黑磷(black phosphorous,BP)作为一种新型的二维材料,具有基于层数可调节的带隙(0.3~2.0 e V)和高的载流子迁移率(1000 cm 2·V^(-1)·s^(-1))等特性,在光催化领域被广泛关注。黑磷在可见光及近红外光区域具有强的吸收,是一种...黑磷(black phosphorous,BP)作为一种新型的二维材料,具有基于层数可调节的带隙(0.3~2.0 e V)和高的载流子迁移率(1000 cm 2·V^(-1)·s^(-1))等特性,在光催化领域被广泛关注。黑磷在可见光及近红外光区域具有强的吸收,是一种宽光谱响应的半导体光催化材料,具有其他材料无法比拟的优点;高的载流子迁移率使其成为一种优异的光生载流子传输材料;此外,黑磷纳米材料具有大的比表面积,可以为光催化反应提供丰富的反应活性位点,从而提高催化效率。当前,黑磷纳米材料在光催化制氢、光催化固氮、光催化CO 2还原等领域被广泛研究,展现出独特的优点和良好的性能,是一种理想的光催化剂材料。基于此,详细介绍了黑磷材料的结构与特性,归纳了黑磷纳米光催化材料的制备方法,重点介绍了黑磷材料在光催化领域的最新研究进展,讨论了黑磷材料的构效关系,展望了黑磷纳米材料在光催化领域未来的发展方向。展开更多
Electrochemical treatment is a popular and efficient method for improving the photoelectrochemical performance of water‐splitting photoelectrodes.In our previous study,the electrochemical activation of Mo‐doped BiVO...Electrochemical treatment is a popular and efficient method for improving the photoelectrochemical performance of water‐splitting photoelectrodes.In our previous study,the electrochemical activation of Mo‐doped BiVO_(4) electrodes was ascribed to the removal of MoO_(x) segregations,which are considered to be surface recombination centers for photoinduced electrons and holes.However,this proposed mechanism cannot explain why activated Mo‐doped BiVO_(4) electrodes gradually lose their activity when exposed to air.In this study,based on various characterizations,it is suggested that electrochemical treatment not only removes partial MoO_(x) segregations but also initiates the formation of H_(y)MoO_(x) surface defects,which provide charge transfer channels for photogenerated holes.The charge separation of the Mo‐doped BiVO_(4) electrode was significantly enhanced by these charge transfer channels.This study offers a new insight into the electrochemical activation of Mo‐doped BiVO_(4) photoanodes,and the new concept of surface charge transfer channels,a long overlooked factor,will be valuable for the development of other(photo)electrocatalytic systems.展开更多
文摘黑磷(black phosphorous,BP)作为一种新型的二维材料,具有基于层数可调节的带隙(0.3~2.0 e V)和高的载流子迁移率(1000 cm 2·V^(-1)·s^(-1))等特性,在光催化领域被广泛关注。黑磷在可见光及近红外光区域具有强的吸收,是一种宽光谱响应的半导体光催化材料,具有其他材料无法比拟的优点;高的载流子迁移率使其成为一种优异的光生载流子传输材料;此外,黑磷纳米材料具有大的比表面积,可以为光催化反应提供丰富的反应活性位点,从而提高催化效率。当前,黑磷纳米材料在光催化制氢、光催化固氮、光催化CO 2还原等领域被广泛研究,展现出独特的优点和良好的性能,是一种理想的光催化剂材料。基于此,详细介绍了黑磷材料的结构与特性,归纳了黑磷纳米光催化材料的制备方法,重点介绍了黑磷材料在光催化领域的最新研究进展,讨论了黑磷材料的构效关系,展望了黑磷纳米材料在光催化领域未来的发展方向。
文摘Electrochemical treatment is a popular and efficient method for improving the photoelectrochemical performance of water‐splitting photoelectrodes.In our previous study,the electrochemical activation of Mo‐doped BiVO_(4) electrodes was ascribed to the removal of MoO_(x) segregations,which are considered to be surface recombination centers for photoinduced electrons and holes.However,this proposed mechanism cannot explain why activated Mo‐doped BiVO_(4) electrodes gradually lose their activity when exposed to air.In this study,based on various characterizations,it is suggested that electrochemical treatment not only removes partial MoO_(x) segregations but also initiates the formation of H_(y)MoO_(x) surface defects,which provide charge transfer channels for photogenerated holes.The charge separation of the Mo‐doped BiVO_(4) electrode was significantly enhanced by these charge transfer channels.This study offers a new insight into the electrochemical activation of Mo‐doped BiVO_(4) photoanodes,and the new concept of surface charge transfer channels,a long overlooked factor,will be valuable for the development of other(photo)electrocatalytic systems.