期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
基于迁移学习的农业短文本语义相似度计算方法
1
作者 金宁 郭宇峰 +2 位作者 韩晓东 缪祎晟 吴华瑞 《智慧农业(中英文)》 2025年第1期33-43,共11页
[目的/意义]农业领域高质量的语义相似度计算是推动农业技术推广信息化、智能化发展的重要基础。针对现有文本语义相似度计算模型特征提取不全面、高质量标注数据集少等问题,提出一种基于迁移学习和BERT (Bidirectional Encoder Represe... [目的/意义]农业领域高质量的语义相似度计算是推动农业技术推广信息化、智能化发展的重要基础。针对现有文本语义相似度计算模型特征提取不全面、高质量标注数据集少等问题,提出一种基于迁移学习和BERT (Bidirectional Encoder Representations from Transformers)预训练模型的农业短文本语义相似度计算模型CWPT-TSBERT (Chinese-based Wordpiece Tokenization and Transfer-learning by Sentence BERT)。[方法] CWPT-TSBERT依托孪生网络架构,利用迁移学习策略在大规模通用领域标注数据集进行模型预训练,解决农业文本标注数据集少、语义稀疏性高等问题。提出面向中文的子词单元分词方法 CWPT拆分汉字,增强字向量的语义特征表示,进一步丰富了短文本语义特征表达。根据迁移学习的微调机制,利用SBERT (Sentence BERT)模型提取字向量,挖掘汉字间及字形结构间关联关系,提高模型语义相似度计算的正确率。[结果和讨论] CWPT-TSBERT模型的语义相似度计算正确率达到97.18%,高于基于卷积神经网络的TextCNN_Attention、基于循环神经网络的MaLSTM (Manhattan Long Short-Term Memory),以及基于BERT预训练模型的SBERT等12种模型。[结论] CWPT-TSBERT模型在小规模农业短文本数据集上语义相似性计算正确率较高,性能优势明显,为语义智能匹配提供了有效的技术参考。 展开更多
关键词 迁移学习 农业短文本 语义相似度计算 字形特征 知识智能服务 大模型
在线阅读 下载PDF
基于连续提示注入与指针网络的农业病害命名实体识别
2
作者 王春山 张宸硕 +3 位作者 吴华瑞 朱华吉 缪祎晟 张立杰 《农业机械学报》 EI CAS CSCD 北大核心 2024年第6期254-261,共8页
针对农业病害领域命名实体识别过程中存在的预训练语言模型利用不充分、外部知识注入利用率低、嵌套命名实体识别率低的问题,本文提出基于连续提示注入和指针网络的命名实体识别模型CP-MRC(Continuous prompts for machine reading comp... 针对农业病害领域命名实体识别过程中存在的预训练语言模型利用不充分、外部知识注入利用率低、嵌套命名实体识别率低的问题,本文提出基于连续提示注入和指针网络的命名实体识别模型CP-MRC(Continuous prompts for machine reading comprehension)。该模型引入BERT(Bidirectional encoder representation from transformers)预训练模型,通过冻结BERT模型原有参数,保留其在预训练阶段获取到的文本表征能力;为了增强模型对领域数据的适用性,在每层Transformer中插入连续可训练提示向量;为提高嵌套命名实体识别的准确性,采用指针网络抽取实体序列。在自建农业病害数据集上开展了对比实验,该数据集包含2933条文本语料,8个实体类型,共10414个实体。实验结果显示,CP-MRC模型的精确率、召回率、F1值达到83.55%、81.4%、82.4%,优于其他模型;在病原、作物两类嵌套实体的识别率较其他模型F1值提升3个百分点和13个百分点,嵌套实体识别率明显提升。本文提出的模型仅采用少量可训练参数仍然具备良好识别性能,为较大规模预训练模型在信息抽取任务上的应用提供了思路。 展开更多
关键词 农业病害 命名实体识别 连续提示 指针网络 嵌套实体 预训练语言模型
在线阅读 下载PDF
基于RoFormer预训练模型的指针网络农业病害命名实体识别
3
作者 王彤 王春山 +3 位作者 李久熙 朱华吉 缪祎晟 吴华瑞 《智慧农业(中英文)》 CSCD 2024年第2期85-94,共10页
[目的/意义]针对实体嵌套、实体类型混淆等问题导致的农业病害命名实体识别(Named Entities Recognition,NER)准确率不高的情况,以PointerNet为基准模型,提出一种基于RoFormer预训练模型的指针网络农业病害NER方法RoFormer-PointerNet。... [目的/意义]针对实体嵌套、实体类型混淆等问题导致的农业病害命名实体识别(Named Entities Recognition,NER)准确率不高的情况,以PointerNet为基准模型,提出一种基于RoFormer预训练模型的指针网络农业病害NER方法RoFormer-PointerNet。[方法]采用RoFormer预训练模型对输入的文本进行向量化,利用其独特的旋转位置嵌入方法来捕捉位置信息,丰富字词特征信息,从而解决一词多义导致的类型易混淆的问题。使用指针网络进行解码,利用指针网络的首尾指针标注方式抽取句子中的所有实体,首尾指针标注方式可以解决实体抽取中存在的嵌套问题。[结果和讨论]自建农业病害数据集,数据集中包含2867条标注语料,共10282个实体。为验证RoFormer预训练模型在实体抽取上的优越性,采用Word2Vec、BERT、RoBERTa等多种向量化模型进行对比试验,RoFormer-PointerNet与其他模型相比,模型精确率、召回率、F1值均为最优,分别为87.49%,85.76%和86.62%。为验证RoFormer-PointerNet在缓解实体嵌套的优势,与使用最为广泛的双向长短期记忆神经网络(Bidirectional Long Short-Term Memory,BiLSTM)和条件随机场(Conditional Random Field,CRF)模型进行对比试验,RoFormer-PointerNet比RoFormer-BiLSTM模型、RoFormer-CRF模型和RoFormer-BiLSTM-CRF模型分别高出4.8%、5.67%和3.87%,证明用指针网络模型可以很好解决实体嵌套问题。最后验证RoFormer-PointerNet方法在农业病害数据集中的识别性能,针对病害症状、病害名称、防治方法等8类实体进行了识别实验,本方法识别的精确率、召回率和F1值分别为87.49%、85.76%和86.62%,为同类最优。[结论]本研究提出的方法能有效识别中文农业病害文本中的实体,识别效果优于其他模型。在解决实体抽取过程中的实体嵌套和类型混淆等问题方面具有一定优势。 展开更多
关键词 农业病害 命名实体识别 实体嵌套 RoFormer预训练模型 指针网络
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部