Under the influence of globalization, it's a trend to develop international education in universities around the world. China, as a giant education country, also takes part in the international education market, d...Under the influence of globalization, it's a trend to develop international education in universities around the world. China, as a giant education country, also takes part in the international education market, developing international education in universities, and recruiting international students to study in China. In this paper, it analyzes the rational reasons to develop international education in terms of globalization, nature of universities and consistent development. What's more, based on the experience of developing international education in Software College, Northeastern University(NEU), China, it introduces three aspects of internationalization implemented in the college.展开更多
Multistage heat treatment involving quenching(Q),lamellarizing(L),and tempering(T)is applied to marine 10Ni5CrMoV steel.The microstructure and mechanical properties were studied by multiscale characterizations,and the...Multistage heat treatment involving quenching(Q),lamellarizing(L),and tempering(T)is applied to marine 10Ni5CrMoV steel.The microstructure and mechanical properties were studied by multiscale characterizations,and the kinetics of reverse austenite transformation,strain hardening behavior,and toughening mechanism were further investigated.The lamellarized specimens possess low yield strength but high toughness,especially cryogenic toughness.Lamellarization leads to the development of film-like reversed austenite at the martensite block and lath boundaries,refining the martensite structure and lowering the equivalent grain size.Kinetic analysis of austenite reversion based on the JMAK model shows that the isothermal transformation is dominated by the growth of reversed austenite,and the maximum transformation of reversed austenite is reached at the peak temperature(750℃).The strain hardening behavior based on the modified Crussard-Jaoul analysis indicates that the reversed austenite obtained from lamellarization reduces the proportion of martensite,significantly hindering crack propagation via martensitic transformation during the deformation.As a consequence,the QLT specimens exhibit high machinability and low yield strength.Compared with the QT specimen,the ductile-brittle transition temperature of the QLT specimens decreases from-116 to-130℃due to the low equivalent grain size and reversed austenite,which increases the cleavage force required for crack propagation and absorbs the energy of external load,respectively.This work provides an idea to improve the cryogenic toughness of marine 10Ni5CrMoV steel and lays a theoretical foundation for its industrial application and comprehensive performance improvement.展开更多
With the continuous increase in the disposal volume of spent lithium-ion batteries(LIBs),properly recycling spent LIBs has become essential for the advancement of the circular economy.This study presents a systematic ...With the continuous increase in the disposal volume of spent lithium-ion batteries(LIBs),properly recycling spent LIBs has become essential for the advancement of the circular economy.This study presents a systematic analysis of the chlorination roasting kinetics and proposes a new two-step chlorination roasting process that integrates thermodynamics for the recycling of LIB cathode materials.The activation energy for the chloride reaction was 88.41 kJ/mol according to thermogravimetric analysis–derivative thermogravimetry data obtained by using model-free,model-fitting,and Z(α)function(αis conversion rate).Results indicated that the reaction was dominated by the first-order(F1)model when the conversion rate was less than or equal to 0.5 and shifted to the second-order(F2)model when the conversion rate exceeded 0.5.Optimal conditions were determined by thoroughly investigating the effects of roasting temperature,roasting time,and the mass ratio of NH_(4)Cl to LiCoO_(2).Under the optimal conditions,namely 400℃,20 min,and NH_(4)Cl/LiCoO_(2)mass ratio of 3:1,the leaching efficiency of Li and Co reached 99.43% and 99.05%,respectively.Analysis of the roasted products revealed that valuable metals in LiCoO_(2)transformed into CoCl_(2) and LiCl.Furthermore,the reaction mechanism was elucidated,providing insights for the establishment of a novel low-temperature chlorination roasting technology based on a crystal structure perspective.This technology can guide the development of LIB recycling processes with low energy consumption,low secondary pollution,high recovery efficiency,and high added value.展开更多
Sinter is the core raw material for blast furnaces.Flue pressure,which is an important state parameter,affects sinter quality.In this paper,flue pressure prediction and optimization were studied based on the shapley a...Sinter is the core raw material for blast furnaces.Flue pressure,which is an important state parameter,affects sinter quality.In this paper,flue pressure prediction and optimization were studied based on the shapley additive explanation(SHAP)to predict the flue pressure and take targeted adjustment measures.First,the sintering process data were collected and processed.A flue pressure prediction model was then constructed after comparing different feature selection methods and model algorithms using SHAP+extremely random-ized trees(ET).The prediction accuracy of the model within the error range of±0.25 kPa was 92.63%.SHAP analysis was employed to improve the interpretability of the prediction model.The effects of various sintering operation parameters on flue pressure,the relation-ship between the numerical range of key operation parameters and flue pressure,the effect of operation parameter combinations on flue pressure,and the prediction process of the flue pressure prediction model on a single sample were analyzed.A flue pressure optimization module was also constructed and analyzed when the prediction satisfied the judgment conditions.The operating parameter combination was then pushed.The flue pressure was increased by 5.87%during the verification process,achieving a good optimization effect.展开更多
The distributed permutation flow shop scheduling problem(DPFSP)has received increasing attention in recent years.The iterated greedy algorithm(IGA)serves as a powerful optimizer for addressing such a problem because o...The distributed permutation flow shop scheduling problem(DPFSP)has received increasing attention in recent years.The iterated greedy algorithm(IGA)serves as a powerful optimizer for addressing such a problem because of its straightforward,single-solution evolution framework.However,a potential draw-back of IGA is the lack of utilization of historical information,which could lead to an imbalance between exploration and exploitation,especially in large-scale DPFSPs.As a consequence,this paper develops an IGA with memory and learning mechanisms(MLIGA)to efficiently solve the DPFSP targeted at the mini-malmakespan.InMLIGA,we incorporate a memory mechanism to make a more informed selection of the initial solution at each stage of the search,by extending,reconstructing,and reinforcing the information from previous solutions.In addition,we design a twolayer cooperative reinforcement learning approach to intelligently determine the key parameters of IGA and the operations of the memory mechanism.Meanwhile,to ensure that the experience generated by each perturbation operator is fully learned and to reduce the prior parameters of MLIGA,a probability curve-based acceptance criterion is proposed by combining a cube root function with custom rules.At last,a discrete adaptive learning rate is employed to enhance the stability of the memory and learningmechanisms.Complete ablation experiments are utilized to verify the effectiveness of the memory mechanism,and the results show that this mechanism is capable of improving the performance of IGA to a large extent.Furthermore,through comparative experiments involving MLIGA and five state-of-the-art algorithms on 720 benchmarks,we have discovered that MLI-GA demonstrates significant potential for solving large-scale DPFSPs.This indicates that MLIGA is well-suited for real-world distributed flow shop scheduling.展开更多
In recent years,medium entropy alloys have become a research hotspot due to their excellent physical and chemical performances.By controlling reasonable elemental composition and processing parameters,the medium entro...In recent years,medium entropy alloys have become a research hotspot due to their excellent physical and chemical performances.By controlling reasonable elemental composition and processing parameters,the medium entropy alloys can exhibit similar properties to high entropy alloys and have lower costs.In this paper,a FeCoNi medium entropy alloy precursor was prepared via sol-gel and coprecipitation methods,respectively,and FeCoNi medium entropy alloys were prepared by carbothermal and hydrogen reduction.The phases and magnetic properties of FeCoNi medium entropy alloy were investigated.Results showed that FeCoNi medium entropy alloy was produced by carbothermal and hydrogen reduction at 1500℃.Some carbon was detected in the FeCoNi medium entropy alloy prepared by carbothermal reduction.The alloy prepared by hydrogen reduction was uniform and showed a relatively high purity.Moreover,the hydrogen reduction product exhibited better saturation magnetization and lower coercivity.展开更多
Previous multi-view 3D human pose estimation methods neither correlate different human joints in each view nor model learnable correlations between the same joints in different views explicitly,meaning that skeleton s...Previous multi-view 3D human pose estimation methods neither correlate different human joints in each view nor model learnable correlations between the same joints in different views explicitly,meaning that skeleton structure information is not utilized and multi-view pose information is not completely fused.Moreover,existing graph convolutional operations do not consider the specificity of different joints and different views of pose information when processing skeleton graphs,making the correlation weights between nodes in the graph and their neighborhood nodes shared.Existing Graph Convolutional Networks(GCNs)cannot extract global and deeplevel skeleton structure information and view correlations efficiently.To solve these problems,pre-estimated multiview 2D poses are designed as a multi-view skeleton graph to fuse skeleton priors and view correlations explicitly to process occlusion problem,with the skeleton-edge and symmetry-edge representing the structure correlations between adjacent joints in each viewof skeleton graph and the view-edge representing the view correlations between the same joints in different views.To make graph convolution operation mine elaborate and sufficient skeleton structure information and view correlations,different correlation weights are assigned to different categories of neighborhood nodes and further assigned to each node in the graph.Based on the graph convolution operation proposed above,a Residual Graph Convolution(RGC)module is designed as the basic module to be combined with the simplified Hourglass architecture to construct the Hourglass-GCN as our 3D pose estimation network.Hourglass-GCNwith a symmetrical and concise architecture processes three scales ofmulti-viewskeleton graphs to extract local-to-global scale and shallow-to-deep level skeleton features efficiently.Experimental results on common large 3D pose dataset Human3.6M and MPI-INF-3DHP show that Hourglass-GCN outperforms some excellent methods in 3D pose estimation accuracy.展开更多
Aqueous zinc metal batteries(ZMBs)which are environmentally benign and cheap can be used for grid-scale energy storage,but have a short cycling life mainly due to the poor reversibility of zinc metal anodes in mild aq...Aqueous zinc metal batteries(ZMBs)which are environmentally benign and cheap can be used for grid-scale energy storage,but have a short cycling life mainly due to the poor reversibility of zinc metal anodes in mild aqueous electrolytes.A zincophilic carbon(ZC)layer was deposited on a Zn metal foil at 450°C by the up-stream pyrolysis of a hydrogen-bonded supramolecular substance framework,as-sembled from melamine(ME)and cyanuric acid(CA).The zincophilic groups(C=O and C=N)in the ZC layer guide uniform zinc plating/stripping and eliminate dendrites and side reactions.so that assembled symmetrical batteries(ZC@Zn//ZC@Zn)have a long-term service life of 2500 h at 1 mA cm^(−2) and 1 mAh cm^(−2),which is much longer than that of bare Zn anodes(180 h).In addition,ZC@Zn//V2O5 full batteries have a higher capacity of 174 mAh g^(−1) after 1200 cycles at 2 A g^(−1) than a Zn//V_(2)O_(5) counterpart(100 mAh g^(−1)).The strategy developed for the low-temperat-ure deposition of the ZC layer is a new way to construct advanced zinc metal anodes for ZMBs.展开更多
Under the background of training practical compound talents in software engineering,this paper analyzes the problems existing in the current teaching of software engineering courses represented by software project man...Under the background of training practical compound talents in software engineering,this paper analyzes the problems existing in the current teaching of software engineering courses represented by software project management,puts forward the team task mechanism of software engineering courses with AI empowerment and cooperation and competition,develops a unified project management platform to support the implementation of team tasks,and proves the effectiveness of the scheme through the results obtained.展开更多
The equilibrium phase relations of the CaO–SiO_(2)–TiO_(2)–5wt%Fe_(3)O_(4)system were experimentally investigated at 1400℃ in air High-temperature equilibration-quenching techniques were employed in an electric Mo...The equilibrium phase relations of the CaO–SiO_(2)–TiO_(2)–5wt%Fe_(3)O_(4)system were experimentally investigated at 1400℃ in air High-temperature equilibration-quenching techniques were employed in an electric MoSi2resistance heated furnace,with phase composition analysis conducted using an electron probe microanalyzer and X-ray diffraction.A single liquid region,liquid–solid phase equilibria regions (including liquid–tridymite,liquid–rutile,liquid–perovskite,and liquid–wollastonite),and three-phase equilibria regions of liquid–tridymite–rutile and liquid–rutile–perovskite were found.The 1400℃ isothermal sections of the CaO-SiO_(2)-TiO_(2)-5wt%Fe_(3)O_(4)system in air were projected.The present experimental results exhibited good agreement with the calculation results obtained from FactSage.展开更多
Data structure is one of the core courses for computer science students.Mastering data structure is helpful for students to improve the quality and efficiency of programming and lay a solid foundation for further lear...Data structure is one of the core courses for computer science students.Mastering data structure is helpful for students to improve the quality and efficiency of programming and lay a solid foundation for further learning knowledge in related fields of computer.The traditional teaching mode of the course has the shortcomings of rigid classroom,lack of interactivity,and lack of real-time feedback.In order to improve the teaching quality,the course has carried out reforms on the teaching mode,adopting a combination of case-based teaching,optimized experimental projects,process-oriented assessment,and a scientific feedback mechanism,which has improved the teaching effect.展开更多
Applying bio-oxidation waste solution(BOS)to chemical-biological two-stage oxidation process can significantly improve the bio-oxidation efficiency of arsenopyrite.This study aims to clarify the enhanced oxidation mec...Applying bio-oxidation waste solution(BOS)to chemical-biological two-stage oxidation process can significantly improve the bio-oxidation efficiency of arsenopyrite.This study aims to clarify the enhanced oxidation mechanism of arsenopyrite by evaluating the effects of physical and chemical changes of arsenopyrite in BOS chemical oxidation stage on mineral dissolution kinetics,as well as microbial growth activity and community structure composition in bio-oxidation stage.The results showed that the chemical oxidation contributed to destroying the physical and chemical structure of arsenopyrite surface and reducing the particle size,and led to the formation of nitrogenous substances on mineral surface.These chemical oxidation behaviors effectively promoted Fe^(3+)cycling in the bio-oxidation system and weakened the inhibitory effect of the sulfur film on ionic diffusion,thereby enhancing the dissolution kinetics of the arsenopyrite.Therefore,the bio-oxidation efficiency of arsenopyrite was significantly increased in the two-stage oxidation process.After 18 d,the two-stage oxidation process achieved total extraction rates of(88.8±2.0)%,(86.7±1.3)%,and(74.7±3.0)%for As,Fe,and S elements,respectively.These values represented a significant increase of(50.8±3.4)%,(47.1±2.7)%,and(46.0±0.7)%,respectively,compared to the one-stage bio-oxidation process.展开更多
Fatigue failure caused by vibration is the most common type of pipeline failure.The core of this research is to obtain the nonlinear dynamic stress of a pipeline system accurately and efficiently,a topic that needs to...Fatigue failure caused by vibration is the most common type of pipeline failure.The core of this research is to obtain the nonlinear dynamic stress of a pipeline system accurately and efficiently,a topic that needs to be explored in the existing literature.The shell theory can better simulate the circumferential stress distribution,and thus the Mindlin-Reissner shell theory is used to model the pipeline.In this paper,the continuous pipeline system is combined with clamps through modal expansion for the first time,which realizes the coupling problem between a shell and a clamp.While the Bouc-Wen model is used to simulate the nonlinear external force generated by a clamp,the nonlinear coupling characteristics of the system are effectively captured.Then,the dynamic equation of the clamp-pipeline system is established according to the Lagrange energy equation.Based on the resonance frequency and stress amplitude obtained from the experiment,the nonlinear parameters of the clamp are identified with the semi-analytical method(SAM)and particle swarm optimization(PSO)algorithm.This study provides a theoretical basis for the clamp-pipeline system and an efficient and universal solution for stress prediction and analysis of pipelines in engineering.展开更多
Mn-based layered oxides(KMO)have emerged as one of the promising low-cost cathodes for potassiumion batteries(PIBs).However,due to the multiple-phase transitions and the distortion in the MnO6structure induced by the ...Mn-based layered oxides(KMO)have emerged as one of the promising low-cost cathodes for potassiumion batteries(PIBs).However,due to the multiple-phase transitions and the distortion in the MnO6structure induced by the Jahn-Teller(JT)effect associated with Mn-ion,the cathode exhibits poor structural stability.Herein,we propose a strategy to enhance structural stability by introducing robust metal-oxygen(M-O)bonds,which can realize the pinning effect to constrain the distortion in the transition metal(TM)layer.Concurrently,all the elements employed have exceptionally high crustal abundance.As a proof of concept,the designed K_(0.5)Mn_(0.9)Mg_(0.025)Ti_(0.025)Al_(0.05)O_(2)cathode exhibited a discharge capacity of approximately 100 mA h g^(-1)at 20 mA g^(-1)with 79%capacity retention over 50 cycles,and 73%capacity retention over 200 cycles at 200 mA g^(-1),showcased much better battery performance than the designed cathode with less robust M-O bonds.The properties of the formed M-O bonds were investigated using theoretical calculations.The enhanced dynamics,mitigated JT effect,and improved structural stability were elucidated through the in-situ X-ray diffractometer(XRD),in-situ electrochemical impedance spectroscopy(EIS)(and distribution of relaxation times(DRT)method),and ex-situ X-ray absorption fine structure(XAFS)tests.This study holds substantial reference value for the future design of costeffective Mn-based layered cathodes for PIBs.展开更多
Recently,one of the main challenges facing the smart grid is insufficient computing resources and intermittent energy supply for various distributed components(such as monitoring systems for renewable energy power sta...Recently,one of the main challenges facing the smart grid is insufficient computing resources and intermittent energy supply for various distributed components(such as monitoring systems for renewable energy power stations).To solve the problem,we propose an energy harvesting based task scheduling and resource management framework to provide robust and low-cost edge computing services for smart grid.First,we formulate an energy consumption minimization problem with regard to task offloading,time switching,and resource allocation for mobile devices,which can be decoupled and transformed into a typical knapsack problem.Then,solutions are derived by two different algorithms.Furthermore,we deploy renewable energy and energy storage units at edge servers to tackle intermittency and instability problems.Finally,we design an energy management algorithm based on sampling average approximation for edge computing servers to derive the optimal charging/discharging strategies,number of energy storage units,and renewable energy utilization.The simulation results show the efficiency and superiority of our proposed framework.展开更多
In response to the current situation of practical teaching and the main problems in the teaching process of cultivating composite talents in the characteristic demonstration software college,this paper analyzes the im...In response to the current situation of practical teaching and the main problems in the teaching process of cultivating composite talents in the characteristic demonstration software college,this paper analyzes the importance of digital reform in practical teaching,introduces the work foundation,main work,reform characteristics,and effects of digital reform in practical teaching of composite talents in Software College of Northeastern University and lays the foundation for future in-depth research,providing reference for the digital reform of practical teaching in related majors of other colleges.展开更多
In response to the problem of improving practical abilities of students in the process of cultivating innovative talents in the field of financial technology in the specialized software college,this paper analyzes the...In response to the problem of improving practical abilities of students in the process of cultivating innovative talents in the field of financial technology in the specialized software college,this paper analyzes the characteristics and applicability of problem-based learning(PBL)method,proposes a PBL course integration design scheme for the integration of business and technology in the field of financial technology,and provides corresponding course cases.The plan described in this article has been jointly demonstrated by experts from schools and enterprises and has received good feedback.展开更多
Preserving formal style in neural machine translation (NMT) is essential, yet often overlooked as an optimization objective of the training processes. This oversight can lead to translations that, though accurate, lac...Preserving formal style in neural machine translation (NMT) is essential, yet often overlooked as an optimization objective of the training processes. This oversight can lead to translations that, though accurate, lack formality. In this paper, we propose how to improve NMT formality with large language models (LLMs), which combines the style transfer and evaluation capabilities of an LLM and the high-quality translation generation ability of NMT models to improve NMT formality. The proposed method (namely INMTF) encompasses two approaches. The first involves a revision approach using an LLM to revise the NMT-generated translation, ensuring a formal translation style. The second approach employs an LLM as a reward model for scoring translation formality, and then uses reinforcement learning algorithms to fine-tune the NMT model to maximize the reward score, thereby enhancing the formality of the generated translations. Considering the substantial parameter size of LLMs, we also explore methods to reduce the computational cost of INMTF. Experimental results demonstrate that INMTF significantly outperforms baselines in terms of translation formality and translation quality, with an improvement of +9.19 style accuracy points in the German-to-English task and +2.16 COMET score in the Russian-to-English task. Furthermore, our work demonstrates the potential of integrating LLMs within NMT frameworks to bridge the gap between NMT outputs and the formality required in various real-world translation scenarios.展开更多
Poly(ethylene oxide)-based polymer all-solid-state lithium metal batteries(ASSLBs)have received widespread attention due to their low cost,good process ability,and high energy density.Nevertheless,the growth of Li den...Poly(ethylene oxide)-based polymer all-solid-state lithium metal batteries(ASSLBs)have received widespread attention due to their low cost,good process ability,and high energy density.Nevertheless,the growth of Li dendrites within polymer solid-state electrolytes damages the reversibility of Li anodes and still impedes their widespread application.One efficient strategy is to construct a superior solid electrolyte interface.Herein,a stable interface enriched with Li3N and LiF is in-situ formed between Li anode and a terna ry salt electrolyte.This terna ry salt electrolyte is innovatively designed by introducing lithium bis(trifluoromethane sulfonyl)imide(LiTFSI),lithium bis(fluorosulfonyl)imide(LiFSI),and LiNO_(3)to poly(ethylene oxide)matrix.Surface characterization indicates that LiNO3and LiFSI contribute to forming a Li3N-LiF-enriched interface and meanwhile LiTFSI ensures excellent conductivity.Theoretically,among various Li compound components,Li3N has high ionic conductivity,which is beneficial for reducing overpotential,while LiF has high interfacial energy which can enhance nucleation energy and suppress the formation of Li dendrites.The experimental results show that ASSLBs coupled with LiFePO4cathode display extremely excellent cycle stability approximately 2200 cycles at 2 C,with a final and corresponding discharge specific capacity of 96.7 mA h g^(-1).Additionally,a schematic illustration of the working mechanism for the Li_(3)N-LiF interface is proposed.展开更多
The grain size of TiAl alloy castings prepared by traditional casting process is coarse,thus showing poor mechanical properties.In this study,a new type of high performance Ti-46Al alloy tube prepared by vacuum centri...The grain size of TiAl alloy castings prepared by traditional casting process is coarse,thus showing poor mechanical properties.In this study,a new type of high performance Ti-46Al alloy tube prepared by vacuum centrifugal casting technology was introduced.This research comprehensively examined the influence of pouring time on the microstructure and mechanical performance of the castings,employing both experimental approaches and ProCast simulation methodologies.The findings indicate that prolonging the pouring time facilitates a microstructural evolution from coarse columnar grains to refined equiaxed grains.Under the condition of pouring temperature of 1,600℃,rotation speed of 800 r·min^(-1) and pouring time of 6 s,the tensile strength of Ti-46Al alloy at room temperature reaches 650 MPa,and the tensile strength at 800℃ reaches 705 MPa,which is significantly higher than that of traditional as-cast Ti-Al alloy.展开更多
文摘Under the influence of globalization, it's a trend to develop international education in universities around the world. China, as a giant education country, also takes part in the international education market, developing international education in universities, and recruiting international students to study in China. In this paper, it analyzes the rational reasons to develop international education in terms of globalization, nature of universities and consistent development. What's more, based on the experience of developing international education in Software College, Northeastern University(NEU), China, it introduces three aspects of internationalization implemented in the college.
基金financially supported by the National Key K&D Program of China(No.2023YFE0200300)the National Natural Science Foundation of China(Nos.52174303and 51874084)the Program of Introducing Talents of Discipline to Universities(No.B21001)。
文摘Multistage heat treatment involving quenching(Q),lamellarizing(L),and tempering(T)is applied to marine 10Ni5CrMoV steel.The microstructure and mechanical properties were studied by multiscale characterizations,and the kinetics of reverse austenite transformation,strain hardening behavior,and toughening mechanism were further investigated.The lamellarized specimens possess low yield strength but high toughness,especially cryogenic toughness.Lamellarization leads to the development of film-like reversed austenite at the martensite block and lath boundaries,refining the martensite structure and lowering the equivalent grain size.Kinetic analysis of austenite reversion based on the JMAK model shows that the isothermal transformation is dominated by the growth of reversed austenite,and the maximum transformation of reversed austenite is reached at the peak temperature(750℃).The strain hardening behavior based on the modified Crussard-Jaoul analysis indicates that the reversed austenite obtained from lamellarization reduces the proportion of martensite,significantly hindering crack propagation via martensitic transformation during the deformation.As a consequence,the QLT specimens exhibit high machinability and low yield strength.Compared with the QT specimen,the ductile-brittle transition temperature of the QLT specimens decreases from-116 to-130℃due to the low equivalent grain size and reversed austenite,which increases the cleavage force required for crack propagation and absorbs the energy of external load,respectively.This work provides an idea to improve the cryogenic toughness of marine 10Ni5CrMoV steel and lays a theoretical foundation for its industrial application and comprehensive performance improvement.
基金financially supported by the National Natural Science Foundation of China(No.52204310)the Guizhou Provincial Key Laboratory of Coal Clean Utilization(No.[2020]2001)+5 种基金the China Postdoctoral Science Foundation(Nos.2020TQ0059 and 2020M570967)the Natural Science Foundation of Liaoning Province(No.2021–MS–083)the Fundamental Research Funds for the Central Universities,China(No.N2125010)the Open Project Program of Key Laboratory of Metallurgical Emission Reduction&Resources Recycling(Anhui University of Technology),Ministry of Education(No.JKF22–02)the Foundation of Liupanshui Normal University(No.LPSSYZDZK202205)the Key Laboratory for Anisotropy and Texture of Materials,Ministry of Education,China。
文摘With the continuous increase in the disposal volume of spent lithium-ion batteries(LIBs),properly recycling spent LIBs has become essential for the advancement of the circular economy.This study presents a systematic analysis of the chlorination roasting kinetics and proposes a new two-step chlorination roasting process that integrates thermodynamics for the recycling of LIB cathode materials.The activation energy for the chloride reaction was 88.41 kJ/mol according to thermogravimetric analysis–derivative thermogravimetry data obtained by using model-free,model-fitting,and Z(α)function(αis conversion rate).Results indicated that the reaction was dominated by the first-order(F1)model when the conversion rate was less than or equal to 0.5 and shifted to the second-order(F2)model when the conversion rate exceeded 0.5.Optimal conditions were determined by thoroughly investigating the effects of roasting temperature,roasting time,and the mass ratio of NH_(4)Cl to LiCoO_(2).Under the optimal conditions,namely 400℃,20 min,and NH_(4)Cl/LiCoO_(2)mass ratio of 3:1,the leaching efficiency of Li and Co reached 99.43% and 99.05%,respectively.Analysis of the roasted products revealed that valuable metals in LiCoO_(2)transformed into CoCl_(2) and LiCl.Furthermore,the reaction mechanism was elucidated,providing insights for the establishment of a novel low-temperature chlorination roasting technology based on a crystal structure perspective.This technology can guide the development of LIB recycling processes with low energy consumption,low secondary pollution,high recovery efficiency,and high added value.
基金supported by the General Program of the National Natural Science Foundation of China(No.52274326)the China Baowu Low Carbon Metallurgy Innovation Foundation(No.BWLCF202109)the Seventh Batch of Ten Thousand Talents Plan of China(No.ZX20220553).
文摘Sinter is the core raw material for blast furnaces.Flue pressure,which is an important state parameter,affects sinter quality.In this paper,flue pressure prediction and optimization were studied based on the shapley additive explanation(SHAP)to predict the flue pressure and take targeted adjustment measures.First,the sintering process data were collected and processed.A flue pressure prediction model was then constructed after comparing different feature selection methods and model algorithms using SHAP+extremely random-ized trees(ET).The prediction accuracy of the model within the error range of±0.25 kPa was 92.63%.SHAP analysis was employed to improve the interpretability of the prediction model.The effects of various sintering operation parameters on flue pressure,the relation-ship between the numerical range of key operation parameters and flue pressure,the effect of operation parameter combinations on flue pressure,and the prediction process of the flue pressure prediction model on a single sample were analyzed.A flue pressure optimization module was also constructed and analyzed when the prediction satisfied the judgment conditions.The operating parameter combination was then pushed.The flue pressure was increased by 5.87%during the verification process,achieving a good optimization effect.
基金supported in part by the National Key Research and Development Program of China under Grant No.2021YFF0901300in part by the National Natural Science Foundation of China under Grant Nos.62173076 and 72271048.
文摘The distributed permutation flow shop scheduling problem(DPFSP)has received increasing attention in recent years.The iterated greedy algorithm(IGA)serves as a powerful optimizer for addressing such a problem because of its straightforward,single-solution evolution framework.However,a potential draw-back of IGA is the lack of utilization of historical information,which could lead to an imbalance between exploration and exploitation,especially in large-scale DPFSPs.As a consequence,this paper develops an IGA with memory and learning mechanisms(MLIGA)to efficiently solve the DPFSP targeted at the mini-malmakespan.InMLIGA,we incorporate a memory mechanism to make a more informed selection of the initial solution at each stage of the search,by extending,reconstructing,and reinforcing the information from previous solutions.In addition,we design a twolayer cooperative reinforcement learning approach to intelligently determine the key parameters of IGA and the operations of the memory mechanism.Meanwhile,to ensure that the experience generated by each perturbation operator is fully learned and to reduce the prior parameters of MLIGA,a probability curve-based acceptance criterion is proposed by combining a cube root function with custom rules.At last,a discrete adaptive learning rate is employed to enhance the stability of the memory and learningmechanisms.Complete ablation experiments are utilized to verify the effectiveness of the memory mechanism,and the results show that this mechanism is capable of improving the performance of IGA to a large extent.Furthermore,through comparative experiments involving MLIGA and five state-of-the-art algorithms on 720 benchmarks,we have discovered that MLI-GA demonstrates significant potential for solving large-scale DPFSPs.This indicates that MLIGA is well-suited for real-world distributed flow shop scheduling.
基金financially supported by the National Natural Science Foundation of China(Nos.52074078 and 52374327)the Applied Fundamental Research Program of Liaoning Province,China(No.2023JH2/101600002)+3 种基金the Liaoning Provincial Natural Science Foundation,China(No.2022-YQ-09)the Shenyang Young Middle-Aged Scientific and Technological Innovation Talent Support Program,China(No.RC220491)the Liaoning Province Steel Industry-University-Research Innovation Alliance Cooperation Project of Bensteel Group,China(No.KJBLM202202)the Fundamental Research Funds for the Central Universities,China(Nos.N2201023 and N2325009)。
文摘In recent years,medium entropy alloys have become a research hotspot due to their excellent physical and chemical performances.By controlling reasonable elemental composition and processing parameters,the medium entropy alloys can exhibit similar properties to high entropy alloys and have lower costs.In this paper,a FeCoNi medium entropy alloy precursor was prepared via sol-gel and coprecipitation methods,respectively,and FeCoNi medium entropy alloys were prepared by carbothermal and hydrogen reduction.The phases and magnetic properties of FeCoNi medium entropy alloy were investigated.Results showed that FeCoNi medium entropy alloy was produced by carbothermal and hydrogen reduction at 1500℃.Some carbon was detected in the FeCoNi medium entropy alloy prepared by carbothermal reduction.The alloy prepared by hydrogen reduction was uniform and showed a relatively high purity.Moreover,the hydrogen reduction product exhibited better saturation magnetization and lower coercivity.
基金supported in part by the National Natural Science Foundation of China under Grants 61973065,U20A20197,61973063.
文摘Previous multi-view 3D human pose estimation methods neither correlate different human joints in each view nor model learnable correlations between the same joints in different views explicitly,meaning that skeleton structure information is not utilized and multi-view pose information is not completely fused.Moreover,existing graph convolutional operations do not consider the specificity of different joints and different views of pose information when processing skeleton graphs,making the correlation weights between nodes in the graph and their neighborhood nodes shared.Existing Graph Convolutional Networks(GCNs)cannot extract global and deeplevel skeleton structure information and view correlations efficiently.To solve these problems,pre-estimated multiview 2D poses are designed as a multi-view skeleton graph to fuse skeleton priors and view correlations explicitly to process occlusion problem,with the skeleton-edge and symmetry-edge representing the structure correlations between adjacent joints in each viewof skeleton graph and the view-edge representing the view correlations between the same joints in different views.To make graph convolution operation mine elaborate and sufficient skeleton structure information and view correlations,different correlation weights are assigned to different categories of neighborhood nodes and further assigned to each node in the graph.Based on the graph convolution operation proposed above,a Residual Graph Convolution(RGC)module is designed as the basic module to be combined with the simplified Hourglass architecture to construct the Hourglass-GCN as our 3D pose estimation network.Hourglass-GCNwith a symmetrical and concise architecture processes three scales ofmulti-viewskeleton graphs to extract local-to-global scale and shallow-to-deep level skeleton features efficiently.Experimental results on common large 3D pose dataset Human3.6M and MPI-INF-3DHP show that Hourglass-GCN outperforms some excellent methods in 3D pose estimation accuracy.
基金partially supported by the National Natural Science Foundation of China(22479022)Liaoning Revitalization Talents Program(XLYC2007129)。
文摘Aqueous zinc metal batteries(ZMBs)which are environmentally benign and cheap can be used for grid-scale energy storage,but have a short cycling life mainly due to the poor reversibility of zinc metal anodes in mild aqueous electrolytes.A zincophilic carbon(ZC)layer was deposited on a Zn metal foil at 450°C by the up-stream pyrolysis of a hydrogen-bonded supramolecular substance framework,as-sembled from melamine(ME)and cyanuric acid(CA).The zincophilic groups(C=O and C=N)in the ZC layer guide uniform zinc plating/stripping and eliminate dendrites and side reactions.so that assembled symmetrical batteries(ZC@Zn//ZC@Zn)have a long-term service life of 2500 h at 1 mA cm^(−2) and 1 mAh cm^(−2),which is much longer than that of bare Zn anodes(180 h).In addition,ZC@Zn//V2O5 full batteries have a higher capacity of 174 mAh g^(−1) after 1200 cycles at 2 A g^(−1) than a Zn//V_(2)O_(5) counterpart(100 mAh g^(−1)).The strategy developed for the low-temperat-ure deposition of the ZC layer is a new way to construct advanced zinc metal anodes for ZMBs.
文摘Under the background of training practical compound talents in software engineering,this paper analyzes the problems existing in the current teaching of software engineering courses represented by software project management,puts forward the team task mechanism of software engineering courses with AI empowerment and cooperation and competition,develops a unified project management platform to support the implementation of team tasks,and proves the effectiveness of the scheme through the results obtained.
基金financially supported from the National Natural Science Foundation of China (No. 52204310)the National Key Research and Development Program of China (No. 2021YFC2901000)+4 种基金the China Postdoctoral Science Foundation (Nos. 2020TQ0059 and 2020M570967)the Natural Science Foundation of Liaoning Province, China (No. 2021-MS-083)the Fundamental Research Funds for the Central Universities, China (No. N2125010)the Open Project Program of Key Laboratory of Metallurgical Emission Reduction & Resources Recycling (Anhui University of Technology), Ministry of Education, China (No. JKF22-02)the Key Laboratory for Anisotropy and Texture of Materials, Ministry of Education, China。
文摘The equilibrium phase relations of the CaO–SiO_(2)–TiO_(2)–5wt%Fe_(3)O_(4)system were experimentally investigated at 1400℃ in air High-temperature equilibration-quenching techniques were employed in an electric MoSi2resistance heated furnace,with phase composition analysis conducted using an electron probe microanalyzer and X-ray diffraction.A single liquid region,liquid–solid phase equilibria regions (including liquid–tridymite,liquid–rutile,liquid–perovskite,and liquid–wollastonite),and three-phase equilibria regions of liquid–tridymite–rutile and liquid–rutile–perovskite were found.The 1400℃ isothermal sections of the CaO-SiO_(2)-TiO_(2)-5wt%Fe_(3)O_(4)system in air were projected.The present experimental results exhibited good agreement with the calculation results obtained from FactSage.
文摘Data structure is one of the core courses for computer science students.Mastering data structure is helpful for students to improve the quality and efficiency of programming and lay a solid foundation for further learning knowledge in related fields of computer.The traditional teaching mode of the course has the shortcomings of rigid classroom,lack of interactivity,and lack of real-time feedback.In order to improve the teaching quality,the course has carried out reforms on the teaching mode,adopting a combination of case-based teaching,optimized experimental projects,process-oriented assessment,and a scientific feedback mechanism,which has improved the teaching effect.
基金Project(52274348)supported by the National Natural Science Foundation of ChinaProject(2022JH1/10400024)supported by the Major Projects for the“Revealed Top”Science and Technology of Liaoning Province,China。
文摘Applying bio-oxidation waste solution(BOS)to chemical-biological two-stage oxidation process can significantly improve the bio-oxidation efficiency of arsenopyrite.This study aims to clarify the enhanced oxidation mechanism of arsenopyrite by evaluating the effects of physical and chemical changes of arsenopyrite in BOS chemical oxidation stage on mineral dissolution kinetics,as well as microbial growth activity and community structure composition in bio-oxidation stage.The results showed that the chemical oxidation contributed to destroying the physical and chemical structure of arsenopyrite surface and reducing the particle size,and led to the formation of nitrogenous substances on mineral surface.These chemical oxidation behaviors effectively promoted Fe^(3+)cycling in the bio-oxidation system and weakened the inhibitory effect of the sulfur film on ionic diffusion,thereby enhancing the dissolution kinetics of the arsenopyrite.Therefore,the bio-oxidation efficiency of arsenopyrite was significantly increased in the two-stage oxidation process.After 18 d,the two-stage oxidation process achieved total extraction rates of(88.8±2.0)%,(86.7±1.3)%,and(74.7±3.0)%for As,Fe,and S elements,respectively.These values represented a significant increase of(50.8±3.4)%,(47.1±2.7)%,and(46.0±0.7)%,respectively,compared to the one-stage bio-oxidation process.
基金Project supported by the National Science and Technology Major Project(No.J2019-I-0008-0008)the National Natural Science Foundation of China(No.52305096)the Chinese Postdoctoral Science Foundation(No.GZB20230117)。
文摘Fatigue failure caused by vibration is the most common type of pipeline failure.The core of this research is to obtain the nonlinear dynamic stress of a pipeline system accurately and efficiently,a topic that needs to be explored in the existing literature.The shell theory can better simulate the circumferential stress distribution,and thus the Mindlin-Reissner shell theory is used to model the pipeline.In this paper,the continuous pipeline system is combined with clamps through modal expansion for the first time,which realizes the coupling problem between a shell and a clamp.While the Bouc-Wen model is used to simulate the nonlinear external force generated by a clamp,the nonlinear coupling characteristics of the system are effectively captured.Then,the dynamic equation of the clamp-pipeline system is established according to the Lagrange energy equation.Based on the resonance frequency and stress amplitude obtained from the experiment,the nonlinear parameters of the clamp are identified with the semi-analytical method(SAM)and particle swarm optimization(PSO)algorithm.This study provides a theoretical basis for the clamp-pipeline system and an efficient and universal solution for stress prediction and analysis of pipelines in engineering.
基金financially supported by the National Natural Science Foundation of China(NSFC)(52274295)the Natural Science Foundation of Hebei Province(E2021501029)+3 种基金the Fundamental Research Funds for the Central Universities(N2423051,N2423053,N2302016,N2423019,N2323013,N2423005)the Science and Technology Project of Hebei Education Department(QN2024238)the Basic Research Program Project of Shijiazhuang City for Universities Stationed in Hebei Province(241790937A)the Science and Technology Project of Qinhuangdao City in 2023.
文摘Mn-based layered oxides(KMO)have emerged as one of the promising low-cost cathodes for potassiumion batteries(PIBs).However,due to the multiple-phase transitions and the distortion in the MnO6structure induced by the Jahn-Teller(JT)effect associated with Mn-ion,the cathode exhibits poor structural stability.Herein,we propose a strategy to enhance structural stability by introducing robust metal-oxygen(M-O)bonds,which can realize the pinning effect to constrain the distortion in the transition metal(TM)layer.Concurrently,all the elements employed have exceptionally high crustal abundance.As a proof of concept,the designed K_(0.5)Mn_(0.9)Mg_(0.025)Ti_(0.025)Al_(0.05)O_(2)cathode exhibited a discharge capacity of approximately 100 mA h g^(-1)at 20 mA g^(-1)with 79%capacity retention over 50 cycles,and 73%capacity retention over 200 cycles at 200 mA g^(-1),showcased much better battery performance than the designed cathode with less robust M-O bonds.The properties of the formed M-O bonds were investigated using theoretical calculations.The enhanced dynamics,mitigated JT effect,and improved structural stability were elucidated through the in-situ X-ray diffractometer(XRD),in-situ electrochemical impedance spectroscopy(EIS)(and distribution of relaxation times(DRT)method),and ex-situ X-ray absorption fine structure(XAFS)tests.This study holds substantial reference value for the future design of costeffective Mn-based layered cathodes for PIBs.
基金supported in part by the National Natural Science Foundation of China under Grant No.61473066in part by the Natural Science Foundation of Hebei Province under Grant No.F2021501020+2 种基金in part by the S&T Program of Qinhuangdao under Grant No.202401A195in part by the Science Research Project of Hebei Education Department under Grant No.QN2025008in part by the Innovation Capability Improvement Plan Project of Hebei Province under Grant No.22567637H
文摘Recently,one of the main challenges facing the smart grid is insufficient computing resources and intermittent energy supply for various distributed components(such as monitoring systems for renewable energy power stations).To solve the problem,we propose an energy harvesting based task scheduling and resource management framework to provide robust and low-cost edge computing services for smart grid.First,we formulate an energy consumption minimization problem with regard to task offloading,time switching,and resource allocation for mobile devices,which can be decoupled and transformed into a typical knapsack problem.Then,solutions are derived by two different algorithms.Furthermore,we deploy renewable energy and energy storage units at edge servers to tackle intermittency and instability problems.Finally,we design an energy management algorithm based on sampling average approximation for edge computing servers to derive the optimal charging/discharging strategies,number of energy storage units,and renewable energy utilization.The simulation results show the efficiency and superiority of our proposed framework.
文摘In response to the current situation of practical teaching and the main problems in the teaching process of cultivating composite talents in the characteristic demonstration software college,this paper analyzes the importance of digital reform in practical teaching,introduces the work foundation,main work,reform characteristics,and effects of digital reform in practical teaching of composite talents in Software College of Northeastern University and lays the foundation for future in-depth research,providing reference for the digital reform of practical teaching in related majors of other colleges.
文摘In response to the problem of improving practical abilities of students in the process of cultivating innovative talents in the field of financial technology in the specialized software college,this paper analyzes the characteristics and applicability of problem-based learning(PBL)method,proposes a PBL course integration design scheme for the integration of business and technology in the field of financial technology,and provides corresponding course cases.The plan described in this article has been jointly demonstrated by experts from schools and enterprises and has received good feedback.
文摘Preserving formal style in neural machine translation (NMT) is essential, yet often overlooked as an optimization objective of the training processes. This oversight can lead to translations that, though accurate, lack formality. In this paper, we propose how to improve NMT formality with large language models (LLMs), which combines the style transfer and evaluation capabilities of an LLM and the high-quality translation generation ability of NMT models to improve NMT formality. The proposed method (namely INMTF) encompasses two approaches. The first involves a revision approach using an LLM to revise the NMT-generated translation, ensuring a formal translation style. The second approach employs an LLM as a reward model for scoring translation formality, and then uses reinforcement learning algorithms to fine-tune the NMT model to maximize the reward score, thereby enhancing the formality of the generated translations. Considering the substantial parameter size of LLMs, we also explore methods to reduce the computational cost of INMTF. Experimental results demonstrate that INMTF significantly outperforms baselines in terms of translation formality and translation quality, with an improvement of +9.19 style accuracy points in the German-to-English task and +2.16 COMET score in the Russian-to-English task. Furthermore, our work demonstrates the potential of integrating LLMs within NMT frameworks to bridge the gap between NMT outputs and the formality required in various real-world translation scenarios.
基金supported by the National Natural Science Foundation of China(nos.22309027 and 52374301)the Natural Science Foundation of Hebei Province(no.E2022501014)+3 种基金the Shijiazhuang Basic Research Project(nos.241790667A and 241790907A)the Fundamental Research Funds for the Central Universities(no.N2423054)the 2023 Hebei Provincial Doctoral Candidate Innovation Ability Training Funding Project(no.CXZZBS2023159)the Performance Subsidy Fund for Key Laboratory of Dielectric and Electrolyte Functional Material Hebei Province(no.22567627H).
文摘Poly(ethylene oxide)-based polymer all-solid-state lithium metal batteries(ASSLBs)have received widespread attention due to their low cost,good process ability,and high energy density.Nevertheless,the growth of Li dendrites within polymer solid-state electrolytes damages the reversibility of Li anodes and still impedes their widespread application.One efficient strategy is to construct a superior solid electrolyte interface.Herein,a stable interface enriched with Li3N and LiF is in-situ formed between Li anode and a terna ry salt electrolyte.This terna ry salt electrolyte is innovatively designed by introducing lithium bis(trifluoromethane sulfonyl)imide(LiTFSI),lithium bis(fluorosulfonyl)imide(LiFSI),and LiNO_(3)to poly(ethylene oxide)matrix.Surface characterization indicates that LiNO3and LiFSI contribute to forming a Li3N-LiF-enriched interface and meanwhile LiTFSI ensures excellent conductivity.Theoretically,among various Li compound components,Li3N has high ionic conductivity,which is beneficial for reducing overpotential,while LiF has high interfacial energy which can enhance nucleation energy and suppress the formation of Li dendrites.The experimental results show that ASSLBs coupled with LiFePO4cathode display extremely excellent cycle stability approximately 2200 cycles at 2 C,with a final and corresponding discharge specific capacity of 96.7 mA h g^(-1).Additionally,a schematic illustration of the working mechanism for the Li_(3)N-LiF interface is proposed.
基金financially supported by the Natural Science Foundation of China(52071065)the Fundamental Research Funds for the Central Universities(N2007007)the National Key R&D Program of China(2016YFB-0301201)。
文摘The grain size of TiAl alloy castings prepared by traditional casting process is coarse,thus showing poor mechanical properties.In this study,a new type of high performance Ti-46Al alloy tube prepared by vacuum centrifugal casting technology was introduced.This research comprehensively examined the influence of pouring time on the microstructure and mechanical performance of the castings,employing both experimental approaches and ProCast simulation methodologies.The findings indicate that prolonging the pouring time facilitates a microstructural evolution from coarse columnar grains to refined equiaxed grains.Under the condition of pouring temperature of 1,600℃,rotation speed of 800 r·min^(-1) and pouring time of 6 s,the tensile strength of Ti-46Al alloy at room temperature reaches 650 MPa,and the tensile strength at 800℃ reaches 705 MPa,which is significantly higher than that of traditional as-cast Ti-Al alloy.