期刊文献+
共找到139篇文章
< 1 2 7 >
每页显示 20 50 100
Molecular Structure Tailoring of Organic Spacers for High‑Performance Ruddlesden–Popper Perovskite Solar Cells
1
作者 Pengyun Liu Xuejin Li +6 位作者 Tonghui Cai Wei Xing Naitao Yang Hamidreza Arandiyan Zongping Shao Shaobin Wang Shaomin Liu 《Nano-Micro Letters》 SCIE EI CAS 2025年第2期314-357,共44页
Layer-structured Ruddlesden–Popper(RP)perovskites(RPPs)with decent stability have captured the imagination of the photovoltaic research community and bring hope for boosting the development of perovskite solar cell(P... Layer-structured Ruddlesden–Popper(RP)perovskites(RPPs)with decent stability have captured the imagination of the photovoltaic research community and bring hope for boosting the development of perovskite solar cell(PSC)technology.However,two-dimensional(2D)or quasi-2D RP PSCs are encountered with some challenges of the large exciton binding energy,blocked charge transport and poor film quality,which restrict their photovoltaic performance.Fortunately,these issues can be readily resolved by rationally designing spacer cations of RPPs.This review mainly focuses on how to design the molecular structures of organic spacers and aims to endow RPPs with outstanding photovoltaic applications.We firstly elucidated the important roles of organic spacers in impacting crystallization kinetics,charge transporting ability and stability of RPPs.Then we brought three aspects to attention for designing organic spacers.Finally,we presented the specific molecular structure design strategies for organic spacers of RPPs aiming to improve photovoltaic performance of RP PSCs.These proposed strategies in this review will provide new avenues to develop novel organic spacers for RPPs and advance the development of RPP photovoltaic technology for future applications. 展开更多
关键词 Ruddlesden-Popper perovskites Low-dimensional perovskite solar cells Organic spacers Molecular structure Design strategies
在线阅读 下载PDF
Recent progress in laser texturing of battery materials: a review of tuning electrochemical performances, related material development, and prospects for large-scale manufacturing 被引量:3
2
作者 Wilhelm Pfleging 《International Journal of Extreme Manufacturing》 EI 2021年第1期25-44,共20页
Traditional electrode manufacturing for lithium-ion batteries is well established,reliable,and has already reached high processing speeds and improvements in production costs.For modern electric vehicles,however,the n... Traditional electrode manufacturing for lithium-ion batteries is well established,reliable,and has already reached high processing speeds and improvements in production costs.For modern electric vehicles,however,the need for batteries with high gravimetric and volumetric energy densities at cell level is increasing;and new production concepts are required for this purpose.During the last decade,laser processing of battery materials emerged as a promising processing tool for either improving manufacturing flexibility and product reliability or enhancing battery performances.Laser cutting and welding already reached a high level of maturity and it is obvious that in the near future they will become frequently implemented in battery production lines.This review focuses on laser texturing of electrode materials due to its high potential for significantly enhancing battery performances beyond state-of-the-art.Technical approaches and processing strategies for new electrode architectures and concepts will be presented and discussed with regard to energy and power density requirements.The boost of electrochemical performances due to laser texturing of energy storage materials is currently proven at the laboratory scale.However,promising developments in high-power,ultrafast laser technology may push laser structuring of batteries to the next technical readiness level soon.For demonstration in pilot lines adapted to future cell production,process upscaling regarding footprint area and processing speed are the main issues as well as the economic aspects with regards to CapEx amortization and the benefits resulting from the next generation battery.This review begins with an introduction of the three-dimensional battery and thick film concept,made possible by laser texturing.Laser processing of electrode components,namely current collectors,anodes,and cathodes will be presented.Different types of electrode architectures,such as holes,grids,and lines,were generated;their impact on battery performances are illustrated.The usage of high-energy materials,which are on the threshold of commercialization,is highlighted.Battery performance increase is triggered by controlling lithium-ion diffusion kinetics in liquid electrolyte filled porous electrodes.This review concludes with a discussion of various laser parameter tasks for process upscaling in a new type of extreme manufacturing. 展开更多
关键词 laser structuring lithium-ion battery electrode architecture 3D battery cell performance upscaling
在线阅读 下载PDF
A review on current anode materials for rechargeable Mg batteries 被引量:3
3
作者 Dajian Li Yuan Yuan +2 位作者 Jiawei Liu Maximilian Fichtner Fusheng Pan 《Journal of Magnesium and Alloys》 SCIE EI CAS 2020年第4期963-979,共17页
There is an increasing demand for rechargeable batteries in high-performance energy storage systems.The current dominating Li-ion batteries are limited by price,resource availability,as well as their theoretical capac... There is an increasing demand for rechargeable batteries in high-performance energy storage systems.The current dominating Li-ion batteries are limited by price,resource availability,as well as their theoretical capacities.So that the community has started to explore alternative battery chemistries.As a promising multivalent battery type,rechargeable magnesium batteries(RMBs)have attracted increasing attention because of high safety,high volumetric energy density,and low cost thanks to abundant resource of Mg.However,the development of high-performance anodes is still hampered by formation of passivating layers on the Mg surface.Additionally,dendrites can also grow under certain conditions with pure Mg anodes,which requires further studies for reliable operation window and substitutes.Therefore,this review specifically aims to provide an overview on the often overlooked yet very important anode materials of RMBs,with the hope to inspire more attention and research efforts for the achievement of over-all better performance of future RMBs.c 2020 Published by Elsevier B.V.on behalf of Chongqing University. 展开更多
关键词 Rechargeable Mg batteries Anode materials
在线阅读 下载PDF
In operando study of orthorhombic V_(2)O_(5) as positive electrode materials for K-ion batteries
4
作者 Qiang Fu Angelina Sarapulova +7 位作者 Lihua Zhu Georgian Melinte Alexander Missyul Edmund Welter Xianlin Luo Michael Knapp Helmut Ehrenberg Sonia Dsoke 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第11期627-636,I0015,共11页
Herein, the electrochemical performance and the mechanism of potassium insertion/deinsertion in orthorhombic V_(2)O_(5) nanoparticles are studied. The V2O5 electrode displays an initial potassiation/depotassiation cap... Herein, the electrochemical performance and the mechanism of potassium insertion/deinsertion in orthorhombic V_(2)O_(5) nanoparticles are studied. The V2O5 electrode displays an initial potassiation/depotassiation capacity of 200 mAh g^(−1)/217 mAh g^(−1) in the voltage range 1.5–4.0 V vs. K^(+)/K at C/12 rate, suggesting fast kinetics for potassium insertion/deinsertion. However, the capacity quickly fades during cycling, reaching 54 mAh g^(−1) at the 31st cycle. Afterwards, the capacity slowly increases up to 80 mAh g^(−1) at the 200th cycle. The storage mechanism upon K ions insertion into V2O5 is elucidated. In operando synchrotron diffraction reveals that V_(2)O_(5) first undergoes a solid solution to form K_(0.6)V_(2)O_(5) phase and then, upon further K ions insertion, it reveals coexistence of a solid solution and a two-phase reaction. During K ions deinsertion, the coexistence of solid solution and the two-phase reaction is identified together with an irreversible process. In operando XAS confirms the reduction/oxidation of vanadium during the K insertion/extraction with some irreversible contributions. This is consistent with the results obtained from synchrotron diffraction, ex situ Raman, X-ray photoelectron spectroscopy (XPS), and transmission electron microscopy (TEM). Moreover, ex situ XPS confirms the “cathode electrolyte interphase” (CEI) formation on the electrode and the decomposition of CEI film during cycling. 展开更多
关键词 Orthorhombic V_(2)O_(5) In operando synchrotron diffraction In operando X-ray absorption spectroscopy K-ion batteries
在线阅读 下载PDF
Theoretical Study of Dibenzothiophene Based Electron Transport Materials
5
作者 Asanga B. Padmaperuma 《Advances in Materials Physics and Chemistry》 2012年第4期219-225,共7页
Density functional methods have been used for the calculation of electronic structures, electronic transitions, vertical electron affinities and intermolecular reorganization energies for tri-aryl substituted dibenzot... Density functional methods have been used for the calculation of electronic structures, electronic transitions, vertical electron affinities and intermolecular reorganization energies for tri-aryl substituted dibenzothiophenes. These model compounds were then compared to the predicted values for dibenzo[b,d]thiophen-2-yltriphenylsilane (DBTSI 2) and to dibenzo[b,d]thiophene-2,8-diylbis(diphenylphosphine oxide) (PO15), known electron transport molecules. The results indicate that these model compounds can be used in a blue OLED system. 展开更多
关键词 OLED ELECTRON Transport MOLECULES PO15 DIBENZOTHIOPHENE DFT TD-DFT
在线阅读 下载PDF
Laser-Treated Surfaces for VADs:From Inert Titanium to Potential Biofunctional Materials
6
作者 Eduardo Bock Wilhelm Pfleging +6 位作者 Dayane Tada Erenilda Macedo Nathalia Premazzi Rosa Sá Juliana Solheid Heino Besser Aron Andrade 《Biomedical Engineering Frontiers》 2022年第1期399-406,共8页
Objective.Laser-treated surfaces for ventricular assist devices.Impact Statement.This work has scientific impact since it proposes a biofunctional surface created with laser processing in bioinert titanium.Introductio... Objective.Laser-treated surfaces for ventricular assist devices.Impact Statement.This work has scientific impact since it proposes a biofunctional surface created with laser processing in bioinert titanium.Introduction.Cardiovascular diseases are the world’s leading cause of death.An especially debilitating heart disease is congestive heart failure.Among the possible therapies,heart transplantation and mechanical circulatory assistance are the main treatments for its severe form at a more advanced stage.The development of biomaterials for ventricular assist devices is still being carried out.Although polished titanium is currently employed in several devices,its performance could be improved by enhancing the bioactivity of its surface.Methods.Aiming to improve the titanium without using coatings that can be detached,this work presents the formation of laser-induced periodic surface structures with a topology suitable for cell adhesion and neointimal tissue formation.The surface was modified by femtosecond laser ablation and cell adhesion was evaluated in vitro by using fibroblast cells.Results.The results indicate the formation of the desired topology,since the cells showed the appropriate adhesion compared to the control group.Scanning electron microscopy showed several positive characteristics in the cells shape and their surface distribution.The in vitro results obtained with different topologies point that the proposed LIPSS would provide enhanced cell adhesion and proliferation.Conclusion.The laser processes studied can create new interactions in biomaterials already known and improve the performance of biomaterials for use in ventricular assist devices. 展开更多
关键词 TITANIUM BIOMATERIALS TITANIUM
在线阅读 下载PDF
Lithiophilic CoF_(2)@C hollow spheres towards spatial lithium deposition for stable lithium metal batteries
7
作者 Jianxing Wang Shuhao Yao +9 位作者 Runming Tao Xiaolang Liu Jiazhi Geng Chang Hong Huiying Li Guiyun Yu Haifeng Li Xiao-Guang Sun Jianlin Li Jiyuan Liang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第10期55-67,I0002,共14页
Lithium metal(LM)is a promising anode for next-generation batteries due to its high theoretical capacity and low electrode potential.Nonetheless,side reactions,volume change,and unwanted lithium dendrite growth seriou... Lithium metal(LM)is a promising anode for next-generation batteries due to its high theoretical capacity and low electrode potential.Nonetheless,side reactions,volume change,and unwanted lithium dendrite growth seriously limit the practical application of LM.Herein,with the aid of a hard template approach,a novel lithiophilic CoF_(2)-carbon hollow sphere(CoF_(2)@C-HS)composite material is successfully prepared via a facile in-situ fluorination and etching strategy.The lithiophilic CoF_(2) acts as nucleation sites to reduce nucleation overpotential as well as induces the spatial Li deposition and the formation of LiFrich solid electrolyte interphase(SEI),and the hollow carbon matrix can enhance the electrical conductivity and offer free space for LM deposition.Theoretical simulations reveal that the synergistic effect of lithiophilic CoF_(2) and hollow carbon matrix homogenizes the electric field distribution and Li~+flux.Benefiting from these advantages,the CoF_(2)@C-HS-modified copper substrate electrode delivers an enhanced Coulombic efficiency(CE)of 93.7%for 280 cycles at 1 mA cm^(-2)and 1 mA h cm^(-2).The symmetrical cell using CoF_(2)@C-HS can stably cycle more than 1800 h with a low voltage hysteresis of 11 mV at a current density of 0.5 MA cm^(-2)and an areal capacity of 0.5 mA h cm^(-2).Moreover,the Li@CoF_(2)@C-HS composite anode enables more than 300 stable cycles at 1 C with a capacity retention of 95%in LiFePO_(4)-based full cell and 110 stable cycles at 1 C in LiNi_(0.8)Co_(0.1)Mn_(0.1)O_(2)(NCM811)-based highvoltage full cell.This work might shed a new light on designing lithiophilic hosts to spatially confine LM deposition,realizing dendrite-free LM anodes and the practical applications of LM batteries. 展开更多
关键词 Lithium metal anode Spatial deposition Stability NANOCOMPOSITE Lithiophilic CoF_(2)
在线阅读 下载PDF
Enhanced mechanical and electrical properties of multi-walled carbon nanotubes reinforced Cu/Ti_(3)SiC_(2)/C nanocomposites via high-pressure torsion
8
作者 Zi-xuan WU Pei-fan ZHANG +4 位作者 Xiao-song JIANG Hong-liang SUN Yan-jun LI Pål CHRISTIAN Liu YANG 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2024年第12期4005-4019,共15页
In order to achieve combined mechanical and electrical properties,multi-walled carbon nanotubes(MWCNTs)reinforced Cu/Ti_(3)SiC_(2)/C nanocomposites were further processed by high-pressure torsion(HPT).The maximum micr... In order to achieve combined mechanical and electrical properties,multi-walled carbon nanotubes(MWCNTs)reinforced Cu/Ti_(3)SiC_(2)/C nanocomposites were further processed by high-pressure torsion(HPT).The maximum microhardness values of central and edge from the composites with 1 wt.%MWCNTs reached HV 130.0 and HV 363.5,which were 43.9%and 39.5%higher than those of the original samples,respectively.With the same content of MWCNTs,its electrical conductivity achieved 3.42×10^(7) S/m,which was increased by 78.1%compared with that of original samples.The synergistic improvement of mechanical and electrical properties is attributed to the obtained microstructure with increased homogenization and refinement,as well as improved interfacial bonding and reduced porosity.The strengthening mechanisms include dispersion and refinement strengthening for mechanical properties,as well as reduced electron scattering for electrical properties. 展开更多
关键词 Cu/Ti_(3)SiC_(2)/C nanocomposites multi-walled carbon nanotubes high-pressure torsion microstructure MICROHARDNESS electrical conductivity
在线阅读 下载PDF
Application of novel constrained friction processing method to produce fine grained biomedical Mg-Zn-Ca alloy
9
作者 Ting Chen Banglong Fu +7 位作者 Junjun Shen Uceu F.H.R.Suhuddin Björn Wiese Yuanding Huang Min Wang Jorge F.dos Santos Jean Pierre Bergmann Benjamin Klusemann 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第2期516-529,共14页
In order to obtain Mg alloys with fine microstructures and high mechanical performances,a novel friction-based processing method,name as“constrained friction processing(CFP)”,was investigated.Via CFP,defect-free Mg-... In order to obtain Mg alloys with fine microstructures and high mechanical performances,a novel friction-based processing method,name as“constrained friction processing(CFP)”,was investigated.Via CFP,defect-free Mg-Zn-Ca rods with greatly refined grains and high mechanical properties were produced.Compared to the previous as-cast microstructure,the grain size was reduced from more than 1 mm to around 4μm within 3 s by a single process cycle.The compressive yield strength was increased by 350%while the ultimate compressive strength by 53%.According to the established material flow behaviors by“tracer material”,the plastic material was transported by shear deformation.From the base material to the rod,the material experienced three stages,i.e.deformation by the tool,upward flow with additional tilt,followed by upward transportation.The microstructural evolution was revealed by“stop-action”technique.The microstructural development at regions adjacent to the rod is mainly controlled by twinning,dynamic recrystallization(DRX)as well as particle stimulated nucleation,while that within the rod is related to DRX combined with grain growth. 展开更多
关键词 Constrained friction processing Magnesium alloys Microstructure Mechanical properties Grain refinement Plastic deformation
在线阅读 下载PDF
Zr/(Sc+Zr)微合金化对Al-Mg合金在热压缩变形中动态再结晶、位错密度和热加工性能的影响 被引量:4
10
作者 邓英 朱鑫文 +4 位作者 赖毅 郭一帆 傅乐 徐国富 黄继武 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2023年第3期668-682,共15页
采用热压缩试验和电子显微分析方法研究Al-6.00Mg、Al-6.00Mg-0.10Zr和Al-6.00Mg-0.25Sc-0.10Zr (质量分数,%)合金的变形行为和显微组织特征。结果表明,在最大加工效率条件(673 K,0.01 s^(-1))下变形时,Al-6.00Mg、Al-6.00Mg-0.10Zr和Al... 采用热压缩试验和电子显微分析方法研究Al-6.00Mg、Al-6.00Mg-0.10Zr和Al-6.00Mg-0.25Sc-0.10Zr (质量分数,%)合金的变形行为和显微组织特征。结果表明,在最大加工效率条件(673 K,0.01 s^(-1))下变形时,Al-6.00Mg、Al-6.00Mg-0.10Zr和Al-6.00Mg-0.25Sc-0.10Zr合金的位错密度分别为2.68×10^(16)、8.93×10^(16)和6.1×10^(17)m^(-2);其动态再结晶分数分别为19.8%、15.0%和12.7%。中心点平均取向差(KAM)分析表明,通过添加Zr或Sc+Zr,Al-Mg合金晶界附近的位错密度增加。此外,基于动态材料模型(DMM)建立的热加工图表明,添加Zr或Sc+Zr能减小Al-Mg合金的低温不稳定域的范围,但会增大高温和高应变不稳定域的范围。实验结果进一步证明,在变形条件下,仅Al-6.00Mg-0.25Sc-0.10Zr合金在773 K和1 s^(-1)时开裂。 展开更多
关键词 AL-MG合金 SC ZR 热变形 位错密度 动态再结晶
在线阅读 下载PDF
Al_(3)(Sc_(1-x)Zr_(x))纳米粒子对搅拌摩擦焊Al-Mg-Mn合金显微组织和力学性能的影响 被引量:1
11
作者 朱鑫文 邓英 +5 位作者 赖毅 郭一帆 杨子昂 傅乐 徐国富 黄继武 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2023年第1期25-35,共11页
通过拉伸测试和显微分析方法研究搅拌摩擦焊Al-5.50Mg-0.45Mn和Al-5.50Mg-0.45Mn-0.25Sc-0.10Zr(质量分数,%)合金的显微组织和力学性能。结果表明,Al-Mg-Mn接头的屈服强度、抗拉强度和伸长率分别为(191±3)MPa、(315±1)MPa和(4... 通过拉伸测试和显微分析方法研究搅拌摩擦焊Al-5.50Mg-0.45Mn和Al-5.50Mg-0.45Mn-0.25Sc-0.10Zr(质量分数,%)合金的显微组织和力学性能。结果表明,Al-Mg-Mn接头的屈服强度、抗拉强度和伸长率分别为(191±3)MPa、(315±1)MPa和(4.8±1.9)%,Al-Mg-Mn-Sc-Zr接头的分别为(288±5)MPa、(391±2)MPa和(3.4±1.0)%。相比Al-Mg-Mn接头,Al-Mg-Mn-Sc-Zr接头晶粒更细小、平均取向差角更低、小角度晶界百分数更高。两种接头的断裂位置均位于焊核区(WNZ),在该“最薄弱微区”内,Al_(3)(Sc_(1-x)Zr_(x))纳米粒子的平均尺寸为(9.92±2.69)nm,可提供有效奥罗万和晶界强化,使Al-Mg-Mn接头的屈服强度提高97 MPa。 展开更多
关键词 铝合金 强度 搅拌摩擦焊 纳米粒子 显微组织
在线阅读 下载PDF
Characterization of plasma electrolytic oxide formed on AZ91 Mg alloy in KMnO_4 electrolyte 被引量:2
12
作者 Duck-Young HWANG Ki-Ryong SHIN +3 位作者 Bongyoung YOO Dong-Heon LEE Deok-Yong PARK Dong-Hyuk SHIN 《中国有色金属学会会刊:英文版》 EI CSCD 2009年第4期829-834,共6页
The aim of this work is to investigate microstructure,corrosion resistance characteristics and nanohardness of the oxide layer on AZ91 Mg alloy by applying different voltage with KMnO4 contained solution.There are lot... The aim of this work is to investigate microstructure,corrosion resistance characteristics and nanohardness of the oxide layer on AZ91 Mg alloy by applying different voltage with KMnO4 contained solution.There are lots of closed pores that are filled with another oxide compound compared with the typical surface morphology with pore coated until 350 V of coating voltage.The thickness of oxide layer increases with increasing coating voltage.The oxide layer formed on AZ91 Mg alloy in electrolyte with potassium permanganate consists of MgO and Mn2O3.Corrosion potential of the oxide layer on AZ91 Mg alloy obtained at different plasma electrolytic oxidation(PEO) reaction stages increases with increasing coating voltage.The corrosion resistance of AZ91 Mg alloy depends on the existence of the manganese oxide in the oxide layer.The inner barrier layer composed of the MgO and Mn2O3 may serve as diffusion barrier to enhance the corrosion resistance and may partially explain the excellent anti-corrosion performance in corrosion test.Nanohardness values increase with increasing coating voltage.The increase in the nanohardness may be due to the effect of manganese oxide in the oxide layer on AZ91 Mg alloy coated from electrolyte containing KMnO4. 展开更多
关键词 AZ91镁合金 等离子体电解 高锰酸钾 氧化特性 电解液 氧化层厚度 纳米硬度 耐腐蚀性
在线阅读 下载PDF
Effects of casting speed on microstructure and segregation of electromagnetically stirred Aluminum alloy in continuous casting process 被引量:2
13
作者 LEE Dock-Young KANG Suk-Won +1 位作者 CHO Duck-Ho KIM Ki-Bae 《Rare Metals》 SCIE EI CAS CSCD 2006年第z2期118-123,共6页
Recently, a semi-solid metal processing has been acknowledged as a cost-effective technique to be able to manufacture high quality product for the transportation industry. In this study a hypo-eutectic Al alloy was fa... Recently, a semi-solid metal processing has been acknowledged as a cost-effective technique to be able to manufacture high quality product for the transportation industry. In this study a hypo-eutectic Al alloy was fabricated by means of an electromagnetic stirrer in continuous casting process and the microstructural change during solidification due to a fluid flow by electromagnetic stirring was examined. Due to the forced fluid flow during solidification a dendritic phase of primary α phase of Al alloy was turned into a globular phase, which can make the Al alloy get a thixotropic behavior in the semi-solid region. In order to establish the quantitative relationship between microstructure and the process parameters, the morphology shape, a silicon distribution and a size of primary α phase were observed according to casting speed in continuous casting machine. The primary α phase was turned into the degenerate dendrites approaching a spherical configuration with increasing casting speed. The fine-grained and equiaxed microstructure appeared at higher casting speed. A segregation behavior of Si element was declined with increasing casting speed and a very uniform distribution of Si element was observed on the billet at a casting speed of 600 mm·min-1. A thickness of the solidifying shell of the billet was shortened with increasing the casting speed. 展开更多
关键词 semi-solid slurry electromagnetic stirring casting speed SEGREGATION Al alloy
在线阅读 下载PDF
Design optimization of a slotless PM brushless motor with helical edge wound laminations for rim driven thrusters 被引量:4
14
作者 Sharkh S M Lai S H 《High Technology Letters》 EI CAS 2010年第1期70-79,共10页
This paper discusses the analysis and design of a very thin slotless permanent magnet (PM) brushless motor whose stator laminations are manufactured from a single strip of steel that is edge wound into a spiral (li... This paper discusses the analysis and design of a very thin slotless permanent magnet (PM) brushless motor whose stator laminations are manufactured from a single strip of steel that is edge wound into a spiral (like a "Slinky") and then fitted over the windings that are preformed on the outside surface of a non-conducting former. Analytical and finite element analysis (FEA) are used to determine the con- strained optimum dimensions of a motor used to drive a rim driven thruster in which the motor rotor is fit- ted onto the rim of the propeller and the stator is encapsulated in the thin Kort nozzle of the thruster. The paper describes the fabrication of a demonstrator motor and presents experimental results to validate the theoretical calculations. Experimental motor performance results are also reported and compared with those of a slotted motor that fits within the same active radial dimensions as the slotless motor. The slotless motor, which has longer active length and endwindings, and thicker magnets than the slotted motor, was found to be less efficient and more expensive (prototype cost) than the slotted machine. 展开更多
关键词 slotless brushless permanent magnet (PM) motor edge-wound laminations rim driven thruster
在线阅读 下载PDF
提高CMP抛光垫修整性能的方法 被引量:1
15
作者 S.Dhandapani C.C.Garretson +2 位作者 S.S.Chang J.G.Fung S.Tsai 《功能材料与器件学报》 CAS CSCD 北大核心 2013年第3期131-135,共5页
抛光垫修整臂的新设计能在抛光垫和修整盘对使用寿命期间,采用闭环控制(CLC)提高修整性能。测得的抛光垫修整器的力矩用于在现场实时监控修整和抛光过程。通过调节修整器的下压力以补偿工艺的偏移(例如,随修整盘老化而引起的金刚石研磨... 抛光垫修整臂的新设计能在抛光垫和修整盘对使用寿命期间,采用闭环控制(CLC)提高修整性能。测得的抛光垫修整器的力矩用于在现场实时监控修整和抛光过程。通过调节修整器的下压力以补偿工艺的偏移(例如,随修整盘老化而引起的金刚石研磨性的损失),CLC系统在整个抛光垫使用寿命期间维持工艺性能。 展开更多
关键词 抛光垫 下压力 CLC 使用寿命 去除速率 金刚石 宝石 CMP
原文传递
Tailored PEDOT:PSS hole transport layer for higher performance in perovskite solar cells: Enhancement of electrical and optical properties with improved morphology 被引量:5
16
作者 Khan Mamun Reza Ashim Gurung +12 位作者 Behzad Bahrami Sally Mabrouk Hytham Elbohy Rajesh Pathak Ke Chen Ashraful Haider Chowdhury Md Tawabur Rahman Steven Letourneau Hao-Cheng Yang Gopalan Saianand Jeffrey WElam Seth BDarling Qiquan Qiao 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2020年第5期41-50,共10页
Precise control over the charge carrier dynamics throughout the device can result in outstanding performance of perovskite solar cells(PSCs).Poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate)(PEDOT:PSS)is the mo... Precise control over the charge carrier dynamics throughout the device can result in outstanding performance of perovskite solar cells(PSCs).Poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate)(PEDOT:PSS)is the most actively studied hole transport material in p-i-n structured PSCs.However,charge transport in the PEDOT:PSS is limited and inefficient because of its low conductivity with the presence of the weak ionic conductor PSS.In addition,morphology of the underlying PEDOT:PSS layer in PSCs plays a crucial role in determining the optoelectronic quality of the active perovskite absorber layer.This work is focused on realization of a non-wetting conductive surface of hole transport layer suitable for the growth of larger perovskite crystalline domains.This is accomplished by employing a facile solventengineered(ethylene glycol and methanol)approach resulting in removal of the predominant PSS in PEDOT:PSS.The consequence of acquiring larger perovskite crystalline domains was observed in the charge carrier dynamics studies,with the achievement of higher charge carrier lifetime,lower charge transport time and lower transfer impedance in the solvent-engineered PEDOT:PSS-based PSCs.Use of this solventengineered treatment for the fabrication of MAPbI3 PSCs greatly increased the device stability witnessing a power conversion efficiency of 18.18%,which corresponds to^37%improvement compared to the untreated PEDOT:PSS based devices. 展开更多
关键词 PEROVSKITE solar cells PEDOT:PSS treatment HOLE transport layer Non-wetting PEDOT:PSS surface
在线阅读 下载PDF
High entropy fluorides as conversion cathodes with tailorable electrochemical performance 被引量:4
17
作者 Yanyan Cui Parvathy Anitha Sukkurji +10 位作者 Kai Wang Raheleh Azmi Alexandra MNunn Horst Hahn Ben Breitung Yin-Ying Ting Piotr MKowalski Payam Kaghazchi Qingsong Wang Simon Schweidler Miriam Botros 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第9期342-351,I0010,共11页
With the recent development of high entropy materials, an alternative approach to develop advanced functional materials with distinctive properties that show improved values compared to conventional materials has been... With the recent development of high entropy materials, an alternative approach to develop advanced functional materials with distinctive properties that show improved values compared to conventional materials has been provided. The high entropy concept was later successfully transferred to metal fluorides and high entropy fluorides(HEFs) were successfully synthesized. Owing to their high theoretical specific capacities in energy storage applications, HEFs were utilized as cathode materials for lithiumion batteries(LIBs) and their underlying storage mechanisms were investigated. Instead of a step-bystep reduction of each individual metal cation, the HEFs seem to exhibit a single-step reduction process,indicating a solid solution compound instead of merely a mixture of different metal fluorides. It was also observed that the electrochemical behavior of the HEFs depends on each individual incorporated element. Therefore, by altering the elemental composition, new materials that exhibit improved electrochemical properties can be designed. Remarkably, HEFs with seven incorporated metal elements exhibited a better cycling stability as well as a lower hysteresis compared to binary metal fluorides.These findings offer new guidelines for material design and tailoring towards high performance LIBs. 展开更多
关键词 High entropy materials High entropy fluorides Conversion cathodes Tailored electrochemistry Li-ion batteries
在线阅读 下载PDF
Targeting new ways for large-scale,high-speed surface functionalization using direct laser interference patterning in a roll-to-roll process 被引量:1
18
作者 Christoph Zwahr Nicolas Serey +5 位作者 Lukas Nitschke Christian Bischoff Ulrich Radel Alexandra Meyer Penghui Zhu Wilhelm Pfleging 《International Journal of Extreme Manufacturing》 SCIE EI CAS CSCD 2023年第3期569-583,共15页
Direct Laser Interference Patterning(DLIP)is used to texture current collector foils in a roll-to-roll process using a high-power picosecond pulsed laser system operating at either fundamental wavelength of 1064 nm or... Direct Laser Interference Patterning(DLIP)is used to texture current collector foils in a roll-to-roll process using a high-power picosecond pulsed laser system operating at either fundamental wavelength of 1064 nm or 2nd harmonic of 532 nm.The raw beam having a diameter of 3 mm@1/e^(2) is shaped into an elongated top-hat intensity profile using a diffractive so-called FBS■-L element and cylindrical telescopes.The shaped beam is split into its diffraction orders,where the two first orders are parallelized and guided into a galvanometer scanner.The deflected beams inside the scan head are recombined with an F-theta objective on the working position generating the interference pattern.The DLIP spot has a line-like interference pattern with about 15μm spatial period.Laser fluences of up to 8 J cm^(-2) were achieved using a maximum pulse energy of 0.6 mJ.Furthermore,an in-house built roll-to-roll machine was developed.Using this setup,aluminum and copper foil of 20μm and 9μm thickness,respectively,could be processed.Subsequently to current collector structuring coating of composite electrode material took place.In case of lithium nickel manganese cobalt oxide(NMC 622)cathode deposited onto textured aluminum current collector,an increased specific discharge capacity could be achieved at a C-rate of 1℃.For the silicon/graphite anode material deposited onto textured copper current collector,an improved rate capability at all C-rates between C/10 and 5℃ was achieved.The rate capability was increased up to 100%compared to reference material.At C-rates between C/2 and 2℃,the specific discharge capacity was increased to 200 mAh g^(-1),while the reference electrodes with untextured current collector foils provided a specific discharge capacity of 100 m Ah g^(-1),showing the potential of the DLIP technology for cost-effective production of battery cells with increased cycle lifetime. 展开更多
关键词 DLIP lithium-ion battery surface texturing copper aluminum
在线阅读 下载PDF
Systematic approaches to improving the performance of polyoxometalates in non-aqueous redox flow batteries 被引量:1
19
作者 Yuan Cao Jee-Jay J.Chen Mark A.Barteau 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2020年第11期115-124,共10页
Polyoxometalates have been explored as multi-electron active species in both aqueous and non-aqueous redox flow batteries. Although non-aqueous systems in principle offer a wider voltage window for redox flow battery ... Polyoxometalates have been explored as multi-electron active species in both aqueous and non-aqueous redox flow batteries. Although non-aqueous systems in principle offer a wider voltage window for redox flow battery operation, realization of this potential requires a judicious choice of solvent as well as polyoxometalate properties. We demonstrate here the superior performance of N,N-dimethylformamide(DMF)compared to acetonitrile as a solvent for redox flow batteries based on Li3PMo12O40. This compound displays two 1-electron transfers in acetonitrile but can access an extra quasi-reversible 2-electron redox process in DMF. A cell containing 10 mM solution of Li3PMo12O40 in DMF produced a cell voltage of 0.7 V with 2-electron transfers(State of Charge = 60%) and showed a good cyclability. As a means to boost energy density, operation of the redox flow battery at a higher concentration of 0.1 M Li3PMo12O40 produced cells with cell voltage of 0.6 V in acetonitrile and a cell voltage of 1.0 V in DMF;both showed excellent coulombic efficiencies of more than 90% over the course of 30 cycles. Energy density was also increased by employing an asymmetric cell with different polyoxometalates on each side to extend cell voltage.Li6P2W18O62 exhibited 3 quasi-reversible 2-electron transfers in the potential range between-2.05 V and-0.5 V vs. Ag/Ag+. 10 mM Li6P2W18O62/Li3PMo12O40 in DMF produced a cell with cell voltage of 1.3 V involving 4-electron transfers(State of Charge = 50%) with coulombic efficiency of nearly 100% and energy efficiency of nearly 70% throughout the test with more than 20 cycles. These promising results demonstrate proof-of-concept approaches to improving the performance of polyoxometalates in non-aqueous redox flow batteries. 展开更多
关键词 POLYOXOMETALATE Energy density Redox flow battery Non-aqueous battery Cyclic voltammetry Bulk electrolysis
在线阅读 下载PDF
Tracking the phase transformation and microstructural evolution of Sn anode using operando synchrotron X-ray energy-dispersive diffraction and X-ray tomography 被引量:1
20
作者 Kang Dong Fu Sun +4 位作者 Andre Hilger Paul H.Kamm Markus Osenberg Francisco Garcia-Moreno Ingo Manke 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第1期429-437,I0011,共10页
Tin(Sn)holds great promise as an anode material for next-generation lithium(Li)ion batteries but suffers from massive volume change and poor cycling performance.To clarify the dynamic chemical and microstructural evol... Tin(Sn)holds great promise as an anode material for next-generation lithium(Li)ion batteries but suffers from massive volume change and poor cycling performance.To clarify the dynamic chemical and microstructural evolution of Sn anode during lithiation and delithiation,synchrotron X-ray energydispersive diffraction and X-ray tomography are simultaneously employed during Li/Sn cell operation.The intermediate Li-Sn alloy phases during de/lithiation are identified,and their dynamic phase transformation is unraveled which is further correlated with the volume variation of the Sn at particle-and electrode-level.Moreover,we find that the Sn particle expansion/shrinkage induced particle displacement is anisotropic:the displacement perpendicular to the electrode surface(z-axis)is more pronounced compared to the directions(x-and y-axis)along the electrode surface.This anisotropic particle displacement leads to an anisotropic volume variation at the electrode level and eventually generates a net electrode expansion towards the separator after cycling,which could be one of the root causes of mechanical detachment and delamination of electrodes during long-term operation.The unraveled chemical evolution of Li-Sn and deep insights into the microstructural evolution of Sn anode provided here could guide future design and engineering of Sn and other alloy anodes for high energy density Li-and Na-ion batteries. 展开更多
关键词 Sn anode Li-Sn phase transformation X-ray tomography Operando X-ray diffraction Anisotropic displacement Digital volume correlation(DVC)
在线阅读 下载PDF
上一页 1 2 7 下一页 到第
使用帮助 返回顶部