The preparation of granulated adsorption material of water-quenched slag/rectorite composite and the treatment of Cu ( Ⅱ )-containing copper smelter wastewater with the adsorption material were studied. The experim...The preparation of granulated adsorption material of water-quenched slag/rectorite composite and the treatment of Cu ( Ⅱ )-containing copper smelter wastewater with the adsorption material were studied. The experimental results showed that under the conditions with the mass ratio of water-quenched slag to rectorite of 1:1, 10% additive of industrial starch (IS), and 50% water, and a calcination temperature of 400 ℃, the granulated adsorption material prepared had a density of 1.06 kg/m^3, a porosity of 62.29%, water absorption rate of 58.82%, and compressive strength of 2.22 MPa. The efficiency of wastewater treatment was the best, whereas the rate of spallation loss was low. Under the conditions of natural pH, with the addition of the granulated adsorption material of 0.05 g/mL, a reaction time of 40 minutes, and temperature of 25 ℃, the efficiency of the granulated adsorption material for the removal of Cu ( Ⅱ ) ions from the copper smelter wastewater attained 98.2%, and the quality indexes of the wastewater after treatment conformed with the first level of integrated wastewater discharge standard (GB8978-1996). The reclamation of the used granulated adsorption material was carried out by de-sorption of the Cu ( Ⅱ) ions from the surface with 1 mol/L sodium chloride solution. The de-sorption rate was 96.4%, and the adsorption material can be reused many times to treat copper smelter wastewater.展开更多
Difference in properties of water-quenched granulated slag is mainly caused by the difference in BF slag granulating process, which, in turn, causes the difference in slag' s glassy structure. Changes in quick self-h...Difference in properties of water-quenched granulated slag is mainly caused by the difference in BF slag granulating process, which, in turn, causes the difference in slag' s glassy structure. Changes in quick self-hydraulicity of Baosteel different BF slag, changes in strength of different slag at different maintenance temperatures and changes in strength of different BF slag stimulated by clinker are tested in various ways. Effect of external factors on slag' s activity is analyzed. The results indicate that the slag from Baosteel has higher hydraulicity, and it increases with time.展开更多
CGCS(coal gasification coarse slag)and desert sand composite aggregate replacing river sand for the preparation of concrete(coal gasification coarse slag and desert sand composite fine aggregate concrete,abbreviated a...CGCS(coal gasification coarse slag)and desert sand composite aggregate replacing river sand for the preparation of concrete(coal gasification coarse slag and desert sand composite fine aggregate concrete,abbreviated as CDFC)were investigated to study the effect of different CGCS dosages,the sand rate of concrete,and the dosage of fly ash(FA)in cementitious material on the mechanical properties of the concrete and the excessive zone at the aggregate interface.The experimental results show that,with the increase of CGCS admixture,the CDFC water-cement ratio decreases,and the strength shows first increase and then decrease;with the increase of concrete sand rate,the CDFC strength shows first increase and then decrease,and with the increase of FA,the CDFC strength shows first increase and then decrease,when the dosage of cementitious material is 360 kg/m^(3),the composite fine aggregate dosage is 872 kg/m^(3),and the coarse aggregate dosage is 983 kg/m^(3),the maximum compressive strength of its CGCS is 47.4 MPa.The microstructures of CGCS and hydration products were analyzed by X-ray fluorescence spectrometry(XRF),X-ray diffraction(XRD),Fourier transform infrared spectrometry(FTIR),and scanning electron microscopy(SEM).It is found that the CDFC as fine aggregate can generate hydration products such as hydrated calcium silicate gel(C-S-H)in the transition zone of the concrete interface,which can greatly improve the weak zones of the concrete,and improve the strength.展开更多
The production processes for Si and FeSi have traditionally been considered slag-free.However,recent excavations have revealed significant accumulation of CaO–SiO_(2)–Al_(2)O_(3)slag within the furnaces.This accumul...The production processes for Si and FeSi have traditionally been considered slag-free.However,recent excavations have revealed significant accumulation of CaO–SiO_(2)–Al_(2)O_(3)slag within the furnaces.This accumulation can obstruct the flow of materials and gases,resulting in lower metal yield and higher energy consumption.The main objective of the current work is to enhance our understanding of slag formation during Si and FeSi production.We investigate slag formation through the dissolution of limestone and iron oxide in quartz and condensate,focusing on the reactions between these materials at a gram scale.Our findings indicate that most slag reaches equilibrium relatively quickly at temperatures starting from 1673 K.Notably,slag formation starts at lower temperature when the iron source is present (1573 K) compared to when only CaO is involved (1673 K).The minor elements tend to accumulate at quartz grain boundaries prior to slag formation.Furthermore,the slag produced from condensate contains less SiO_(2)than that generated from quartz with limestone.The type of quartz source and SiO_(2)phase appears to have little influence on slag formation.Good wettability is a significant factor in reaction between quartz and slag.FactSage calculations indicates that the viscosity of the slag ranges from 0.02 to 14.4 Pa·s under furnace conditions,comparable to the viscosity of honey or motor oil at room temperature.展开更多
In view of the volume instability of steel slag aggregate leading to the quality problem of expansion damage in asphalt road construction,the 4.75-9.5 mm steel slag particles were treated by autoclaved carbonation tec...In view of the volume instability of steel slag aggregate leading to the quality problem of expansion damage in asphalt road construction,the 4.75-9.5 mm steel slag particles were treated by autoclaved carbonation technology,and the effects of the carbonation system(temperature and time)on the autoclaved pulverization rate,f-CaO content,and the relationship between them for the carbonated steel slag were investigated.In addition,the microstructure of the carbonated steel slag was analyzed by X-ray diffractometer(XRD),scanning electron microscope and energy dispersive spectrometer(SEM-EDS),metallographic microscope and X-ray fluorescence imaging spectrometer(XRF).The experimental results indicate that,under the initial CO_(2)pressure of 1.0 MPa,increasing the carbonation temperature leads to the increase in the crystal plane spacing of Ca(OH)_(2)that was generated by the hydration of minerals in steel slag,and promotes the transformation of carbonated CaCO_(3)from the orthorhombic system to the hexagonal system,resulting in the increase of the crystal planes spacing of them,meantime,accelerates the decomposition of RO phases and also the outward migration of Ca^(2+),Fe^(2+),and Mn^(2+)ions to cover and coat on the Si^(4+),Al^(3+)ions,and impels the formation of hydroxides such as Fe(OH)_(3)and the formation of carbonates such as Ca(Mg)CO_(3),FeCO_(3)and MnCO_(3).Carbonation at the temperature of 90℃for 3 h can reach the center of 4.75-9.5 mm steel slag particles.Meanwhile,the increase of temperature can promote the mineral reaction in steel slag,resulting in the fuzzy interface between mineral phases,increase of burrs,dispersion,crossover,reduction of grain size,and rearrangement of mineral particles.展开更多
In order to avoid the waste of iron caused by the direct use of ferronickel slag(FNS)in building materials,the effects of reduction iron extraction on the physical and chemical properties,cementitious reactivity and h...In order to avoid the waste of iron caused by the direct use of ferronickel slag(FNS)in building materials,the effects of reduction iron extraction on the physical and chemical properties,cementitious reactivity and hydration reaction characteristics of FNS and ferrum extraction tailing of nickel slag(FETNS)were studied.The experimental results show that the reduction ferrum extraction method changes the mineral phase composition of the waste slag,breaks the Si-O-Si bond,forms the tetrahedral structure of Si-O-NBO or Si-O-2NBO,and increases the content of active components such as Ca,Si,Mg,and Al.Compared with FNS,the 28 d compressive strength of pastes prepared by FETNS increases by 16.12%,22.57%,33.13%,44.26%,and 57.65%,respectively.The degree of hydration reaction of the composite cementitious systems in the FETNS group is higher than that in the FNS group at different ages,and the content of hydration products such as C-S-H gel and ettringite(AFt)is also higher than that in the FNS group.More hydration products can improve the curing ability to Cr and Mn of the composite cementitious systems in the FETNS group,and reduce the leaching value of Cr and Mn.展开更多
This study introduced a low-temperature thermochemical method for the treatment of EMR in the presence of carbide slag(CS)to achieve an economical and efficient harmless effect.The experimental results indicate that,u...This study introduced a low-temperature thermochemical method for the treatment of EMR in the presence of carbide slag(CS)to achieve an economical and efficient harmless effect.The experimental results indicate that,under suitable conditions,the NH_(4)^(+)and Mn^(2+)contents in EMR decrease notably with the increasing CS content,accompanied by an increase in pH value.Furthermore,the concentration of NH_(4)^(+)in EMR considerably decreases with the increasing liquid-to-solid ratio,eventually stabilizing.Similarly,the pH value first increases and then decreases,ultimately stabilizing.At a CS content of 12%and a liquid-to-solid ratio of 0.7,the leaching concentrations of NH_(4)^(+)and Mn^(2+)in EMR(127.7 mg/kg and 0.15 mg/L,respectively)fall below the standard detection limit(2 mg/L),with the pH measuring 8.26,meeting the conditions outlined in the GB 8978.NH_(4)^(+)is converted to NH_(3),while Mn^(2+)is transformed into solid precipitates such as Mn(OH)_(2),Mn_(2)O_(3),MnO_(2),Ca_(3)Mn_(2)O_(7),and Ca_(2)MnO_(4).The majority of manganese ions exist in trivalent or tetravalent states and remain stable over time.The cost of using CS as a reagent for treating 1 ton of EMR is merely$1.01.The high OH^(-)concentration provided by CS enables the effective removal of NH_(4)^(+)from EMR and the solidification of Mn^(2+)during thermal reactions.展开更多
The penetration of ladle slag into refractory linings is an essential process in service,and the mechanical properties of the refractory castables are affected by the location and content of slag in the refractory cas...The penetration of ladle slag into refractory linings is an essential process in service,and the mechanical properties of the refractory castables are affected by the location and content of slag in the refractory castables.In this work,ladle slag was added into Al_(2)O_(3)-Mgo refractory castables and its influence on the microstructure evolution,mechanical properties and thermal shock resistance of the castables was investigated.The phase composition and contents of the castables during the corrosion process were calculated by FactSage TM(6.2)and studied.The results indicate that the residual strength decreases as the ladle slag addition increases from 0 to 6 mass%.While the hot modulus of rupture of the castable with 6%ladle slag significantly decreases by approximately 80%compared with the one without ladle slag.The elastic modulus and CMOR of the castables decrease with slag-adding,which leads to the increase of liquid phase contents inside the samples.展开更多
Chromium plays a vital role in stainless steel due to its ability to improve the corrosion resistance of the latter.However,the re-lease of chromium from stainless steel slag(SSS)during SSS stockpiling causes detrimen...Chromium plays a vital role in stainless steel due to its ability to improve the corrosion resistance of the latter.However,the re-lease of chromium from stainless steel slag(SSS)during SSS stockpiling causes detrimental environmental issues.To prevent chromium pollution,the effects of iron oxide on crystallization behavior and spatial distribution of spinel were investigated in this work.The results revealed that FeO was more conducive to the growth of spinels compared with Fe2O3 and Fe3O4.Spinels were found to be mainly distrib-uted at the top and bottom of slag.The amount of spinel phase at the bottom decreased with the increasing FeO content,while that at the top increased.The average particle size of spinel in the slag with 18wt%FeO content was 12.8μm.Meanwhile,no notable structural changes were observed with a further increase in FeO content.In other words,the spatial distribution of spinel changed when the content of iron oxide varied in the range of 8wt%to 18wt%.Finally,less spinel was found at the bottom of slag with a FeO content of 23wt%.展开更多
Coal gasification fine slag(FS)is a typical solid waste generated in coal gasification.Its current disposal methods of stockpil-ing and landfilling have caused serious soil and ecological hazards.Separation recovery a...Coal gasification fine slag(FS)is a typical solid waste generated in coal gasification.Its current disposal methods of stockpil-ing and landfilling have caused serious soil and ecological hazards.Separation recovery and the high-value utilization of residual carbon(RC)in FS are the keys to realizing the win-win situation of the coal chemical industry in terms of economic and environmental benefits.The structural properties,such as pore,surface functional group,and microcrystalline structures,of RC in FS(FS-RC)not only affect the flotation recovery efficiency of FS-RC but also form the basis for the high-value utilization of FS-RC.In this paper,the characteristics of FS-RC in terms of pore structure,surface functional groups,and microcrystalline structure are sorted out in accordance with gasification type and FS particle size.The reasons for the formation of the special structural properties of FS-RC are analyzed,and their influence on the flotation separation and high-value utilization of FS-RC is summarized.Separation methods based on the pore structural characterist-ics of FS-RC,such as ultrasonic pretreatment-pore-blocking flotation and pore breaking-flocculation flotation,are proposed to be the key development technologies for improving FS-RC recovery in the future.The design of low-cost,low-dose collectors containing polar bonds based on the surface and microcrystalline structures of FS-RC is proposed to be an important breakthrough point for strengthening the flotation efficiency of FS-RC in the future.The high-value utilization of FS should be based on the physicochemical structural proper-ties of FS-RC and should focus on the environmental impact of hazardous elements and the recyclability of chemical waste liquid to es-tablish an environmentally friendly utilization method.This review is of great theoretical importance for the comprehensive understand-ing of the unique structural properties of FS-RC,the breakthrough of the technological bottleneck in the efficient flotation separation of FS,and the expansion of the field of the high value-added utilization of FS-RC.展开更多
To investigate the influence of electric parameters and slag system on the solidification quality of electroslag ingot during electroslag remelting,different power supply modes,current strengths and remelting slag sys...To investigate the influence of electric parameters and slag system on the solidification quality of electroslag ingot during electroslag remelting,different power supply modes,current strengths and remelting slag systems were used to conduct electroslag remelting experiments on 304L austenitic stainless steel,and the macrostructure of electroslag ingots was analyzed.The results indicate that the depth of the metal pool decreases with the reduction of remelting frequency in the low frequency power supply mode.The effects of different power supply modes,such as low-frequency,direct current straight polarity(DCSP),and direct current reverse polarity(DCRP),on reducing the depth of the metal pool increase in that order.By reducing the remelting current strength in the same power supply mode,the depth of metal pool is reduced.When compared to the binary slag system of 70%CaF2+30%Al2O3,the ternary slag system of 60%CaF2+20%Al2O3+20%CaO is more effective in reducing the depth of the metal pool during remelting.Utilizing the 60%CaF2+20%Al2O3+20%CaO ternary slag system results in a shallower and flatter metal pool,with columnar crystal growth occurring closer to the axial crystal.This effect is observed for both low frequency and direct current(DC)power supply modes.展开更多
Water-quenched copper-nickel metallurgical slag enriched with olivine minerals exhibits promising potential for the production of CO_(2)-mineralized cementitious materials.In this work,copper-nickel slag-based cementi...Water-quenched copper-nickel metallurgical slag enriched with olivine minerals exhibits promising potential for the production of CO_(2)-mineralized cementitious materials.In this work,copper-nickel slag-based cementitious material(CNCM)was synthesized by using different chemical activation methods to enhance its hydration reactivity and CO_(2) mineralization capacity.Different water curing ages and carbonation conditions were explored related to their carbonation and mechanical properties development.Meanwhile,thermogravimetry differential scanning calorimetry and X-ray diffraction methods were applied to evaluate the CO_(2) adsorption amount and carbonation products of CNCM.Microstructure development of carbonated CNCM blocks was examined by backscattered electron imaging(BSE)with energy-dispersive X-ray spectrometry.Results showed that among the studied samples,the CNCM sample that was subjected to water curing for 3 d exhibited the highest CO_(2) sequestration amount of 8.51wt%at 80℃and 72 h while presenting the compressive strength of 39.07 MPa.This result indicated that 1 t of this CNCM can sequester 85.1 kg of CO_(2) and exhibit high compressive strength.Although the addition of citric acid did not improve strength development,it was beneficial to increase the CO_(2) diffusion and adsorption amount under the same carbonation conditions from BSE results.This work provides guidance for synthesizing CO_(2)-mineralized cementitious materials using large amounts of metallurgical slags containing olivine minerals.展开更多
Dredged marine soils(DMS)have poor engineering properties,which limit their usage in construction projects.This research examines the application of reactive magnesia(rMgO)containing supplementary cementitious materia...Dredged marine soils(DMS)have poor engineering properties,which limit their usage in construction projects.This research examines the application of reactive magnesia(rMgO)containing supplementary cementitious materials(SCMs)to stabilize DMS under ambient and carbon dioxide(CO_(2))curing conditions.Several proprietary experimental tests were conducted to investigate the stabilized DMS.Furthermore,the carbonation-induced mineralogical,thermal,and microstructural properties change of the samples were explored.The findings show that the compressive strength of the stabilized DMS fulfilled the 7-d requirement(0.7-2.1 MPa)for pavement and building foundations.Replacing rMgO with SCMs such as biochar or ground granulated blast-furnace slag(GGBS)altered the engineering properties and particle packing of the stabilized soils,thus influencing their performances.Biochar increased the porosity of the samples,facilitating higher CO_(2) uptake and improved ductility,while GGBS decreased porosity and increased the dry density of the samples,resulting in higher strength.The addition of SCMs also enhanced the water retention capacity and modified the pH of the samples.Microstructural analysis revealed that the hydrated magnesium carbonates precipitated in the carbonated samples provided better cementation effects than brucite formed during rMgO hydration.Moreover,incorporating SCMs reduced the overall global warming potential and energy demand of the rMgO-based systems.The biochar mixes demonstrated lower toxicity and energy consumption.Ultimately,the rMgO and biochar blend can serve as an environmentally friendly additive for soft soil stabilization and permanent fixation of significant amounts of CO_(2) in soils through mineral carbonation,potentially reducing environmental pollution while meeting urbanization needs.展开更多
An interphase migration and enrichment model of lead and zinc during molten copper slag depletion was established.The occurrence of various components in copper slag was predicted using sulfur-oxygen potential calcula...An interphase migration and enrichment model of lead and zinc during molten copper slag depletion was established.The occurrence of various components in copper slag was predicted using sulfur-oxygen potential calculations and confirmed through high-temperature experiments.The recovery rate of copper can reach 90.13%under the optimal conditions of 1200°C,an iron to silicon mass ratio of 1.0,3 wt.%ferrous sulfide,and a duration of 45 min.Lead(54.07 wt.%)and zinc(17.42 wt.%)are found in the flue dust as lead sulfate,lead sulfide,and zinc oxide,while copper matte contains lead(14.44 wt.%)and zinc sulfide(1.29 wt.%).The remaining lead and zinc are encapsulated as oxides within the fayalite phase.展开更多
Gasification of furfural residue with coal can realize its efficient and clean utilization.But the high alkali metal content in furfural slag is easy to cause the corrosion of gasifier refractory.Two gasification coal...Gasification of furfural residue with coal can realize its efficient and clean utilization.But the high alkali metal content in furfural slag is easy to cause the corrosion of gasifier refractory.Two gasification coals with different silica alumina ratio and a furfural residue were selected in the study.The effects of furfural residue additions on corrosion of silica brick,corundum brick,high alumina brick and mullite brick were investigated by using XRD,SEM-EDS and Factsage Software,and the corrosion mechanism was analyzed.With increasing furfural residue addition,the permeability of the slags to high-aluminium-bearing refractories first decreases and then increases,while the permeability on silica brick shows a slight decrease trend.Leucite(KAlSi_(2)O_(6))with high-melting temperature is generated from the reaction of K_(2)O and SiO_(2)in slag with Al_(2)O_(3)in refractories after furfural residue is added,which hinders the infiltration of slag in refractories.Kaliophilite(KAlSiO_(4))of low-melting point is formed when K_(2)O content increases,and this contributes to the infiltration of slag in refractories.The acid-base reaction between slag and silica brick is distinctly occurred,more slag reacts with SiO_(2)in the silicon brick,resulting in a decrease in the amount of slag infiltrating into the silicon brick as furfural residue is added.The corrosion of silica brick is mainly caused by the acid-base reaction,while the corrosion of three alumina based refractory bricks of corundum,mullite and high alumina brick is determined by slag infiltration.A linear correlation between the percolation rate and slag viscosity is established,the slag permeability increases with decreasing viscosity,resulting in stronger permeability for the high Si/Al ratio slag with lower viscosity.展开更多
The precise measurement of Al, Mg, Ca, and Zn composition in copper slag is crucial for effective process control of copper pyrometallurgy. In this study, a remote laser-induced breakdown spectroscopy(LIBS) system was...The precise measurement of Al, Mg, Ca, and Zn composition in copper slag is crucial for effective process control of copper pyrometallurgy. In this study, a remote laser-induced breakdown spectroscopy(LIBS) system was utilized for the spectral analysis of copper slag samples at a distance of 2.5 m. The composition of copper slag was then analyzed using both the calibration curve(CC) method and the partial least squares regression(PLSR) analysis method based on the characteristic spectral intensity ratio. The performance of the two analysis methods was gauged through the determination coefficient(R^(2)), average relative error(ARE), root mean square error of calibration(RMSEC), and root mean square error of prediction(RMSEP). The results demonstrate that the PLSR method significantly improved both R^(2) for the calibration and test sets while reducing ARE, RMSEC, and RMSEP by 50% compared to the CC method. The results suggest that the combination of LIBS and PLSR is a viable approach for effectively detecting the elemental concentration in copper slag and holds potential for online detection of the elemental composition of high-temperature molten copper slag.展开更多
The efficient recycling of vanadium from converter vanadium-bearing slag is highly significant for sustainable development and circular economy.The key to developing novel processes and improving traditional routes li...The efficient recycling of vanadium from converter vanadium-bearing slag is highly significant for sustainable development and circular economy.The key to developing novel processes and improving traditional routes lies in the thermodynamic data.In this study,the equilibrium phase relations for the Fe_(2)O_(3)-TiO_(2)-V_(2)O_(5)system at 1200℃in air were investigated using a high-temperature equilibrium-quenching technique,followed by analysis using scanning electron microscopy-energy dispersive X-ray spectrometer and X-ray photoelectron spectroscopy.One liquid-phase region,two two-phase regions(liquid-rutile and liquid-ferropseudobrookite),and one three-phase region(liquid-rutile-ferropseudobrookite)were determined.The variation in the TiO_(2)and V_(2)O_(5)contents with the Fe_(2)O_(3)content was examined for rutile and ferropseudobrookite solid solutions.However,on further comparison with the predictions of FactSage 8.1,significant discrepancies were identified,highlighting that greater attention must be paid to updating the current thermodynamic database related to vanadium-bearing slag systems.展开更多
The precipitation of Fe_(3)O_(4)particles and the accompanied formation of Fe_(3)O_(4)-wrapped copper structure are the main obstacles to copper recovery from the molten slag during the pyrometallurgical smelting of c...The precipitation of Fe_(3)O_(4)particles and the accompanied formation of Fe_(3)O_(4)-wrapped copper structure are the main obstacles to copper recovery from the molten slag during the pyrometallurgical smelting of copper concentrates.Herein,the commercial powdery pyrite or anthracite is replaced with pyrite-anthracite pellets as the reductants to remove a large amount of Fe_(3)O_(4)particles in the molten slag,resulting in a deep fracture in the Fe_(3)O_(4)-wrapped copper microstructure and the full exposure of the copper matte cores.When 1wt%composite pellet is used as the reductant,the copper matte droplets are enlarged greatly from 25μm to a size observable by the naked eye,with the copper content being enriched remarkably from 1.2wt%to 4.5wt%.Density functional theory calculation results imply that the formation of the Fe_(3)O_(4)-wrapped copper structure is due to the preferential adhesion of Cu_(2)S on the Fe_(3)O_(4)particles.X-ray photoelectron spectroscopy,Fourier transform infrared spectrometer(FTIR),and Raman spectroscopy results all reveal that the high-efficiency conver-sion of Fe_(3)O_(4)to FeO can decrease the volume fraction of the solid phase and promote the depolymerization of silicate network structure.As a consequence,the settling of copper matte droplets is enhanced due to the lowered slag viscosity,contributing to the high efficiency of copper-slag separation for copper recovery.The results provide new insights into the enhanced in-situ enrichment of copper from mol-ten slag.展开更多
The reduction of phosphogypsum(PG)to lime slag and SO_(2)using coke can effectively alleviate the environmental problems caused by PG.However,the PG decomposition temperature remains high and the product yield remains...The reduction of phosphogypsum(PG)to lime slag and SO_(2)using coke can effectively alleviate the environmental problems caused by PG.However,the PG decomposition temperature remains high and the product yield remains poor.By adding additives,the decomposition temperature can be further reduced and PG decomposition rate and product yield can be improved.However,the use of current additives such as Fe_(2)O_(3)and SiO_(2)brings the problem of increasing economic cost.Therefore,it is proposed to use solid waste copper slag(CS)as a new additive to reduce PG to prepare SO2,which can reduce the cost and meet the environmental benefits at the same time.The effects of proportion,temperature and thermostatic time on PG decomposition are investigated by experimental and kinetic analysis combined with FactSage thermodynamic calculations to optimize the roasting conditions.Finally,the reaction mechanism is proposed.It is found that adding CS to the coke and PG system can increase the rate of PG decomposition and SO_(2)yield while lowering the PG decomposition temperature.For example,when the CS/PG mass ratio increases from 0 to 1,PG decomposition rate increases from 83.38%to 99.35%,SO_(2)yield increases from 78.62%to 96.81%,and PG decomposition temperature decreases from 992.4℃to 949.6℃.The optimal reaction parameters are CS/PG mass ratio of 1,Coke/PG mass ratio of 0.06 at 1100℃for 20 min with 99.35%PG decomposition rate and 96.81%SO_(2) yield.The process proceeds according to the following reactions:2CaSO_(4)+ 0.7C + 0.8Fe_(2)SiO_(4)→0.8Ca_(2)SiO_(4)+ 0.2Ca_(2)Fe_(2)O_(5)+ 0.4Fe_(3)O_(4)+2SO_(2)+ 0.7CO_(2)Finally,a process for decomposing PG with coke and CS is proposed.展开更多
Fine slag(FS)is an unavoidable by-product of coal gasification.FS,which is a simple heap of solid waste left in the open air,easily causes environmental pollution and has a low resource utilization rate,thereby restri...Fine slag(FS)is an unavoidable by-product of coal gasification.FS,which is a simple heap of solid waste left in the open air,easily causes environmental pollution and has a low resource utilization rate,thereby restricting the development of energy-saving coal gasification technologies.The multiscale analysis of FS performed in this study indicates typical grain size distribution,composition,crystalline structure,and chemical bonding characteristics.The FS primarily contained inorganic and carbon components(dry bases)and exhibited a"three-peak distribution"of the grain size and regular spheroidal as well as irregular shapes.The irregular particles were mainly adsorbed onto the structure and had a dense distribution and multiple pores and folds.The carbon constituents were primarily amorphous in structure,with a certain degree of order and active sites.C 1s XPS spectrum indicated the presence of C–C and C–H bonds and numerous aromatic structures.The inorganic components,constituting 90%of the total sample,were primarily silicon,aluminum,iron,and calcium.The inorganic components contained Si–O-Si,Si–O–Al,Si–O,SO_(4)^(2−),and Fe–O bonds.Fe 2p XPS spectrum could be deconvoluted into Fe 2p_(1/2) and Fe 2p_(3/2) peaks and satellite peaks,while Fe existed mainly in the form of Fe(III).The findings of this study will be beneficial in resource utilization and formation mechanism of fine slag in future.展开更多
基金National"973"Plan Research Project(No.2004CB619204)Educational Ministry Scientific and Technological Research Key Project(No.02052)
文摘The preparation of granulated adsorption material of water-quenched slag/rectorite composite and the treatment of Cu ( Ⅱ )-containing copper smelter wastewater with the adsorption material were studied. The experimental results showed that under the conditions with the mass ratio of water-quenched slag to rectorite of 1:1, 10% additive of industrial starch (IS), and 50% water, and a calcination temperature of 400 ℃, the granulated adsorption material prepared had a density of 1.06 kg/m^3, a porosity of 62.29%, water absorption rate of 58.82%, and compressive strength of 2.22 MPa. The efficiency of wastewater treatment was the best, whereas the rate of spallation loss was low. Under the conditions of natural pH, with the addition of the granulated adsorption material of 0.05 g/mL, a reaction time of 40 minutes, and temperature of 25 ℃, the efficiency of the granulated adsorption material for the removal of Cu ( Ⅱ ) ions from the copper smelter wastewater attained 98.2%, and the quality indexes of the wastewater after treatment conformed with the first level of integrated wastewater discharge standard (GB8978-1996). The reclamation of the used granulated adsorption material was carried out by de-sorption of the Cu ( Ⅱ) ions from the surface with 1 mol/L sodium chloride solution. The de-sorption rate was 96.4%, and the adsorption material can be reused many times to treat copper smelter wastewater.
文摘Difference in properties of water-quenched granulated slag is mainly caused by the difference in BF slag granulating process, which, in turn, causes the difference in slag' s glassy structure. Changes in quick self-hydraulicity of Baosteel different BF slag, changes in strength of different slag at different maintenance temperatures and changes in strength of different BF slag stimulated by clinker are tested in various ways. Effect of external factors on slag' s activity is analyzed. The results indicate that the slag from Baosteel has higher hydraulicity, and it increases with time.
基金Funded by the Scientific Research Program of Jilin Provincial Department of Education(No.JJKH20250981KJ)。
文摘CGCS(coal gasification coarse slag)and desert sand composite aggregate replacing river sand for the preparation of concrete(coal gasification coarse slag and desert sand composite fine aggregate concrete,abbreviated as CDFC)were investigated to study the effect of different CGCS dosages,the sand rate of concrete,and the dosage of fly ash(FA)in cementitious material on the mechanical properties of the concrete and the excessive zone at the aggregate interface.The experimental results show that,with the increase of CGCS admixture,the CDFC water-cement ratio decreases,and the strength shows first increase and then decrease;with the increase of concrete sand rate,the CDFC strength shows first increase and then decrease,and with the increase of FA,the CDFC strength shows first increase and then decrease,when the dosage of cementitious material is 360 kg/m^(3),the composite fine aggregate dosage is 872 kg/m^(3),and the coarse aggregate dosage is 983 kg/m^(3),the maximum compressive strength of its CGCS is 47.4 MPa.The microstructures of CGCS and hydration products were analyzed by X-ray fluorescence spectrometry(XRF),X-ray diffraction(XRD),Fourier transform infrared spectrometry(FTIR),and scanning electron microscopy(SEM).It is found that the CDFC as fine aggregate can generate hydration products such as hydrated calcium silicate gel(C-S-H)in the transition zone of the concrete interface,which can greatly improve the weak zones of the concrete,and improve the strength.
基金financially supported by the Norwegian Ferroalloy Producers Research Association (FFF) and the Research Council of Norway through KSP project 326581 Recursive。
文摘The production processes for Si and FeSi have traditionally been considered slag-free.However,recent excavations have revealed significant accumulation of CaO–SiO_(2)–Al_(2)O_(3)slag within the furnaces.This accumulation can obstruct the flow of materials and gases,resulting in lower metal yield and higher energy consumption.The main objective of the current work is to enhance our understanding of slag formation during Si and FeSi production.We investigate slag formation through the dissolution of limestone and iron oxide in quartz and condensate,focusing on the reactions between these materials at a gram scale.Our findings indicate that most slag reaches equilibrium relatively quickly at temperatures starting from 1673 K.Notably,slag formation starts at lower temperature when the iron source is present (1573 K) compared to when only CaO is involved (1673 K).The minor elements tend to accumulate at quartz grain boundaries prior to slag formation.Furthermore,the slag produced from condensate contains less SiO_(2)than that generated from quartz with limestone.The type of quartz source and SiO_(2)phase appears to have little influence on slag formation.Good wettability is a significant factor in reaction between quartz and slag.FactSage calculations indicates that the viscosity of the slag ranges from 0.02 to 14.4 Pa·s under furnace conditions,comparable to the viscosity of honey or motor oil at room temperature.
基金Funded by the Natural Science Foundation of Hebei Province(No.E2020209010)the Science and Technology Plan Project of Tangshan(No.19150225E)the Key R&D Projects of North China University of Science and Technology(No.ZD-ST-202301)。
文摘In view of the volume instability of steel slag aggregate leading to the quality problem of expansion damage in asphalt road construction,the 4.75-9.5 mm steel slag particles were treated by autoclaved carbonation technology,and the effects of the carbonation system(temperature and time)on the autoclaved pulverization rate,f-CaO content,and the relationship between them for the carbonated steel slag were investigated.In addition,the microstructure of the carbonated steel slag was analyzed by X-ray diffractometer(XRD),scanning electron microscope and energy dispersive spectrometer(SEM-EDS),metallographic microscope and X-ray fluorescence imaging spectrometer(XRF).The experimental results indicate that,under the initial CO_(2)pressure of 1.0 MPa,increasing the carbonation temperature leads to the increase in the crystal plane spacing of Ca(OH)_(2)that was generated by the hydration of minerals in steel slag,and promotes the transformation of carbonated CaCO_(3)from the orthorhombic system to the hexagonal system,resulting in the increase of the crystal planes spacing of them,meantime,accelerates the decomposition of RO phases and also the outward migration of Ca^(2+),Fe^(2+),and Mn^(2+)ions to cover and coat on the Si^(4+),Al^(3+)ions,and impels the formation of hydroxides such as Fe(OH)_(3)and the formation of carbonates such as Ca(Mg)CO_(3),FeCO_(3)and MnCO_(3).Carbonation at the temperature of 90℃for 3 h can reach the center of 4.75-9.5 mm steel slag particles.Meanwhile,the increase of temperature can promote the mineral reaction in steel slag,resulting in the fuzzy interface between mineral phases,increase of burrs,dispersion,crossover,reduction of grain size,and rearrangement of mineral particles.
基金Funded by the Science and Technology Program of Gansu Province(Nos.23JRRA799 and 24JRRA213)the National Natural Science Foundation of China(Nos.52178216,52008196,and U21A20150)。
文摘In order to avoid the waste of iron caused by the direct use of ferronickel slag(FNS)in building materials,the effects of reduction iron extraction on the physical and chemical properties,cementitious reactivity and hydration reaction characteristics of FNS and ferrum extraction tailing of nickel slag(FETNS)were studied.The experimental results show that the reduction ferrum extraction method changes the mineral phase composition of the waste slag,breaks the Si-O-Si bond,forms the tetrahedral structure of Si-O-NBO or Si-O-2NBO,and increases the content of active components such as Ca,Si,Mg,and Al.Compared with FNS,the 28 d compressive strength of pastes prepared by FETNS increases by 16.12%,22.57%,33.13%,44.26%,and 57.65%,respectively.The degree of hydration reaction of the composite cementitious systems in the FETNS group is higher than that in the FNS group at different ages,and the content of hydration products such as C-S-H gel and ettringite(AFt)is also higher than that in the FNS group.More hydration products can improve the curing ability to Cr and Mn of the composite cementitious systems in the FETNS group,and reduce the leaching value of Cr and Mn.
基金Funded by the Guangxi Key Research and Development Program(Guike AB23026071 and Guike AB24010020)the Guangxi Science and Technology Base and Talent Project(Guike AD24010062)the Guangxi Beibu Gulf Engineering Research Center for Green Marine Materials。
文摘This study introduced a low-temperature thermochemical method for the treatment of EMR in the presence of carbide slag(CS)to achieve an economical and efficient harmless effect.The experimental results indicate that,under suitable conditions,the NH_(4)^(+)and Mn^(2+)contents in EMR decrease notably with the increasing CS content,accompanied by an increase in pH value.Furthermore,the concentration of NH_(4)^(+)in EMR considerably decreases with the increasing liquid-to-solid ratio,eventually stabilizing.Similarly,the pH value first increases and then decreases,ultimately stabilizing.At a CS content of 12%and a liquid-to-solid ratio of 0.7,the leaching concentrations of NH_(4)^(+)and Mn^(2+)in EMR(127.7 mg/kg and 0.15 mg/L,respectively)fall below the standard detection limit(2 mg/L),with the pH measuring 8.26,meeting the conditions outlined in the GB 8978.NH_(4)^(+)is converted to NH_(3),while Mn^(2+)is transformed into solid precipitates such as Mn(OH)_(2),Mn_(2)O_(3),MnO_(2),Ca_(3)Mn_(2)O_(7),and Ca_(2)MnO_(4).The majority of manganese ions exist in trivalent or tetravalent states and remain stable over time.The cost of using CS as a reagent for treating 1 ton of EMR is merely$1.01.The high OH^(-)concentration provided by CS enables the effective removal of NH_(4)^(+)from EMR and the solidification of Mn^(2+)during thermal reactions.
基金Key Project of the National Natural Science Foundation of China(Grant No.U21A2058)China Postdoctoral Science Foundation(2023M740971)State Key Laboratory of Refractories and Metallurgy(Wuhan University of Science and Technology,G202209).
文摘The penetration of ladle slag into refractory linings is an essential process in service,and the mechanical properties of the refractory castables are affected by the location and content of slag in the refractory castables.In this work,ladle slag was added into Al_(2)O_(3)-Mgo refractory castables and its influence on the microstructure evolution,mechanical properties and thermal shock resistance of the castables was investigated.The phase composition and contents of the castables during the corrosion process were calculated by FactSage TM(6.2)and studied.The results indicate that the residual strength decreases as the ladle slag addition increases from 0 to 6 mass%.While the hot modulus of rupture of the castable with 6%ladle slag significantly decreases by approximately 80%compared with the one without ladle slag.The elastic modulus and CMOR of the castables decrease with slag-adding,which leads to the increase of liquid phase contents inside the samples.
基金the National Natural Science Foundation of China(Nos.52074078 and 52374327)the Applied Fundamental Research Program of Liaoning Province(No.2023JH2/101600002)+2 种基金the Shenyang Young Middle-Aged Scientific and Technological Innovation Talent Support Program(No.RC220491)the Liaoning Province Steel Industry-University-Research Innovation Alliance Cooperation Project of Bensteel Group(No.KJBLM202202)the Fundamental Research Funds for the Central Universities(Nos.N2201023 and N2325009).
文摘Chromium plays a vital role in stainless steel due to its ability to improve the corrosion resistance of the latter.However,the re-lease of chromium from stainless steel slag(SSS)during SSS stockpiling causes detrimental environmental issues.To prevent chromium pollution,the effects of iron oxide on crystallization behavior and spatial distribution of spinel were investigated in this work.The results revealed that FeO was more conducive to the growth of spinels compared with Fe2O3 and Fe3O4.Spinels were found to be mainly distrib-uted at the top and bottom of slag.The amount of spinel phase at the bottom decreased with the increasing FeO content,while that at the top increased.The average particle size of spinel in the slag with 18wt%FeO content was 12.8μm.Meanwhile,no notable structural changes were observed with a further increase in FeO content.In other words,the spatial distribution of spinel changed when the content of iron oxide varied in the range of 8wt%to 18wt%.Finally,less spinel was found at the bottom of slag with a FeO content of 23wt%.
基金the National Natural Science Foundation of China(No.52374279)the Natural Science Foundation of Shaanxi Province(No.2023-YBGY-055).
文摘Coal gasification fine slag(FS)is a typical solid waste generated in coal gasification.Its current disposal methods of stockpil-ing and landfilling have caused serious soil and ecological hazards.Separation recovery and the high-value utilization of residual carbon(RC)in FS are the keys to realizing the win-win situation of the coal chemical industry in terms of economic and environmental benefits.The structural properties,such as pore,surface functional group,and microcrystalline structures,of RC in FS(FS-RC)not only affect the flotation recovery efficiency of FS-RC but also form the basis for the high-value utilization of FS-RC.In this paper,the characteristics of FS-RC in terms of pore structure,surface functional groups,and microcrystalline structure are sorted out in accordance with gasification type and FS particle size.The reasons for the formation of the special structural properties of FS-RC are analyzed,and their influence on the flotation separation and high-value utilization of FS-RC is summarized.Separation methods based on the pore structural characterist-ics of FS-RC,such as ultrasonic pretreatment-pore-blocking flotation and pore breaking-flocculation flotation,are proposed to be the key development technologies for improving FS-RC recovery in the future.The design of low-cost,low-dose collectors containing polar bonds based on the surface and microcrystalline structures of FS-RC is proposed to be an important breakthrough point for strengthening the flotation efficiency of FS-RC in the future.The high-value utilization of FS should be based on the physicochemical structural proper-ties of FS-RC and should focus on the environmental impact of hazardous elements and the recyclability of chemical waste liquid to es-tablish an environmentally friendly utilization method.This review is of great theoretical importance for the comprehensive understand-ing of the unique structural properties of FS-RC,the breakthrough of the technological bottleneck in the efficient flotation separation of FS,and the expansion of the field of the high value-added utilization of FS-RC.
基金financially supported by the National Natural Science Foundation of China(Grant Nos.52074002,52174289)Natural Science Foundation of Anhui Province(Grant No.2208085J37)。
文摘To investigate the influence of electric parameters and slag system on the solidification quality of electroslag ingot during electroslag remelting,different power supply modes,current strengths and remelting slag systems were used to conduct electroslag remelting experiments on 304L austenitic stainless steel,and the macrostructure of electroslag ingots was analyzed.The results indicate that the depth of the metal pool decreases with the reduction of remelting frequency in the low frequency power supply mode.The effects of different power supply modes,such as low-frequency,direct current straight polarity(DCSP),and direct current reverse polarity(DCRP),on reducing the depth of the metal pool increase in that order.By reducing the remelting current strength in the same power supply mode,the depth of metal pool is reduced.When compared to the binary slag system of 70%CaF2+30%Al2O3,the ternary slag system of 60%CaF2+20%Al2O3+20%CaO is more effective in reducing the depth of the metal pool during remelting.Utilizing the 60%CaF2+20%Al2O3+20%CaO ternary slag system results in a shallower and flatter metal pool,with columnar crystal growth occurring closer to the axial crystal.This effect is observed for both low frequency and direct current(DC)power supply modes.
基金supported by the Intergovernmental International Science and Technology Innovation Cooperation Key Project of the National Key Research and Development Program of China (No.2022YFE0135100)the National Natural Science Foundation of China (No.52072171)+1 种基金the Beijing Nova Program (No.20220484057)the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD).
文摘Water-quenched copper-nickel metallurgical slag enriched with olivine minerals exhibits promising potential for the production of CO_(2)-mineralized cementitious materials.In this work,copper-nickel slag-based cementitious material(CNCM)was synthesized by using different chemical activation methods to enhance its hydration reactivity and CO_(2) mineralization capacity.Different water curing ages and carbonation conditions were explored related to their carbonation and mechanical properties development.Meanwhile,thermogravimetry differential scanning calorimetry and X-ray diffraction methods were applied to evaluate the CO_(2) adsorption amount and carbonation products of CNCM.Microstructure development of carbonated CNCM blocks was examined by backscattered electron imaging(BSE)with energy-dispersive X-ray spectrometry.Results showed that among the studied samples,the CNCM sample that was subjected to water curing for 3 d exhibited the highest CO_(2) sequestration amount of 8.51wt%at 80℃and 72 h while presenting the compressive strength of 39.07 MPa.This result indicated that 1 t of this CNCM can sequester 85.1 kg of CO_(2) and exhibit high compressive strength.Although the addition of citric acid did not improve strength development,it was beneficial to increase the CO_(2) diffusion and adsorption amount under the same carbonation conditions from BSE results.This work provides guidance for synthesizing CO_(2)-mineralized cementitious materials using large amounts of metallurgical slags containing olivine minerals.
基金This work was supported by the Creative Groups of Natural Science Foundation of Hubei Province(Grant No.2021CFA030).Onyekwena Chikezie Chimere is an awardee for the ANSO Scholarship 2020-PhD.Ishrat Hameed Alvi is a recipient of the 2021 PhD ANSO Scholarship.
文摘Dredged marine soils(DMS)have poor engineering properties,which limit their usage in construction projects.This research examines the application of reactive magnesia(rMgO)containing supplementary cementitious materials(SCMs)to stabilize DMS under ambient and carbon dioxide(CO_(2))curing conditions.Several proprietary experimental tests were conducted to investigate the stabilized DMS.Furthermore,the carbonation-induced mineralogical,thermal,and microstructural properties change of the samples were explored.The findings show that the compressive strength of the stabilized DMS fulfilled the 7-d requirement(0.7-2.1 MPa)for pavement and building foundations.Replacing rMgO with SCMs such as biochar or ground granulated blast-furnace slag(GGBS)altered the engineering properties and particle packing of the stabilized soils,thus influencing their performances.Biochar increased the porosity of the samples,facilitating higher CO_(2) uptake and improved ductility,while GGBS decreased porosity and increased the dry density of the samples,resulting in higher strength.The addition of SCMs also enhanced the water retention capacity and modified the pH of the samples.Microstructural analysis revealed that the hydrated magnesium carbonates precipitated in the carbonated samples provided better cementation effects than brucite formed during rMgO hydration.Moreover,incorporating SCMs reduced the overall global warming potential and energy demand of the rMgO-based systems.The biochar mixes demonstrated lower toxicity and energy consumption.Ultimately,the rMgO and biochar blend can serve as an environmentally friendly additive for soft soil stabilization and permanent fixation of significant amounts of CO_(2) in soils through mineral carbonation,potentially reducing environmental pollution while meeting urbanization needs.
基金supported by the Fundamental Research Funds for Central Universities,China(No.N2025004)the National Natural Science Foundation of China(Nos.U2102213,U1702253,52204419)+2 种基金Major Science and Technology Project of Liaoning Province,China(No.2021JH1/10400032)Major Science and Technology Project of Guangxi Province,China(No.2021AA12013)Liaoning Natural Science Foundation,China(No.2022-BS-076)。
文摘An interphase migration and enrichment model of lead and zinc during molten copper slag depletion was established.The occurrence of various components in copper slag was predicted using sulfur-oxygen potential calculations and confirmed through high-temperature experiments.The recovery rate of copper can reach 90.13%under the optimal conditions of 1200°C,an iron to silicon mass ratio of 1.0,3 wt.%ferrous sulfide,and a duration of 45 min.Lead(54.07 wt.%)and zinc(17.42 wt.%)are found in the flue dust as lead sulfate,lead sulfide,and zinc oxide,while copper matte contains lead(14.44 wt.%)and zinc sulfide(1.29 wt.%).The remaining lead and zinc are encapsulated as oxides within the fayalite phase.
基金Shandong Province Natural Science Foundation,China(ZR2020KB014,ZR2022QB206)the National Natural Science Foundation of China(22178001)+1 种基金Anhui Provincial Natural Science Foundation(2308085Y19)Research Project for Outstanding Youth of Department of Education of Anhui Province(2022AH030045).
文摘Gasification of furfural residue with coal can realize its efficient and clean utilization.But the high alkali metal content in furfural slag is easy to cause the corrosion of gasifier refractory.Two gasification coals with different silica alumina ratio and a furfural residue were selected in the study.The effects of furfural residue additions on corrosion of silica brick,corundum brick,high alumina brick and mullite brick were investigated by using XRD,SEM-EDS and Factsage Software,and the corrosion mechanism was analyzed.With increasing furfural residue addition,the permeability of the slags to high-aluminium-bearing refractories first decreases and then increases,while the permeability on silica brick shows a slight decrease trend.Leucite(KAlSi_(2)O_(6))with high-melting temperature is generated from the reaction of K_(2)O and SiO_(2)in slag with Al_(2)O_(3)in refractories after furfural residue is added,which hinders the infiltration of slag in refractories.Kaliophilite(KAlSiO_(4))of low-melting point is formed when K_(2)O content increases,and this contributes to the infiltration of slag in refractories.The acid-base reaction between slag and silica brick is distinctly occurred,more slag reacts with SiO_(2)in the silicon brick,resulting in a decrease in the amount of slag infiltrating into the silicon brick as furfural residue is added.The corrosion of silica brick is mainly caused by the acid-base reaction,while the corrosion of three alumina based refractory bricks of corundum,mullite and high alumina brick is determined by slag infiltration.A linear correlation between the percolation rate and slag viscosity is established,the slag permeability increases with decreasing viscosity,resulting in stronger permeability for the high Si/Al ratio slag with lower viscosity.
基金supported by funding for research activities of postdoctoral researchers in Anhui Provincespecial funds for developing Anhui Province’s industrial “three highs” and high-tech industries。
文摘The precise measurement of Al, Mg, Ca, and Zn composition in copper slag is crucial for effective process control of copper pyrometallurgy. In this study, a remote laser-induced breakdown spectroscopy(LIBS) system was utilized for the spectral analysis of copper slag samples at a distance of 2.5 m. The composition of copper slag was then analyzed using both the calibration curve(CC) method and the partial least squares regression(PLSR) analysis method based on the characteristic spectral intensity ratio. The performance of the two analysis methods was gauged through the determination coefficient(R^(2)), average relative error(ARE), root mean square error of calibration(RMSEC), and root mean square error of prediction(RMSEP). The results demonstrate that the PLSR method significantly improved both R^(2) for the calibration and test sets while reducing ARE, RMSEC, and RMSEP by 50% compared to the CC method. The results suggest that the combination of LIBS and PLSR is a viable approach for effectively detecting the elemental concentration in copper slag and holds potential for online detection of the elemental composition of high-temperature molten copper slag.
基金financially supported by the National Natural Science Foundation of China(No.52204310)the China Postdoctoral Science Foundation(Nos.2020TQ0059 and 2020M570967)+3 种基金the Natural Science Foundation of Liaoning Province,China(No.2021-MS-083)the Fundamental Research Funds for the Central Universities(No.N2125010)the Open Project Program of Key Laboratory of Metallurgical Emission Reduction&Resources Recycling(Anhui University of Technology)of Ministry of Education(No.JKF22-02)the Key Laboratory for Anisotropy and Texture of Materials of Ministry of Education.
文摘The efficient recycling of vanadium from converter vanadium-bearing slag is highly significant for sustainable development and circular economy.The key to developing novel processes and improving traditional routes lies in the thermodynamic data.In this study,the equilibrium phase relations for the Fe_(2)O_(3)-TiO_(2)-V_(2)O_(5)system at 1200℃in air were investigated using a high-temperature equilibrium-quenching technique,followed by analysis using scanning electron microscopy-energy dispersive X-ray spectrometer and X-ray photoelectron spectroscopy.One liquid-phase region,two two-phase regions(liquid-rutile and liquid-ferropseudobrookite),and one three-phase region(liquid-rutile-ferropseudobrookite)were determined.The variation in the TiO_(2)and V_(2)O_(5)contents with the Fe_(2)O_(3)content was examined for rutile and ferropseudobrookite solid solutions.However,on further comparison with the predictions of FactSage 8.1,significant discrepancies were identified,highlighting that greater attention must be paid to updating the current thermodynamic database related to vanadium-bearing slag systems.
基金supported by the National Natural Science Foundation of China(No.52274349)the National Key Basic Research and Development Program of China(No.2022YFC3900801)+1 种基金the Fujian Province University-Industry Cooperation Research Program,China(No.2023H6007)the Fujian Province Natural Science Foundation,China(No.2023J05024).
文摘The precipitation of Fe_(3)O_(4)particles and the accompanied formation of Fe_(3)O_(4)-wrapped copper structure are the main obstacles to copper recovery from the molten slag during the pyrometallurgical smelting of copper concentrates.Herein,the commercial powdery pyrite or anthracite is replaced with pyrite-anthracite pellets as the reductants to remove a large amount of Fe_(3)O_(4)particles in the molten slag,resulting in a deep fracture in the Fe_(3)O_(4)-wrapped copper microstructure and the full exposure of the copper matte cores.When 1wt%composite pellet is used as the reductant,the copper matte droplets are enlarged greatly from 25μm to a size observable by the naked eye,with the copper content being enriched remarkably from 1.2wt%to 4.5wt%.Density functional theory calculation results imply that the formation of the Fe_(3)O_(4)-wrapped copper structure is due to the preferential adhesion of Cu_(2)S on the Fe_(3)O_(4)particles.X-ray photoelectron spectroscopy,Fourier transform infrared spectrometer(FTIR),and Raman spectroscopy results all reveal that the high-efficiency conver-sion of Fe_(3)O_(4)to FeO can decrease the volume fraction of the solid phase and promote the depolymerization of silicate network structure.As a consequence,the settling of copper matte droplets is enhanced due to the lowered slag viscosity,contributing to the high efficiency of copper-slag separation for copper recovery.The results provide new insights into the enhanced in-situ enrichment of copper from mol-ten slag.
基金financial support from the school-enterprise cooperation projects(2019-KYY-508101-0078).
文摘The reduction of phosphogypsum(PG)to lime slag and SO_(2)using coke can effectively alleviate the environmental problems caused by PG.However,the PG decomposition temperature remains high and the product yield remains poor.By adding additives,the decomposition temperature can be further reduced and PG decomposition rate and product yield can be improved.However,the use of current additives such as Fe_(2)O_(3)and SiO_(2)brings the problem of increasing economic cost.Therefore,it is proposed to use solid waste copper slag(CS)as a new additive to reduce PG to prepare SO2,which can reduce the cost and meet the environmental benefits at the same time.The effects of proportion,temperature and thermostatic time on PG decomposition are investigated by experimental and kinetic analysis combined with FactSage thermodynamic calculations to optimize the roasting conditions.Finally,the reaction mechanism is proposed.It is found that adding CS to the coke and PG system can increase the rate of PG decomposition and SO_(2)yield while lowering the PG decomposition temperature.For example,when the CS/PG mass ratio increases from 0 to 1,PG decomposition rate increases from 83.38%to 99.35%,SO_(2)yield increases from 78.62%to 96.81%,and PG decomposition temperature decreases from 992.4℃to 949.6℃.The optimal reaction parameters are CS/PG mass ratio of 1,Coke/PG mass ratio of 0.06 at 1100℃for 20 min with 99.35%PG decomposition rate and 96.81%SO_(2) yield.The process proceeds according to the following reactions:2CaSO_(4)+ 0.7C + 0.8Fe_(2)SiO_(4)→0.8Ca_(2)SiO_(4)+ 0.2Ca_(2)Fe_(2)O_(5)+ 0.4Fe_(3)O_(4)+2SO_(2)+ 0.7CO_(2)Finally,a process for decomposing PG with coke and CS is proposed.
基金Scientific Research Foundation for the Introduction of Talent in Anhui University of Science and Technology(2023yjrc90)Graduate Research Project of Higher Education in Anhui Province(YJS20210377)+2 种基金Postgraduate Innovation Fund of Anhui University of Science and Technology(2021CX1002)University Synergy Innovation Program of Anhui Province(GXXT-2020-006)National Science Fund for Young Scientists(52200139).
文摘Fine slag(FS)is an unavoidable by-product of coal gasification.FS,which is a simple heap of solid waste left in the open air,easily causes environmental pollution and has a low resource utilization rate,thereby restricting the development of energy-saving coal gasification technologies.The multiscale analysis of FS performed in this study indicates typical grain size distribution,composition,crystalline structure,and chemical bonding characteristics.The FS primarily contained inorganic and carbon components(dry bases)and exhibited a"three-peak distribution"of the grain size and regular spheroidal as well as irregular shapes.The irregular particles were mainly adsorbed onto the structure and had a dense distribution and multiple pores and folds.The carbon constituents were primarily amorphous in structure,with a certain degree of order and active sites.C 1s XPS spectrum indicated the presence of C–C and C–H bonds and numerous aromatic structures.The inorganic components,constituting 90%of the total sample,were primarily silicon,aluminum,iron,and calcium.The inorganic components contained Si–O-Si,Si–O–Al,Si–O,SO_(4)^(2−),and Fe–O bonds.Fe 2p XPS spectrum could be deconvoluted into Fe 2p_(1/2) and Fe 2p_(3/2) peaks and satellite peaks,while Fe existed mainly in the form of Fe(III).The findings of this study will be beneficial in resource utilization and formation mechanism of fine slag in future.