming the multi-objective optimization into a single objective optimization by weighting factors,this work applies an improved non-dominated sorting genetic algorithm Ⅱ(NSGA Ⅱ) to solve it directly by means of optimizing multi-objective functions simultaneously.In the improved NSGA Ⅱ,the chaos initialization and a crowding distance based population trimming method were introduced to overcome the prematurity of population,the penalty function was used in handling constraints,and the optimal solution was selected according to the method of fuzzy set theory.Simulation results of three different schemes designed according to various practical engineering requirements show that the improved NSGA Ⅱ can effectively obtain the Pareto optimal solution set under different weighting with outstanding convergence and stability,and provide a new train of thoughts to design homing trajectory of parafoil system.展开更多
In view of the complexity of landing on the deck of aircraft carrier,a systematic model,composed of sixdegree-of-freedom mathematic model of carrier-based aircraft,four-degree-of-freedom model of landing gears and six...In view of the complexity of landing on the deck of aircraft carrier,a systematic model,composed of sixdegree-of-freedom mathematic model of carrier-based aircraft,four-degree-of-freedom model of landing gears and six-degree-of-freedom mathematic model of carrier,is established in the Matlab-Simulink environment,with damping function of landing gears and dynamic characteristics of tires being considered.The model,where the carrier movement is introduced,is applicable for any abnormal landing condition.Moreover,the equations of motion and relevant parameter are also derived.The dynamic response of aircraft is calculated via the variable step-size RungeKuta algorithm.The effect of attitude angles of aircraft and carrier movement during the process of landing is illustrated in details.The analytical results can provide some reference for carrier-based aircraft design and maintenance.展开更多
The studies on clutter modeling and suppression of airborne radar with a parabolic conformal array are uncommon due to the complexity of this type of antenna array configuration.The correct understanding of clutter ch...The studies on clutter modeling and suppression of airborne radar with a parabolic conformal array are uncommon due to the complexity of this type of antenna array configuration.The correct understanding of clutter characteristics for airborne radar with a parabolic conformal antenna array is the prerequisite and foundation of optimal suppression of this type of clutter.This paper establishes the model of clutter echo of airborne parabolic conformal phased array radar and analyzes the structure characteristics and the distribution features of this type of clutter.The simulation results show that this type of clutter has the following characteristics:1) The main lobe on the azimuth is seriously broadened,2) the power spectrum presents strong heterogeneity,and 3) the freedom degrees are high.Based on the existing related clutter suppression methods,we verified the correctness of the constructed clutter model.This work has an important guidance to further study on clutter suppression methods in airborne parabolic conformal array radar.展开更多
A jet noise reduction technique by using the external chevron nozzle with lobed mixer in the double-mixing exhaust system is investigated under cold conditions.The computations of jet field and the experiments of nois...A jet noise reduction technique by using the external chevron nozzle with lobed mixer in the double-mixing exhaust system is investigated under cold conditions.The computations of jet field and the experiments of noise field are conducted with scaled model of high-bypass-ratio turbofan engine mixing exhaust system composed of external chevron nozzle with lobed mixer.The computational results indicate that comparing with the baseline nozzle with lobed mixer,the external chevron nozzle with lobed mixer increases mixing of jet and ambient air near the nozzle exit.The experimental results show that the external chevron nozzle with lobed mixer has better jet noise reduction at low frequencies,and this reduction rises with the increase of chevron bend angle.The experimental results also show that the external chevron nozzle with lobed mixer has sound pressure level(SPL)increase which is not obvious at high frequencies.With chevron bend angle increasing,SPL has relatively marked increase at 60°(directivity angle measured from upstream jet axis)and little fluctuations at 90°and 150°.The external chevron nozzle with lobed mixer has overall sound pressure level(OASPL)reduction in varying degrees at 60°and 150°,but it has little OASPL increase at 90°.展开更多
To investigate the effect of the Froude number(Fr)on solid segregation in a rotating drum,a two dimensional mathematical modelling on solids behaviour in horizontally oriented rotating drums operated in rolling,cascad...To investigate the effect of the Froude number(Fr)on solid segregation in a rotating drum,a two dimensional mathematical modelling on solids behaviour in horizontally oriented rotating drums operated in rolling,cascading and cataracting modes has been carried out by using Euler-Euler multi-fluid model in Fluent6.2 environment.Small particles and big particles are used in the work as binary mixtures to investigate segregation characteristics.The effect of Froude number(rotating velocity)on the flow field is investigated.It is found that the model captures the main features of solids motion and segregation in the drum and numerical results agree well with limited experimental data for solid velocity.展开更多
This paper addresses the gas path component and sensor fault diagnosis and isolation(FDI) for the auxiliary power unit(APU). A nonlinear dynamic model and a distributed state estimator are combined for the distributed...This paper addresses the gas path component and sensor fault diagnosis and isolation(FDI) for the auxiliary power unit(APU). A nonlinear dynamic model and a distributed state estimator are combined for the distributed control system. The distributed extended Kalman filter(DEKF)is served as a state estimator,which is utilized to estimate the gas path components’ flow capacity. The DEKF includes one main filter and five sub-filter groups related to five sensors of APU and each sub-filter yields local state flow capacity. The main filter collects and fuses the local state information,and then the state estimations are feedback to the sub-filters. The packet loss model is introduced in the DEKF algorithm in the APU distributed control architecture. FDI strategy with a performance index named weight sum of squared residuals(WSSR) is designed and used to identify the APU sensor fault by removing one sub-filter each time. The very sensor fault occurs as its performance index WSSR is different from the remaining sub-filter combinations. And the estimated value of the soft redundancy replaces the fault sensor measurement to isolate the fault measurement. It is worth noting that the proposed approach serves for not only the sensor failure but also the hybrid fault issue of APU gas path components and sensors. The simulation and comparison are systematically carried out by using the APU test data,and the superiority of the proposed methodology is verified.展开更多
AlGaN epitaxial layer has been studied by means of temperature-dependent time-integrated photoluminescence(PL)and time-resolved photoluminescence(TRPL). An enhancing redshift phenomenon in TRPL spectra with increa...AlGaN epitaxial layer has been studied by means of temperature-dependent time-integrated photoluminescence(PL)and time-resolved photoluminescence(TRPL). An enhancing redshift phenomenon in TRPL spectra with increasing temperature was observed, and the localized excitons behaved like quasi two-dimensional excitons between 6 K and 90 K. We demonstrated that these behaviors are caused by a change in the carrier dynamics with increasing temperature due to the competition of carriers' localization and delocalization in the AlGaN alloy.展开更多
Hyperentanglement is a promising resource for achieving high capacity quantum communication.Here,we propose a compact scheme for the generation of path-frequency hyperentangled photon pairs via spontaneous parametric ...Hyperentanglement is a promising resource for achieving high capacity quantum communication.Here,we propose a compact scheme for the generation of path-frequency hyperentangled photon pairs via spontaneous parametric down-conversion(SPDC)processes,where six different paths and two different frequencies are covered.A two-dimensional periodicalχ^((2))nonlinear photonic crystal(NPC)is designed to satisfy type-Ⅰquasi-phase-matching conditions in the plane perpendicular to the incident pump beam,and a perfect phase match is achieved along the pump beam's direction to ensure high conversion efficiency,with theoretically estimated photon flux up to 2.068×10^(5) pairs·s^(-1)·mm^(-2).We theoretically calculate the joint-spectral amplitude(JSA)of the generated photon pair and perform Schmidt decomposition on it,where the resulting entropy S of entanglement and effective Schmidt rank K reach 3.2789 and 6.4675,respectively.Our hyperentangled photon source scheme could provide new avenues for high-dimensional quantum communication and high-speed quantum information processing.展开更多
Meteo-hydrological forecasting models are an effective way to generate high-resolution gridded rainfall data for water source research and flood forecast.The quality of rainfall data in terms of both intensity and dis...Meteo-hydrological forecasting models are an effective way to generate high-resolution gridded rainfall data for water source research and flood forecast.The quality of rainfall data in terms of both intensity and distribution is very important for establishing a reliable meteo-hydrological forecasting model.To improve the accuracy of rainfall data,the successive correction method is introduced to correct the bias of rainfall,and a meteo-hydrological forecasting model based on WRF and WRF-Hydro is applied for streamflow forecast over the Zhanghe River catchment in China.The performance of WRF rainfall is compared with the China Meteorological Administration Multi-source Precipitation Analysis System(CMPAS),and the simulated streamflow from the model is further studied.It shows that the corrected WRF rainfall is more similar to the CMPAS in both temporal and spatial distribution than the original WRF rainfall.By contrast,the statistical metrics of the corrected WRF rainfall are better.When the corrected WRF rainfall is used to drive the WRF-Hydro model,the simulated streamflow of most events is significantly improved in both hydrographs and volume than that of using the original WRF rainfall.Among the studied events,the largest improvement of the NSE is from-0.68 to 0.67.It proves that correcting the bias of WRF rainfall with the successive correction method can greatly improve the performance of streamflow forecast.In general,the WRF/WRF-Hydro meteo-hydrological forecasting model based on the successive correction method has the potential to provide better streamflow forecast in the Zhanghe River catchment.展开更多
With the considerable applications of ceramic matrix composites(CMC) in aircraft engineering, the design of CMC bolted joint gains paramount attention because of its capacity to to improve load-bearing efficiency of a...With the considerable applications of ceramic matrix composites(CMC) in aircraft engineering, the design of CMC bolted joint gains paramount attention because of its capacity to to improve load-bearing efficiency of aircraft key structure. In this work, a 3 D finite element model was established to predict tensile performance and failure modes of single-lap, single-bolt 2 D C/SiC composite, and superalloy joint, which considers the progressive damage behavior of 2 D woven C/SiC composites. On the basis of the developed progressive damage model, a parametric study was carried out to illustrate the effects of bolt preload and bolt-hole clearance on mechanical behaviors of the hybrid bolted joint. It was found that the increase in the value of bolt preload made the failure load grow first and then drop, and the optimum value of bolt preload 5.00 kN generated 56.47% rise in the initial failure load and 22.83% rise in the final failure load for the bolted joint in comparison with zero preload case. As the clearance increased from 0 to 2.00%, the initial and final failure loads respectively declined by 45.88% and 24.02% for 2.00% bolt-hole clearance relative to the neat-fit case. The loss in failure loads can be reduced to compressive stress concentration around the fastening hole-edge area, leading to the appearance of earlier damages by the introduction of increasing bolt hole clearance.展开更多
基金supported by the National Basic Research Program of China (973 Program) (61320)
文摘The method of establishing data structures plays an important role in the efficiency of parallel multilevel fast multipole algorithm(PMLFMA).Considering the main complements of multilevel fast multipole algorithm(MLFMA) memory,a new parallelization strategy and a modified data octree construction scheme are proposed to further reduce communication in order to improve parallel efficiency.For far interaction,a new scheme called dynamic memory allocation is developed.To analyze the workload balancing performance of a parallel implementation,the original concept of workload balancing factor is introduced and verified by numerical examples.Numerical results show that the above measures improve the parallel efficiency and are suitable for the analysis of electrical large-scale scattering objects.
基金supported by the National Natural Science Foundation of China (Nos.50974014 and 51174026)
文摘Nitrogen can increase the strength of steels without weakening the toughness and improve the corrosion resistance at the same time. Compared with conventional nitrogen-free die steels, a new type of nitrogen-containing die steel was developed with many superior properties, such as high strength, high hardness, and good toughness. This paper focused on the effects of heat treatment on the microstruc- tures and mechanical properties of the new type of nitrogen-containing die steel, which were investigated by the optimized deformation process and heat treatment. Isothermal spheroidal annealing and high-temperature quenching as well as high-temperature tempering were ap- plied in the experiment by means of an orthogonal method after the steel was multiply forged. The mechanical properties of nitro- gen-containing die steel forgings are better than the standard of NADCA #207-2003.
文摘The aerodynamic and aeroacoustic characteristics of a scissor tail-rotor in a forward flight are numerically calculated.A novel computational fluid dynamics(CFD)model based on Navier-Stokes(N-S)equations is presented to simulate the unsteady flowfield and the aerodynamic characteristics of a scissor tail-rotor in the forward flight.Then the Farassat Formulation 1 Aderived from the FW-H equation is coupled into the CFD model in order to compute the aeroacoustic characteristics of the scissor tail-rotor.In addition,two different scissor tail-rotor configurations,i.e.,the L-and U-configuration,are analyzed in details and compared with a conventional one.The influence of scissor angles on the aerodynamic and aeroacoustic characteristics of the scissor tail-rotor is also investigated.The simulation results demonstrate that the flowfield,aerodynamic force and aeroacoustic characteristics of a scissor tail-rotor are significantly different from the conventional one,and the aerodynamic interaction decreases with the increase of scissor angle,which leads to a reduction of amplitude variation of the tail-rotor thrust in the forward flight.The scissor angle has an important effect on the aerodynamics and aeroacoustics of the scissor tail-rotor.
基金The National Natural Science Foundation of China(No.61273138,61573197)the National Key Technology R&D Program(No.2015BAK06B04)+1 种基金the Key Fund of Tianjin(No.14JCZDJC39300)the Key Technologies R&D Program of Tianjin(No.14ZCZDSF00022)
文摘In order to better study the dynamic characteristics and the control strategy of parafoil systems,considering the effect of flap deflection as the control mechanism and regarding the parafoil and the payload as a rigid body,a six degrees-of-freedom(DOF)dynamic model of a parafoil system including three DOF for translational motion and three DOF for rotational motion,is established according to the K rchhoff motion equation.Since the flexible winged paafoil system flying at low altitude is more susceptibleto winds,the motion characteristics of the parafoil system Wth and Wthout winds are simulated and analyzed.Furthermore,the ardropm test is used to further verify the model.The comparison results show that the simulation trajectory roughly overlaps with the actual flight track.The horzontnl velocity of the simulation model is in good accordance with the airdrop test,with a deviation less than0.5m/s,while its simulated vertical velocity fuctuates slightly under the infuence of the wind,and shows a similar trend to the ardrop test.It is concludedthat the established model can well describe the characteristics of the parafoil system.
基金Supported by the National Natural Science Foundation of China(51276090)
文摘Experimental investigation is performed to investigate the cooling characteristics in the front zone of effusion configuration. Effects of blowing ratio,multi-hole arrangement mode,hole-to-hole pitch and jet orientation angle on the adiabatic film cooling effectiveness are concentrated on. The results show that the film layer displays an obvious"developing"feature in the front zone of effusion cooling scheme,for either the staggered or inline multi-hole arrangement. The varying gradient of the laterally-averaged adiabatic cooling effectiveness along the streamwise direction is greater for the staggered arrangement than that for the inline arrangement. The holes array arranged in staggered mode with small hole-tohole pitches is in favor of obtaining developed film coverage layer rapidly.
基金supported by National Natural Science Foundation of China(Nos.51276197,51207169 and 51336011)
文摘Experimental investigation of active flow control on the aerodynamic performance of a flying wing is conducted. Subsonic wind tunnel tests are performed using a model of a 35° swept flying wing with an nanosecond dielectric barrier discharge (NS-DBD) plasma actuator, which is installed symmetrically on the wing leading edge. The lift and drag coefficient, lift-to- drag ratio and pitching moment coefficient are tested by a six-component force balance for a range of angles of attack. The results indicate that a 44.5% increase in the lift coefficient, a 34.2% decrease in the drag coefficient and a 22.4% increase in the maximum lift-to-drag ratio can be achieved as compared with the baseline case. The effects of several actuation parameters are also investigated, and the results show that control efficiency demonstrates a strong dependence on actuation location and frequency. Furthermore, we highlight the use of distributed plasma actuators at the leading edge to enhance the aerodynamic performance, giving insight into the different mechanism of separation control and vortex control, which shows tremendous potential in practical flow control for a broad range of angles of attack.
基金support from the National Natural Science Foundation of China (Nos. 51104016 and 50571048)the National High Technology Research and Development Program of China (No. 2013AA031301)the fund of the State Key Laboratory of Advanced Technologies for Comprehensive Utilization of Platinum Metals (No. SKL-SPM-201204)
文摘Large-strain deformation by single electroplastic rolling (EPR) was imposed on AZ31 magnesium alloy strips. During EPR at low temperature (150-250℃), numerous twins formed in the alloy. After EPR at a high temperature (350℃), the number of twins reduced and some dynamic recrystallization (DRX) grains formed at grain boundaries and twinned regions. The synergic thermal and athermal effects generated by electropulsing, which promoted dislocation motion, induced a few small DRX grains, and ductile bandings were mainly re- sponsible for large-strain deformation during EPR. The inclination angle of the basal pole stemmed from the counterbalance of the inclina- tion direction of the basal pole between the DRX grains and deformed coarse grains.
文摘Chip-sized alkali atom vapor cells with high hermeticity are successfully fabricated through deep silicon etching and two anodic bonding processes.A self-built absorption spectrum testing system is used to test the absorption spectra of the ru-bidium atoms in alkali atom vapor cells.The influence of silicon cavity size,filling amount of rubidium atoms and temperature on the absorption spectra of rubidium atom vapor in the atom vapor cells are studied in depth through a theoretical analysis.This study provides a reference for the design and preparation of high quality chip-sized atom vapor cells.
基金Supported by the National Natural Science Foundation of China(51276090)
文摘Experimental investigation is conducted to investigate the flow and heat transfer performances of jet impingement cooling inside a semi-confined smooth channel.Effects of jet Reynolds number(varied from 10 000to 45000),orifice-to-target spacing(zn=1d—4d)and jet-to-jet pitches(xn=3d—5d,yn=3d—5d)on the convective heat transfer coefficient and discharge coefficient are revealed.For a single-row jets normal impingement,the impingement heat transfer is enhanced with the increase of impingement Reynolds number or the decrease of spanwise jet-to-jet pitch.The highest local heat transfer is achieved when zn/dis 2.For the double-row jets normal impingement,the laterally-averaged Nusselt number distributions in the vicinity of the first row jets impinging stagnation do not fit well with the single-row case.The highest local heat transfer is obtained when zn/dis 1.A smaller jetto-jet pitch generally results in a lower discharge coefficient.The discharge coefficient in the double-row case is decreased relative to the single-row case at the same impingement Reynolds number.
文摘Many factors,such as deck motion and air wave,influence the determination of the approach speed which has an important effect on landing safety. Until recently,there are no design criteria about approach speed of carrier aircraft in the current standards and available publications. Therefore,the requirements of stall margin, longitudinal acceleration ability,altitude correction and field-of-view on approach speed were researched. Based on the flight dynamics model,the flight simulations were conducted to study the effect of the response time of engine,wave off requirements,elevator efficiency and deflection rate on the approach speed. The results presented that the approach longitudinal acceleration and altitude correction ability had crucial influence on the approach speed envelope of the aircraft. The limitations of the control requirements,field- of- view requirements and gear were also given through the simulation and analysis. Based on the above results,the approach speed envelope were determined.
基金Project(61273138)supported by the National Natural Science Foundation of ChinaProject(14JCZDJC39300)supported by the Key Fund of Tianjin,China
文摘Homing trajectory planning is a core task of autonomous homing of parafoil system.This work analyzes and establishes a simplified kinematic mathematical model,and regards the homing trajectory planning problem as a kind of multi-objective optimization problem.Being different from traditional ways of transforming the multi-objective optimization into a single objective optimization by weighting factors,this work applies an improved non-dominated sorting genetic algorithm Ⅱ(NSGA Ⅱ) to solve it directly by means of optimizing multi-objective functions simultaneously.In the improved NSGA Ⅱ,the chaos initialization and a crowding distance based population trimming method were introduced to overcome the prematurity of population,the penalty function was used in handling constraints,and the optimal solution was selected according to the method of fuzzy set theory.Simulation results of three different schemes designed according to various practical engineering requirements show that the improved NSGA Ⅱ can effectively obtain the Pareto optimal solution set under different weighting with outstanding convergence and stability,and provide a new train of thoughts to design homing trajectory of parafoil system.
基金Supported by the National Natural Science Foundation of China(51075203,51105197)the Research Funding of Nanjing University of Aeronautics and Astronautics(NS2010023)
文摘In view of the complexity of landing on the deck of aircraft carrier,a systematic model,composed of sixdegree-of-freedom mathematic model of carrier-based aircraft,four-degree-of-freedom model of landing gears and six-degree-of-freedom mathematic model of carrier,is established in the Matlab-Simulink environment,with damping function of landing gears and dynamic characteristics of tires being considered.The model,where the carrier movement is introduced,is applicable for any abnormal landing condition.Moreover,the equations of motion and relevant parameter are also derived.The dynamic response of aircraft is calculated via the variable step-size RungeKuta algorithm.The effect of attitude angles of aircraft and carrier movement during the process of landing is illustrated in details.The analytical results can provide some reference for carrier-based aircraft design and maintenance.
基金supported by the Aeronautical Science Foundation of China under Grant No.20142080011
文摘The studies on clutter modeling and suppression of airborne radar with a parabolic conformal array are uncommon due to the complexity of this type of antenna array configuration.The correct understanding of clutter characteristics for airborne radar with a parabolic conformal antenna array is the prerequisite and foundation of optimal suppression of this type of clutter.This paper establishes the model of clutter echo of airborne parabolic conformal phased array radar and analyzes the structure characteristics and the distribution features of this type of clutter.The simulation results show that this type of clutter has the following characteristics:1) The main lobe on the azimuth is seriously broadened,2) the power spectrum presents strong heterogeneity,and 3) the freedom degrees are high.Based on the existing related clutter suppression methods,we verified the correctness of the constructed clutter model.This work has an important guidance to further study on clutter suppression methods in airborne parabolic conformal array radar.
文摘A jet noise reduction technique by using the external chevron nozzle with lobed mixer in the double-mixing exhaust system is investigated under cold conditions.The computations of jet field and the experiments of noise field are conducted with scaled model of high-bypass-ratio turbofan engine mixing exhaust system composed of external chevron nozzle with lobed mixer.The computational results indicate that comparing with the baseline nozzle with lobed mixer,the external chevron nozzle with lobed mixer increases mixing of jet and ambient air near the nozzle exit.The experimental results show that the external chevron nozzle with lobed mixer has better jet noise reduction at low frequencies,and this reduction rises with the increase of chevron bend angle.The experimental results also show that the external chevron nozzle with lobed mixer has sound pressure level(SPL)increase which is not obvious at high frequencies.With chevron bend angle increasing,SPL has relatively marked increase at 60°(directivity angle measured from upstream jet axis)and little fluctuations at 90°and 150°.The external chevron nozzle with lobed mixer has overall sound pressure level(OASPL)reduction in varying degrees at 60°and 150°,but it has little OASPL increase at 90°.
基金Sponsored by the National Natural Science Foundation of China(Grant No.20606006)China Postdoctoral Science Foundation Funded Projectthe Scientific Research Foundation for the Returned Overseas Chinese Sochlars,State Education Ministry
文摘To investigate the effect of the Froude number(Fr)on solid segregation in a rotating drum,a two dimensional mathematical modelling on solids behaviour in horizontally oriented rotating drums operated in rolling,cascading and cataracting modes has been carried out by using Euler-Euler multi-fluid model in Fluent6.2 environment.Small particles and big particles are used in the work as binary mixtures to investigate segregation characteristics.The effect of Froude number(rotating velocity)on the flow field is investigated.It is found that the model captures the main features of solids motion and segregation in the drum and numerical results agree well with limited experimental data for solid velocity.
基金supported by the National Natural Science Foundation of China(No.91960110)the National Science and Technology Major Project(No. 2017-I0006-0007)the Fundamental Research Funds for the Central Universities(NP2022418)。
文摘This paper addresses the gas path component and sensor fault diagnosis and isolation(FDI) for the auxiliary power unit(APU). A nonlinear dynamic model and a distributed state estimator are combined for the distributed control system. The distributed extended Kalman filter(DEKF)is served as a state estimator,which is utilized to estimate the gas path components’ flow capacity. The DEKF includes one main filter and five sub-filter groups related to five sensors of APU and each sub-filter yields local state flow capacity. The main filter collects and fuses the local state information,and then the state estimations are feedback to the sub-filters. The packet loss model is introduced in the DEKF algorithm in the APU distributed control architecture. FDI strategy with a performance index named weight sum of squared residuals(WSSR) is designed and used to identify the APU sensor fault by removing one sub-filter each time. The very sensor fault occurs as its performance index WSSR is different from the remaining sub-filter combinations. And the estimated value of the soft redundancy replaces the fault sensor measurement to isolate the fault measurement. It is worth noting that the proposed approach serves for not only the sensor failure but also the hybrid fault issue of APU gas path components and sensors. The simulation and comparison are systematically carried out by using the APU test data,and the superiority of the proposed methodology is verified.
基金Project supported by the National Key Research and Development Program of China(Grant No.2016YFB0400101)Beijing Science and Technology Project,China(Grant No.Z151100003315024)
文摘AlGaN epitaxial layer has been studied by means of temperature-dependent time-integrated photoluminescence(PL)and time-resolved photoluminescence(TRPL). An enhancing redshift phenomenon in TRPL spectra with increasing temperature was observed, and the localized excitons behaved like quasi two-dimensional excitons between 6 K and 90 K. We demonstrated that these behaviors are caused by a change in the carrier dynamics with increasing temperature due to the competition of carriers' localization and delocalization in the AlGaN alloy.
基金Project supported by the Key-Area Research and Development Program of Guangdong Province of China (Grant No.2018B030325002)the National Natural Science Foundation of China (Grant No.62075129)+2 种基金the Open Project Program of SJTU-Pinghu Institute of Intelligent Optoelectronics (Grant No.2022SPIOE204)the Science and Technology on Metrology and Calibration Laboratory (Grant No.JLJK2022001B002)the Sichuan Provincial Key Laboratory of Microwave Photonics (Grant No.2023-04)。
文摘Hyperentanglement is a promising resource for achieving high capacity quantum communication.Here,we propose a compact scheme for the generation of path-frequency hyperentangled photon pairs via spontaneous parametric down-conversion(SPDC)processes,where six different paths and two different frequencies are covered.A two-dimensional periodicalχ^((2))nonlinear photonic crystal(NPC)is designed to satisfy type-Ⅰquasi-phase-matching conditions in the plane perpendicular to the incident pump beam,and a perfect phase match is achieved along the pump beam's direction to ensure high conversion efficiency,with theoretically estimated photon flux up to 2.068×10^(5) pairs·s^(-1)·mm^(-2).We theoretically calculate the joint-spectral amplitude(JSA)of the generated photon pair and perform Schmidt decomposition on it,where the resulting entropy S of entanglement and effective Schmidt rank K reach 3.2789 and 6.4675,respectively.Our hyperentangled photon source scheme could provide new avenues for high-dimensional quantum communication and high-speed quantum information processing.
基金Program of Key Laboratory of Meteorological Disaster(KLME202209)National Key R&D Program of China(2017YFC1502102)。
文摘Meteo-hydrological forecasting models are an effective way to generate high-resolution gridded rainfall data for water source research and flood forecast.The quality of rainfall data in terms of both intensity and distribution is very important for establishing a reliable meteo-hydrological forecasting model.To improve the accuracy of rainfall data,the successive correction method is introduced to correct the bias of rainfall,and a meteo-hydrological forecasting model based on WRF and WRF-Hydro is applied for streamflow forecast over the Zhanghe River catchment in China.The performance of WRF rainfall is compared with the China Meteorological Administration Multi-source Precipitation Analysis System(CMPAS),and the simulated streamflow from the model is further studied.It shows that the corrected WRF rainfall is more similar to the CMPAS in both temporal and spatial distribution than the original WRF rainfall.By contrast,the statistical metrics of the corrected WRF rainfall are better.When the corrected WRF rainfall is used to drive the WRF-Hydro model,the simulated streamflow of most events is significantly improved in both hydrographs and volume than that of using the original WRF rainfall.Among the studied events,the largest improvement of the NSE is from-0.68 to 0.67.It proves that correcting the bias of WRF rainfall with the successive correction method can greatly improve the performance of streamflow forecast.In general,the WRF/WRF-Hydro meteo-hydrological forecasting model based on the successive correction method has the potential to provide better streamflow forecast in the Zhanghe River catchment.
基金Sponsored by the Pre-Research Foundation of Shenyang Aircraft Design and Research Institute,the Aviation Industry Corporation of China(Grant No.JH20128255)the National Defence Basic Research Program(Grant No.JZ20180032)the Pre-Research Foundation of Equipment Development Department of People’s Republic of China Central Military Commission(Grant No.ZJJSN20200001)。
文摘With the considerable applications of ceramic matrix composites(CMC) in aircraft engineering, the design of CMC bolted joint gains paramount attention because of its capacity to to improve load-bearing efficiency of aircraft key structure. In this work, a 3 D finite element model was established to predict tensile performance and failure modes of single-lap, single-bolt 2 D C/SiC composite, and superalloy joint, which considers the progressive damage behavior of 2 D woven C/SiC composites. On the basis of the developed progressive damage model, a parametric study was carried out to illustrate the effects of bolt preload and bolt-hole clearance on mechanical behaviors of the hybrid bolted joint. It was found that the increase in the value of bolt preload made the failure load grow first and then drop, and the optimum value of bolt preload 5.00 kN generated 56.47% rise in the initial failure load and 22.83% rise in the final failure load for the bolted joint in comparison with zero preload case. As the clearance increased from 0 to 2.00%, the initial and final failure loads respectively declined by 45.88% and 24.02% for 2.00% bolt-hole clearance relative to the neat-fit case. The loss in failure loads can be reduced to compressive stress concentration around the fastening hole-edge area, leading to the appearance of earlier damages by the introduction of increasing bolt hole clearance.