期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
元宇宙:概念、技术及应用研究综述 被引量:25
1
作者 方巍 伏宇翔 《南京信息工程大学学报(自然科学版)》 CAS 北大核心 2024年第1期30-45,共16页
网络技术、人机交互和人工智能等技术的飞速发展催生了元宇宙,并进一步促进人们物质生活各个方面的数字化转型.2021年是元宇宙元年,元宇宙作为一个新兴的概念受到产业界、学术界、媒体界及公众的广泛关注.本文尝试从技术维度和应用角度... 网络技术、人机交互和人工智能等技术的飞速发展催生了元宇宙,并进一步促进人们物质生活各个方面的数字化转型.2021年是元宇宙元年,元宇宙作为一个新兴的概念受到产业界、学术界、媒体界及公众的广泛关注.本文尝试从技术维度和应用角度深度剖析元宇宙.首先,从定义、起源与发展、特征和关键技术(网络及运算技术、物联网技术、人机交互技术、电子游戏技术、区块链技术、数字孪生技术和其他技术)等多方面对元宇宙的概念及内涵进行论述;然后,讨论了当下布局元宇宙的企业和应用实例;最后,剖析了目前元宇宙发展存在的问题和机遇,并对未来研究与应用进行了展望.通过对元宇宙当前的发展状况、研究趋势进行归纳分析以及科学地评估元宇宙的落地应用,为元宇宙研究人员提供有益的参考和借鉴. 展开更多
关键词 元宇宙 数字孪生 人工智能 虚拟现实 边缘计算 6G 区块链
在线阅读 下载PDF
基于时空图卷积的强对流降水临近预报研究
2
作者 方巍 薛琼莹 +1 位作者 陶恩屹 齐媚涵 《气象科学》 2024年第3期487-497,共11页
降水临近预报对于强对流天气的预报具有重要的支撑作用。气象业务中主要采用雷达回波外推方法解决此问题。然而,现有方法通常缺乏从序列雷达数据中有效学习的能力,导致预测精度不佳。为了解决这一问题,本文提出了一种改进的时空图卷积模... 降水临近预报对于强对流天气的预报具有重要的支撑作用。气象业务中主要采用雷达回波外推方法解决此问题。然而,现有方法通常缺乏从序列雷达数据中有效学习的能力,导致预测精度不佳。为了解决这一问题,本文提出了一种改进的时空图卷积模型ASTGCN(A Spatio-Temporal Graph Convolution Neural Network)用于强对流降水的临近预报。利用时空图卷积网络,有效地捕获相邻雷达帧之间的时间依赖性。此外,利用注意力机制和自动编码器来增强模型捕获时空相关性的能力。结果表明,该模型可以从数据中发现隐藏的图结构,从而捕获隐藏的空间关系。与现有模型(Transformer)相比,该模型的临界成功指数(CSI)提高了28%,表明其在强对流降水临近预报方面具有优越的性能。 展开更多
关键词 强对流降水临近预报 深度学习 ASTGCN模型 注意力机制 雷达回波外推
在线阅读 下载PDF
基于DSTFN(Deep Spatio-Temprral Fusion Network)模型的热带气旋轨迹预测方法
3
作者 方巍 杜娟 +1 位作者 齐媚涵 胡鹏昱 《热带气象学报》 CSCD 北大核心 2024年第6期882-895,共14页
在全球气候变化背景下,越来越多的地区面临着热带气旋的威胁。因此,准确预测热带气旋的轨迹变化对于气象预警和灾害管理至关重要。然而,传统的基于深度学习的热带气旋预测方法在建模热带气旋的时空相关性方面存在局限。为此,提出了一种... 在全球气候变化背景下,越来越多的地区面临着热带气旋的威胁。因此,准确预测热带气旋的轨迹变化对于气象预警和灾害管理至关重要。然而,传统的基于深度学习的热带气旋预测方法在建模热带气旋的时空相关性方面存在局限。为此,提出了一种新的深度时空融合网络——DSTFN(Deep Spatio-Temporal Fusion Network)模型,以提高对热带气旋轨迹的预测精度和稳定性。构建了有效融合ConvNeXt(Convolutional Next)模型和门控循环单元的CaConvNeXt-GRU(Convolutional Block Attention Module Integrated with ConvNeXt and Gated Recurrent Unit)模型,以提取热带气旋三维时序数据中的复杂非线性时空特征。同时,引入了卷积块注意力模块,以自动聚焦不同等压面对热带气旋影响更大的特征。此外,设计了分阶段的训练策略,通过依次进行预训练、联合训练和整体训练实现了不同模块的有效融合。为了评估所设计的方法,在国际气候管理最佳路径档案和第五代大气再分析数据集上进行了大量实验。实验结果证明,在预测未来24 h的热带气旋轨迹时,相比于现有的基于深度学习的热带气旋轨迹预测模型,DSTFN模型的平均预测误差降低了约13.71 km。 展开更多
关键词 热带气旋 路径预测 DSTFN模型 CaConvNeXt-GRU模型 时空序列预测
在线阅读 下载PDF
基于深度学习的月平均2 m气温订正方法
4
作者 方巍 王冰轮 《热带气象学报》 CSCD 北大核心 2024年第6期906-917,共12页
作为减少短期气候预测误差的技术,数据订正成为了重要的研究方向。而深度学习作为一种新兴方法已经应用到数据订正技术中,其中常用的模型是U-Net,但它存在不可避免的缺陷。第一,U-Net基于卷积神经网络,但是受限于卷积神经网络的小感受野... 作为减少短期气候预测误差的技术,数据订正成为了重要的研究方向。而深度学习作为一种新兴方法已经应用到数据订正技术中,其中常用的模型是U-Net,但它存在不可避免的缺陷。第一,U-Net基于卷积神经网络,但是受限于卷积神经网络的小感受野,这导致U-Net不能从全局的角度学习空间特征;第二,U-Net的下采样操作容易丢失图像细节信息。这两点都影响了该模型的订正性能。因此采取以下两个措施进行改进,一是将原模型与能够学习图片全局特征的Vision Transformer有机结合起来,使其能够从全局的角度学习空间特征;二是引入UNet 3+模型中的全尺度连接操作,弥补原下采样中丢失的图像细节信息。改进之后的模型称为UNet-Former 3+,在CMIP6中月平均2 m气温的春季和冬季数据集上进行订正实验,ERA5为实验标签。模型会与分位数映射、岭回归、U-Net、CU-Net、Dense-CUnet和RA-UNet这六种订正方法进行对比。实验结果表明,此模型在两个季节的平均绝对误差都下降49%,均方根误差都下降57%,两者都低于上述六种方法。总之,UNet-Former 3+在春季和冬季的订正效果优于上述六种方法。 展开更多
关键词 短期气候预测 数据订正 Vision Transformer 全尺度连接 UNet-Former 3+
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部