高效和准确的场景文本(efficient and accuracy scene text,EAST)检测算法速度快且结构简单,但是由于文本结构的特殊性,导致在检测中尺寸较小的文本会被遗漏,而较长的文本则完整性较差。针对EAST算法存在的问题提出一种新的自然场景文...高效和准确的场景文本(efficient and accuracy scene text,EAST)检测算法速度快且结构简单,但是由于文本结构的特殊性,导致在检测中尺寸较小的文本会被遗漏,而较长的文本则完整性较差。针对EAST算法存在的问题提出一种新的自然场景文本检测模型。该方法利用自动架构搜索的特征金字塔网络(neural architecture search feature pyramid network,NAS-FPN)设计搜索空间,覆盖所有可能的跨尺度连接提取自然场景图像特征。针对输出层进行修改,一方面通过广义交并比(generalized intersection over union,GIOU)作为指标提升边界框的回归效果;另一方面通过对损失函数进行修改解决类别失衡问题。输出场景图像中任意方向的文本区域检测框。该方法在ICDAR2013和ICDAR2015数据集上都取得了较好的检测结果,与其他文本检测方法相比,检测效果也得到了明显提升。展开更多
正交时序复用(Orthogonal Time Sequency Multiplexing,OTSM)通过级联时分和沃尔什-哈达玛(WHT)复用将信息符号在时延和序列域进行复用。由于WHT在调制解调过程不需要进行复杂的乘法运算,相比于正交时频空(OTFS)调制有更低的调制复杂度...正交时序复用(Orthogonal Time Sequency Multiplexing,OTSM)通过级联时分和沃尔什-哈达玛(WHT)复用将信息符号在时延和序列域进行复用。由于WHT在调制解调过程不需要进行复杂的乘法运算,相比于正交时频空(OTFS)调制有更低的调制复杂度。该文针对高速移动环境下的OTSM系统提出了一种二级均衡器:首先利用信道矩阵的稀疏性和带状结构在时域逐块进行低复杂度MMSE检测;随后采用高斯-赛德尔(GS)迭代检测进一步消除残余符号干扰。仿真结果表明,所提算法与基于单抽头频域均衡的GS迭代检测算法相比,采用16QAM调制且误码率为10–4时有1.8 dB性能增益。展开更多
针对深度学习中对任意形状文本检测准确率不高的问题,提出了一种结合特征金字塔网络(feature pyramid network,FPN)和内核尺度扩展算法的文本检测网络模型。特征金字塔网络能够提取卷积层中更加鲁棒的特征,融合后生成不同尺度的特征内核...针对深度学习中对任意形状文本检测准确率不高的问题,提出了一种结合特征金字塔网络(feature pyramid network,FPN)和内核尺度扩展算法的文本检测网络模型。特征金字塔网络能够提取卷积层中更加鲁棒的特征,融合后生成不同尺度的特征内核;内核尺度扩展算法将生成的最小特征内核逐渐扩展为包围完整文本实例的特征图。同时为了针对自然场景中难以检测的文本实例,在训练阶段加入了在线难例挖掘(online hard example mining,OHEM)的方法,并以迁移学习的方式采用2种不同训练策略进行训练。仿真结果表明,该算法模型在不同数据集上具有良好的检测性能。展开更多
文摘高效和准确的场景文本(efficient and accuracy scene text,EAST)检测算法速度快且结构简单,但是由于文本结构的特殊性,导致在检测中尺寸较小的文本会被遗漏,而较长的文本则完整性较差。针对EAST算法存在的问题提出一种新的自然场景文本检测模型。该方法利用自动架构搜索的特征金字塔网络(neural architecture search feature pyramid network,NAS-FPN)设计搜索空间,覆盖所有可能的跨尺度连接提取自然场景图像特征。针对输出层进行修改,一方面通过广义交并比(generalized intersection over union,GIOU)作为指标提升边界框的回归效果;另一方面通过对损失函数进行修改解决类别失衡问题。输出场景图像中任意方向的文本区域检测框。该方法在ICDAR2013和ICDAR2015数据集上都取得了较好的检测结果,与其他文本检测方法相比,检测效果也得到了明显提升。
文摘正交时序复用(Orthogonal Time Sequency Multiplexing,OTSM)通过级联时分和沃尔什-哈达玛(WHT)复用将信息符号在时延和序列域进行复用。由于WHT在调制解调过程不需要进行复杂的乘法运算,相比于正交时频空(OTFS)调制有更低的调制复杂度。该文针对高速移动环境下的OTSM系统提出了一种二级均衡器:首先利用信道矩阵的稀疏性和带状结构在时域逐块进行低复杂度MMSE检测;随后采用高斯-赛德尔(GS)迭代检测进一步消除残余符号干扰。仿真结果表明,所提算法与基于单抽头频域均衡的GS迭代检测算法相比,采用16QAM调制且误码率为10–4时有1.8 dB性能增益。
文摘针对深度学习中对任意形状文本检测准确率不高的问题,提出了一种结合特征金字塔网络(feature pyramid network,FPN)和内核尺度扩展算法的文本检测网络模型。特征金字塔网络能够提取卷积层中更加鲁棒的特征,融合后生成不同尺度的特征内核;内核尺度扩展算法将生成的最小特征内核逐渐扩展为包围完整文本实例的特征图。同时为了针对自然场景中难以检测的文本实例,在训练阶段加入了在线难例挖掘(online hard example mining,OHEM)的方法,并以迁移学习的方式采用2种不同训练策略进行训练。仿真结果表明,该算法模型在不同数据集上具有良好的检测性能。