The Carboniferous volcanic rocks in the Wulungu-Luliang area are mainly andesites of medium- to high-K calc-alkalic series. Volcanic rock samples have relatively high alkali(Na2O + K2 O = 4.7 % to 6.8 %) and low Ti O2...The Carboniferous volcanic rocks in the Wulungu-Luliang area are mainly andesites of medium- to high-K calc-alkalic series. Volcanic rock samples have relatively high alkali(Na2O + K2 O = 4.7 % to 6.8 %) and low Ti O2contents(0.7 % to 0.9 %), relatively high Mg O(2.5 % to 3.4 %) and Mg#(49.9 % to 67.1 %), high rare earth element(REE) contents, and relatively high K2 O contents(1.7 % to 3.1 %). Chondrite-normalized REE patterns show light REE enrichment((La/Yb)N= 4.15 to 5.19)with weak Eu anomalies(d Eu = 0.75 to 0.92). These samples are enriched in large-ion lithophile elements but relatively depleted in high field strength elements. The trace elements and REE patterns are similar to those of Setouchi and central Ryukyu high-Mg andesites, indicating a highMg andesite source. Relatively high Y contents(16.7 to24.4 ppm), and relatively low Sr/Y ratios(17.2 to 38.8) and Ti O2contents(0.7 % to 0.9 %) exclude the possibility of slab melting. Low Sr/Nd(16.6 to 42.8), Ba/Th(66.4 to266.8), and U/Th(0.2 to 0.3) indicate that the influence of slab-derived fluids is low. The ratios of Ce/Th(4.9–7.3), Ce/Pb(1.8–4.2), Ba/Rb(7.99–22.03), Ba/Th(66.4–266.8), and La/Sm(3.6–4.3) are similar to ratios found in subducting sediment melts. Relatively high ratios of K/Nb(1357–3258),Th/La(0.28–0.42), Zr/Nb(8.8–27.1), and especially Th/Nb(0.48–1.25) suggest that the magma was assimilated and contaminated by upper continental crust. These characteristics, along with the ratios of La/Yb, Sc/Ni, Th/Yb, Ta/Yb,Ce/P2O5, and Zr/Ti O2, demonstrate that the earlier Carboniferous volcanic rocks in the Wulungu-Luliang area were generated in a continental island-arc setting.展开更多
Parametamorphic rocks from Arong County in southeastern Inner Mongolia- Daxinganling district are regarded as Proterozoic in age, belonging to the Wolegen Group and composed of volcanoclastic and sand- stone in origin...Parametamorphic rocks from Arong County in southeastern Inner Mongolia- Daxinganling district are regarded as Proterozoic in age, belonging to the Wolegen Group and composed of volcanoclastic and sand- stone in origin, and have been disputed in tectonic setting. Because of the stability in metamorphism, the rare earth elements indicate the features of their protoliths. The authors integrated the petrologic methods with the geochemical parameters which include ЕREE, ЕLREE/NHREE, δCe, δEu, La/Yb, Sm/Nd, Th/Sc and the standard values of chondrite. The results show that the protoliths of Wolengen Group may be a group of volcanoclastic and continental margin clastic rocks, and their tectonic setting is the continent island arc.展开更多
The Early Neoproterozoic Beiyixi Formation volcanic rocks of the southern Quruqtagh comprise mainly of a suite of tholeiitic basalts, alkaline andesites, and calc-alkaline rhyolites. The rhyolites are characterized by...The Early Neoproterozoic Beiyixi Formation volcanic rocks of the southern Quruqtagh comprise mainly of a suite of tholeiitic basalts, alkaline andesites, and calc-alkaline rhyolites. The rhyolites are characterized by variably fractionated enrichment in light rare earth elements (LREE) and fiat in heavy rare earth elements (HREE), and strongly negative Eu anomalies. Compared to the rhyolites, the andesites also exhibit enrichment in LREE and flat HREE (chondrite-normalized values of La/Yb,and La/Sm are 13.30-41.09, 3.18-6.89 respectively). Their rare earth element patterns display minor negative Eu anomalies. Both of them exhibit coherent patterns with strongly to moderately negative anomalies of Nb, Zr, Ti, and Hf on spider diagrams. Two rhyolite and one andesite magmatic zircons with defined oscillatory zoning yielded weighted mean 206pb/23Su ages of 743 ± 7 Ma, 741±2 Ma, and 7274 Ma. These ages are interpreted to represent the timing of volcanic eruptions. According to geochemistry and rock type, these volcanic rocks formed within a continental island-arc environment following subduction of the oceanic crust during the Early Neoproterozoic period.展开更多
The Northern Junggar Basin experienced extensive subduction and a complex tectono-magmatic evolution during the Late Paleozoic,resulting in a heterogeneous distribution of volcanic rocks in the Junggar Basin.In this s...The Northern Junggar Basin experienced extensive subduction and a complex tectono-magmatic evolution during the Late Paleozoic,resulting in a heterogeneous distribution of volcanic rocks in the Junggar Basin.In this study,the Carboniferous tectono-magmatic evolution of the northern Luliang arc was described by exploring the petrography and geochemistry of Carboniferous volcanic rocks collected from well Y-2 and outcrop WW' in the northern Luliang Uplift.The distribution,types,and formation ages of these volcanic rocks were characterized and the volcanic sequence in well Y-1 was divided into upper and lower parts according to vertical variations in selected geochemical data.Then the petrogenesis and tectonic settings of different volcanic rocks were evaluated and this was used to infer the tectonomagmatic evolution of the northern Luliang arc during the Carboniferous.The results indicate that:(1) Carboniferous high-K calc-alkali andesite-dacite associations are distributed in the west of the northern Luliang Uplift,and Lower Carboniferous calc-alkali basalt-dacite-rhyolite assemblages are preserved in its east.(2) The intermediateacid volcanic rocks in wells Y-1 and Y-2 were derived from calc-alkali basaltic magma through melting of the juvenile lower crust,and geochemical variations indicate increasing addition of slab melting in a subduction-related arc environment.The bimodal volcanic rocks from outcrop WW' were derived from lithospheric underplating of basaltic magma in an intra-arc extensional setting.(3) The closure of the eastern Keramaili Oceanic basin occurred before the Early Carboniferous,and the tectono-magmatic difference between the east and the west of the northern Luliang Uplift appeared before the Carboniferous period.展开更多
YANGBA Formation of Bikou Group is located in south Qinling, a famous orogenic belt separating Chinesecontinent into two parts: North China plate and Yangzi plate. The Yangba Formation comprises the maficand felsic vo...YANGBA Formation of Bikou Group is located in south Qinling, a famous orogenic belt separating Chinesecontinent into two parts: North China plate and Yangzi plate. The Yangba Formation comprises the maficand felsic volcanic rocks formed in an ancient seafloor environment during the Proterozoic era. The suitesof mafic and felsic volcanic rocks are petrochemically divided into tholeiite and calc-alkaline dacite, respectively, showing characteristics of bimodal volcanic rock mainly by lithology and major element content, and a lack of typical intermediate rocks. These signatures indicate that the volcanic rocks of YangbaFormation were generated in rift tectonics setting. The tholeiites of Yangba Formation are similar in trace element content to mid-ridge basalt, displaying a slight depletion to enrichment in light rare earth elements (LREE’s) (La/Yb_n = 0.6-1.4), slightfractionation between LREE (La/Sm_n =0.55-1.14) and HREE (Gd/Lu_n = 1.09-1.50), and relative flat patterns in whole. The decoupling of Eu to its neighboring elements in two samples likely indicates an effect of fractional crystallization in magma evolution. The La-La/Sm, Ni-La, Ni-Th, Ni-Ta,and Ni-Hf diagrams all support a conclusion that the mafic rocks are generated by partial melting pro-展开更多
文摘The Carboniferous volcanic rocks in the Wulungu-Luliang area are mainly andesites of medium- to high-K calc-alkalic series. Volcanic rock samples have relatively high alkali(Na2O + K2 O = 4.7 % to 6.8 %) and low Ti O2contents(0.7 % to 0.9 %), relatively high Mg O(2.5 % to 3.4 %) and Mg#(49.9 % to 67.1 %), high rare earth element(REE) contents, and relatively high K2 O contents(1.7 % to 3.1 %). Chondrite-normalized REE patterns show light REE enrichment((La/Yb)N= 4.15 to 5.19)with weak Eu anomalies(d Eu = 0.75 to 0.92). These samples are enriched in large-ion lithophile elements but relatively depleted in high field strength elements. The trace elements and REE patterns are similar to those of Setouchi and central Ryukyu high-Mg andesites, indicating a highMg andesite source. Relatively high Y contents(16.7 to24.4 ppm), and relatively low Sr/Y ratios(17.2 to 38.8) and Ti O2contents(0.7 % to 0.9 %) exclude the possibility of slab melting. Low Sr/Nd(16.6 to 42.8), Ba/Th(66.4 to266.8), and U/Th(0.2 to 0.3) indicate that the influence of slab-derived fluids is low. The ratios of Ce/Th(4.9–7.3), Ce/Pb(1.8–4.2), Ba/Rb(7.99–22.03), Ba/Th(66.4–266.8), and La/Sm(3.6–4.3) are similar to ratios found in subducting sediment melts. Relatively high ratios of K/Nb(1357–3258),Th/La(0.28–0.42), Zr/Nb(8.8–27.1), and especially Th/Nb(0.48–1.25) suggest that the magma was assimilated and contaminated by upper continental crust. These characteristics, along with the ratios of La/Yb, Sc/Ni, Th/Yb, Ta/Yb,Ce/P2O5, and Zr/Ti O2, demonstrate that the earlier Carboniferous volcanic rocks in the Wulungu-Luliang area were generated in a continental island-arc setting.
文摘Parametamorphic rocks from Arong County in southeastern Inner Mongolia- Daxinganling district are regarded as Proterozoic in age, belonging to the Wolegen Group and composed of volcanoclastic and sand- stone in origin, and have been disputed in tectonic setting. Because of the stability in metamorphism, the rare earth elements indicate the features of their protoliths. The authors integrated the petrologic methods with the geochemical parameters which include ЕREE, ЕLREE/NHREE, δCe, δEu, La/Yb, Sm/Nd, Th/Sc and the standard values of chondrite. The results show that the protoliths of Wolengen Group may be a group of volcanoclastic and continental margin clastic rocks, and their tectonic setting is the continent island arc.
基金supported by the"Fivesecond"National Science and Technology Support Program(No.2011BAB04B05)Technology and Development Project of China Petroleum & Chemical Zorporation(No.YPH08110)Chinese Geological Survey(No.1212011121091)
文摘The Early Neoproterozoic Beiyixi Formation volcanic rocks of the southern Quruqtagh comprise mainly of a suite of tholeiitic basalts, alkaline andesites, and calc-alkaline rhyolites. The rhyolites are characterized by variably fractionated enrichment in light rare earth elements (LREE) and fiat in heavy rare earth elements (HREE), and strongly negative Eu anomalies. Compared to the rhyolites, the andesites also exhibit enrichment in LREE and flat HREE (chondrite-normalized values of La/Yb,and La/Sm are 13.30-41.09, 3.18-6.89 respectively). Their rare earth element patterns display minor negative Eu anomalies. Both of them exhibit coherent patterns with strongly to moderately negative anomalies of Nb, Zr, Ti, and Hf on spider diagrams. Two rhyolite and one andesite magmatic zircons with defined oscillatory zoning yielded weighted mean 206pb/23Su ages of 743 ± 7 Ma, 741±2 Ma, and 7274 Ma. These ages are interpreted to represent the timing of volcanic eruptions. According to geochemistry and rock type, these volcanic rocks formed within a continental island-arc environment following subduction of the oceanic crust during the Early Neoproterozoic period.
基金financially supported by the National Natural Science Foundation of China (Nos.41802182 and 42072192)Open fund of Key Laboratory of Coalbed Methane Resources and Reservoir Formation Process of the Ministry of Education,China University of Mining and Technology (No.2018-004)+1 种基金A Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institution (PAPD)China Scholarship Council。
文摘The Northern Junggar Basin experienced extensive subduction and a complex tectono-magmatic evolution during the Late Paleozoic,resulting in a heterogeneous distribution of volcanic rocks in the Junggar Basin.In this study,the Carboniferous tectono-magmatic evolution of the northern Luliang arc was described by exploring the petrography and geochemistry of Carboniferous volcanic rocks collected from well Y-2 and outcrop WW' in the northern Luliang Uplift.The distribution,types,and formation ages of these volcanic rocks were characterized and the volcanic sequence in well Y-1 was divided into upper and lower parts according to vertical variations in selected geochemical data.Then the petrogenesis and tectonic settings of different volcanic rocks were evaluated and this was used to infer the tectonomagmatic evolution of the northern Luliang arc during the Carboniferous.The results indicate that:(1) Carboniferous high-K calc-alkali andesite-dacite associations are distributed in the west of the northern Luliang Uplift,and Lower Carboniferous calc-alkali basalt-dacite-rhyolite assemblages are preserved in its east.(2) The intermediateacid volcanic rocks in wells Y-1 and Y-2 were derived from calc-alkali basaltic magma through melting of the juvenile lower crust,and geochemical variations indicate increasing addition of slab melting in a subduction-related arc environment.The bimodal volcanic rocks from outcrop WW' were derived from lithospheric underplating of basaltic magma in an intra-arc extensional setting.(3) The closure of the eastern Keramaili Oceanic basin occurred before the Early Carboniferous,and the tectono-magmatic difference between the east and the west of the northern Luliang Uplift appeared before the Carboniferous period.
文摘YANGBA Formation of Bikou Group is located in south Qinling, a famous orogenic belt separating Chinesecontinent into two parts: North China plate and Yangzi plate. The Yangba Formation comprises the maficand felsic volcanic rocks formed in an ancient seafloor environment during the Proterozoic era. The suitesof mafic and felsic volcanic rocks are petrochemically divided into tholeiite and calc-alkaline dacite, respectively, showing characteristics of bimodal volcanic rock mainly by lithology and major element content, and a lack of typical intermediate rocks. These signatures indicate that the volcanic rocks of YangbaFormation were generated in rift tectonics setting. The tholeiites of Yangba Formation are similar in trace element content to mid-ridge basalt, displaying a slight depletion to enrichment in light rare earth elements (LREE’s) (La/Yb_n = 0.6-1.4), slightfractionation between LREE (La/Sm_n =0.55-1.14) and HREE (Gd/Lu_n = 1.09-1.50), and relative flat patterns in whole. The decoupling of Eu to its neighboring elements in two samples likely indicates an effect of fractional crystallization in magma evolution. The La-La/Sm, Ni-La, Ni-Th, Ni-Ta,and Ni-Hf diagrams all support a conclusion that the mafic rocks are generated by partial melting pro-