The NiCoCrAlY coatings strengthened by three nano-particles with the same addition were prepared on a Ni-base super alloy using laser cladding technique. The dry frictional wear behaviors of the coatings at 500 ℃ in ...The NiCoCrAlY coatings strengthened by three nano-particles with the same addition were prepared on a Ni-base super alloy using laser cladding technique. The dry frictional wear behaviors of the coatings at 500 ℃ in static air were investigated. The comparison was made with the coating without nano-particles. The results show that the wear mechanism of the NiCoCrAlY coatings with nano-particles, like the coating without nano-particles, is the delamination wear due to the strong plastic deformation and oxidative wear. However, the frictional coefficient of the coatings increases and presents the decrease trend with the increase of sliding distance after adding nano-particles. Moreover, the wear rate of the coatings with nano-particles is only 34.0%-64.5% of the coating without nano-particles. Among the three nano-particles, the improvement of nano-SiC on the high temperature wear resistance of the coating is the most significant.展开更多
死区时间选择的不合理会使逆变器件产生过高的浪涌电压和电流甚至损坏。针对这一问题提出了动态的零电压延迟控制技术,它监测输入供电电压和负载电流,当逆变器功率管达到期望的零电压开关(zero voltage switching,ZVS)条件时,控制功率...死区时间选择的不合理会使逆变器件产生过高的浪涌电压和电流甚至损坏。针对这一问题提出了动态的零电压延迟控制技术,它监测输入供电电压和负载电流,当逆变器功率管达到期望的零电压开关(zero voltage switching,ZVS)条件时,控制功率开关管,使变换器几乎在整个工作条件下都能实现ZVS,而不需考虑输入电压、输出负载和元器件的容差,实现最佳的导通延迟时间。应用该技术的等离子体高频高压电源在纺织材料中的实际应用结果表明:该技术在进一步提高了电源效率的同时,减小了因不合理的死区时间带来的过高的浪涌电压和电流,改善了纺织材料表面改性涂层的性能。展开更多
基金Project(20060287019)supported by the Research Fund for Doctoral Program of Higher Education of ChinaProject(kjsmcx07001)supported by the Opening Research Fund of Jiangsu Key Laboratory of Tribology,ChinaProject(BK2010267)supported by the Jiangsu Provincial Natural Science Foundation of Jiangsu Province,China
文摘The NiCoCrAlY coatings strengthened by three nano-particles with the same addition were prepared on a Ni-base super alloy using laser cladding technique. The dry frictional wear behaviors of the coatings at 500 ℃ in static air were investigated. The comparison was made with the coating without nano-particles. The results show that the wear mechanism of the NiCoCrAlY coatings with nano-particles, like the coating without nano-particles, is the delamination wear due to the strong plastic deformation and oxidative wear. However, the frictional coefficient of the coatings increases and presents the decrease trend with the increase of sliding distance after adding nano-particles. Moreover, the wear rate of the coatings with nano-particles is only 34.0%-64.5% of the coating without nano-particles. Among the three nano-particles, the improvement of nano-SiC on the high temperature wear resistance of the coating is the most significant.
文摘死区时间选择的不合理会使逆变器件产生过高的浪涌电压和电流甚至损坏。针对这一问题提出了动态的零电压延迟控制技术,它监测输入供电电压和负载电流,当逆变器功率管达到期望的零电压开关(zero voltage switching,ZVS)条件时,控制功率开关管,使变换器几乎在整个工作条件下都能实现ZVS,而不需考虑输入电压、输出负载和元器件的容差,实现最佳的导通延迟时间。应用该技术的等离子体高频高压电源在纺织材料中的实际应用结果表明:该技术在进一步提高了电源效率的同时,减小了因不合理的死区时间带来的过高的浪涌电压和电流,改善了纺织材料表面改性涂层的性能。