针对舌图像舌体边缘分割模糊、小区域分割错误等问题,本研究设计了一种双编码特征提取路径的方法,以获取丰富的信息特征,辅助舌体精确分割。首先,设计双编码特征提取路径,其中,空间信息路径保留空间信息并生成高分辨率特征图,上下文信...针对舌图像舌体边缘分割模糊、小区域分割错误等问题,本研究设计了一种双编码特征提取路径的方法,以获取丰富的信息特征,辅助舌体精确分割。首先,设计双编码特征提取路径,其中,空间信息路径保留空间信息并生成高分辨率特征图,上下文信息路径提高网络提取多尺度特征能力;其次,采用一种特征融合模块,融合空间信息路径和上下文信息路径的输出特征;最后,采用轻量级解码器模块减少模型参数量,提高模型计算效率。结果显示,该方法精确率、召回率、F1分数和平均交并比(mean intersection over union,MIoU)分别达98.82%、98.53%、98.60%和97.67%,模型总参数量和每秒浮点运算次数(floating point operations per second,FLOPs)为7.54 M和67.09 G。结果表明,该方法可有效提高舌体的分割精度,显著改善舌体小区域分割错误和边缘模糊性,为中医舌象智能辅助分析提供必要支撑。展开更多
偏头痛是一种严重危害人类健康的脑疾病,其中无先兆偏头痛在临床中占比最多且诊断困难。当前无先兆偏头痛辅助诊断算法研究中,基于机器学习的脑影像功能连接分析方法是最主要的研究方向。由于此类方法多依赖于预定义的脑图谱模板,受模...偏头痛是一种严重危害人类健康的脑疾病,其中无先兆偏头痛在临床中占比最多且诊断困难。当前无先兆偏头痛辅助诊断算法研究中,基于机器学习的脑影像功能连接分析方法是最主要的研究方向。由于此类方法多依赖于预定义的脑图谱模板,受模板选择主观因素及分类器性能影响,现有方法的智能化程度和准确率较低,难以满足临床及研究需求。基于设计的新型3D-CNN技术,提出了一种无先兆偏头痛智能辅助诊断算法MwoA3D-Net(3D convolutional neural network based diagnosis of migraine without aura)。该算法采用组信息指导的独立成分分析方法,生成被试的静息态脑网络,并以此作为输入训练MwoA3D-Net,实现对无先兆偏头痛患者与健康对照的自动诊断,可避免因先验模板不同导致的结果差异。在算法设计中引入3D数据增强、L1和L2正则化等一系列优化策略,可有效防止过拟合现象的发生。在60名无先兆偏头痛和65名健康被试数据集上的实验结果表明,MwoA3DNet的平均诊断准确率为98.40%,鲁棒性较高,且所选静息态脑功能网络均具有较强的辨识性,可作为无先兆偏头痛的潜在生物标志物用于个体化诊断。展开更多
文摘针对舌图像舌体边缘分割模糊、小区域分割错误等问题,本研究设计了一种双编码特征提取路径的方法,以获取丰富的信息特征,辅助舌体精确分割。首先,设计双编码特征提取路径,其中,空间信息路径保留空间信息并生成高分辨率特征图,上下文信息路径提高网络提取多尺度特征能力;其次,采用一种特征融合模块,融合空间信息路径和上下文信息路径的输出特征;最后,采用轻量级解码器模块减少模型参数量,提高模型计算效率。结果显示,该方法精确率、召回率、F1分数和平均交并比(mean intersection over union,MIoU)分别达98.82%、98.53%、98.60%和97.67%,模型总参数量和每秒浮点运算次数(floating point operations per second,FLOPs)为7.54 M和67.09 G。结果表明,该方法可有效提高舌体的分割精度,显著改善舌体小区域分割错误和边缘模糊性,为中医舌象智能辅助分析提供必要支撑。
文摘偏头痛是一种严重危害人类健康的脑疾病,其中无先兆偏头痛在临床中占比最多且诊断困难。当前无先兆偏头痛辅助诊断算法研究中,基于机器学习的脑影像功能连接分析方法是最主要的研究方向。由于此类方法多依赖于预定义的脑图谱模板,受模板选择主观因素及分类器性能影响,现有方法的智能化程度和准确率较低,难以满足临床及研究需求。基于设计的新型3D-CNN技术,提出了一种无先兆偏头痛智能辅助诊断算法MwoA3D-Net(3D convolutional neural network based diagnosis of migraine without aura)。该算法采用组信息指导的独立成分分析方法,生成被试的静息态脑网络,并以此作为输入训练MwoA3D-Net,实现对无先兆偏头痛患者与健康对照的自动诊断,可避免因先验模板不同导致的结果差异。在算法设计中引入3D数据增强、L1和L2正则化等一系列优化策略,可有效防止过拟合现象的发生。在60名无先兆偏头痛和65名健康被试数据集上的实验结果表明,MwoA3DNet的平均诊断准确率为98.40%,鲁棒性较高,且所选静息态脑功能网络均具有较强的辨识性,可作为无先兆偏头痛的潜在生物标志物用于个体化诊断。