With the rapid development of Network Function Virtualization(NFV),the problem of low resource utilizationin traditional data centers is gradually being addressed.However,existing research does not optimize both local...With the rapid development of Network Function Virtualization(NFV),the problem of low resource utilizationin traditional data centers is gradually being addressed.However,existing research does not optimize both localand global allocation of resources in data centers.Hence,we propose an adaptive hybrid optimization strategy thatcombines dynamic programming and neural networks to improve resource utilization and service quality in datacenters.Our approach encompasses a service function chain simulation generator,a parallel architecture servicesystem,a dynamic programming strategy formaximizing the utilization of local server resources,a neural networkfor predicting the global utilization rate of resources and a global resource optimization strategy for bottleneck andredundant resources.With the implementation of our local and global resource allocation strategies,the systemperformance is significantly optimized through simulation.展开更多
Medical procedures are inherently invasive and carry the risk of inducing pain to the mind and body.Recently,efforts have been made to alleviate the discomfort associated with invasive medical procedures through the u...Medical procedures are inherently invasive and carry the risk of inducing pain to the mind and body.Recently,efforts have been made to alleviate the discomfort associated with invasive medical procedures through the use of virtual reality(VR)technology.VR has been demonstrated to be an effective treatment for pain associated with medical procedures,as well as for chronic pain conditions for which no effective treatment has been established.The precise mechanism by which the diversion from reality facilitated by VR contributes to the diminution of pain and anxiety has yet to be elucidated.However,the provision of positive images through VR-based visual stimulation may enhance the functionality of brain networks.The salience network is diminished,while the default mode network is enhanced.Additionally,the medial prefrontal cortex may establish a stronger connection with the default mode network,which could result in a reduction of pain and anxiety.Further research into the potential of VR technology to alleviate pain could lead to a reduction in the number of individuals who overdose on painkillers and contribute to positive change in the medical field.展开更多
The use of virtual reality to educate preoperative patients has a positive impact on nurses as well as patients undergoing treatment.It can help improve patient satisfaction and improve favorable outcomes by reducing ...The use of virtual reality to educate preoperative patients has a positive impact on nurses as well as patients undergoing treatment.It can help improve patient satisfaction and improve favorable outcomes by reducing patient anxiety and proving adequate knowledge about the procedure and possible outcomes to the patient.It also reduces burden on nursing staff and counsellors.Larger and more diverse cohort studies will help us understand the wider application of this tool on the patient population.It may be difficult to apply this tool on elderly patients with failing eyesight,multiple physical comorbidities.Also,there may be reduced acceptance of this modality by older nursing staff and practitioners who may prefer the traditional verbal version for counselling.We will benefit from a combined approach of using virtual reality apps with tradition one-on-one counselling to help alleviate patient concerns and improve patient and healthcare professional satisfaction.展开更多
The development of the Next-Generation Wireless Network(NGWN)is becoming a reality.To conduct specialized processes more,rapid network deployment has become essential.Methodologies like Network Function Virtualization...The development of the Next-Generation Wireless Network(NGWN)is becoming a reality.To conduct specialized processes more,rapid network deployment has become essential.Methodologies like Network Function Virtualization(NFV),Software-Defined Networks(SDN),and cloud computing will be crucial in addressing various challenges that 5G networks will face,particularly adaptability,scalability,and reliability.The motivation behind this work is to confirm the function of virtualization and the capabilities offered by various virtualization platforms,including hypervisors,clouds,and containers,which will serve as a guide to dealing with the stimulating environment of 5G.This is particularly crucial when implementing network operations at the edge of 5G networks,where limited resources and prompt user responses are mandatory.Experimental results prove that containers outperform hypervisor-based virtualized infrastructure and cloud platforms’latency and network throughput at the expense of higher virtualized processor use.In contrast to public clouds,where a set of rules is created to allow only the appropriate traffic,security is still a problem with containers.展开更多
Purpose: This study aimed to investigate the immediate effects of optokinetic stimulation (OKS) using virtual reality (VR) on visual dependency and sensory reweighting in postural control during static standing. Speci...Purpose: This study aimed to investigate the immediate effects of optokinetic stimulation (OKS) using virtual reality (VR) on visual dependency and sensory reweighting in postural control during static standing. Specifically, it examined whether VR-based OKS could reduce visual dependency more effectively than visual deprivation through eye closure. Methods: Ten healthy adults participated in this study. A balance function meter was used to measure postural stability, including Romberg ratios before and after two conditions: VR-based OKS (VR + OKS) and eye closure (EC). Participants performed a two-minute standing task under each condition in random order, with adequate rest between tasks. In the VR + OKS condition, a smartphone-based VR headset presented a rotational OKS, while in the EC condition, participants stood with their eyes closed. Statistical analyses were conducted using paired t-tests to compare pre- and post-task Romberg ratios. Results: No significant differences were observed in the pre-task Romberg ratios between conditions. After the VR + OKS condition, significant reductions in Romberg A and Romberg V were observed. In contrast, no significant changes were noted in Romberg ratios after the EC condition. Conclusion: VR-based OKS significantly reduced visual dependency, as indicated by decreased Romberg ratios, suggesting its potential to facilitate sensory reweighting during postural control. These findings highlight the utility of low-cost VR devices in balance rehabilitation for conditions involving high visual dependency. Future studies should expand on this preliminary research by including larger sample sizes and diverse populations to confirm its clinical applicability.展开更多
To address the challenges of insufficient visualization in the industrial robot assembly operation system and the limitation of visualizing only geometric attributes of physical properties,a method is proposed for con...To address the challenges of insufficient visualization in the industrial robot assembly operation system and the limitation of visualizing only geometric attributes of physical properties,a method is proposed for constructing an industrial robot assembly system based on virtual reality technology.Focusing on the shaft hole assembly,the mechanical characteristics of the industrial robot shaft hole assembly process are analyzed and a dynamic model is established for shaft hole assembly operations.The key elements of virtual assembly operations for industrial robots are summarized and a five-dimensional model is proposed for industrial robot virtual operations.Utilizing the Unity3D engine based on the 5-D model for industrial robot virtual operations,an industrial robot shaft hole assembly system is developed.This system enables virtual assembly operations,displays physical attributes,and provides valuable references for the research of virtual systems.展开更多
Background Haptic feedback plays a crucial role in virtual reality(VR)interaction,helping to improve the precision of user operation and enhancing the immersion of the user experience.Instrumental haptic feedback in v...Background Haptic feedback plays a crucial role in virtual reality(VR)interaction,helping to improve the precision of user operation and enhancing the immersion of the user experience.Instrumental haptic feedback in virtual environments is primarily realized using grounded force or vibration feedback devices.However,improvements are required in terms of the active space and feedback realism.Methods We propose a lightweight and flexible haptic feedback glove that can haptically render objects in VR environments via kinesthetic and vibration feedback,thereby enabling users to enjoy a rich virtual piano-playing experience.The kinesthetic feedback of the glove relies on a cable-pulling mechanism that rotates the mechanism and pulls the two cables connected to it,thereby changing the amount of force generated to simulate the hardness or softness of the object.Vibration feedback is provided by small vibration motors embedded in the bottom of the fingertips of the glove.We designed a piano-playing scenario in the virtual environment and conducted user tests.The evaluation metrics were clarity,realism,enjoyment,and satisfaction.Results A total of 14 subjects participated in the test,and the results showed that our proposed glove scored significantly higher on the four evaluation metrics than the nofeedback and vibration feedback methods.Conclusions Our proposed glove significantly enhances the user experience when interacting with virtual objects.展开更多
As the penetration rate of distributed energy increases,the transient power angle stability problem of the virtual synchronous generator(VSG)has gradually become prominent.In view of the situation that the grid impeda...As the penetration rate of distributed energy increases,the transient power angle stability problem of the virtual synchronous generator(VSG)has gradually become prominent.In view of the situation that the grid impedance ratio(R/X)is high and affects the transient power angle stability of VSG,this paper proposes a VSG transient power angle stability control strategy based on the combination of frequency difference feedback and virtual impedance.To improve the transient power angle stability of the VSG,a virtual impedance is adopted in the voltage loop to adjust the impedance ratio R/X;and the PI control feedback of the VSG frequency difference is introduced in the reactive powervoltage link of theVSGto enhance the damping effect.Thesecond-orderVSGdynamic nonlinearmodel considering the reactive power-voltage loop is established and the influence of different proportional integral(PI)control parameters on the system balance stability is analyzed.Moreover,the impact of the impedance ratio R/X on the transient power angle stability is presented using the equal area criterion.In the simulations,during the voltage dips with the reduction of R/X from 1.6 to 0.8,Δδ_(1)is reduced from 0.194 rad to 0.072 rad,Δf_(1)is reduced from 0.170 to 0.093 Hz,which shows better transient power angle stability.Simulation results verify that compared with traditional VSG,the proposedmethod can effectively improve the transient power angle stability of the system.展开更多
Background The redirected walking(RDW)method for multi-user collaboration requires maintaining the relative position between users in a virtual environment(VE)and physical environment(PE).A chasing game in a VE is a t...Background The redirected walking(RDW)method for multi-user collaboration requires maintaining the relative position between users in a virtual environment(VE)and physical environment(PE).A chasing game in a VE is a typical virtual reality game that entails multi-user collaboration.When a user approaches and interacts with a target user in the VE,the user is expected to approach and interact with the target user in the corresponding PE as well.Existing methods of multi-user RDW mainly focus on obstacle avoidance,which does not account for the relative positional relationship between the users in both VE and PE.Methods To enhance the user experience and facilitate potential interaction,this paper presents a novel dynamic alignment algorithm for multi-user collaborative redirected walking(DA-RDW)in a shared PE where the target user and other users are moving.This algorithm adopts improved artificial potential fields,where the repulsive force is a function of the relative position and velocity of the user with respect to dynamic obstacles.For the best alignment,this algorithm sets the alignment-guidance force in several cases and then converts it into a constrained optimization problem to obtain the optimal direction.Moreover,this algorithm introduces a potential interaction object selection strategy for a dynamically uncertain environment to speed up the subsequent alignment.To balance obstacle avoidance and alignment,this algorithm uses the dynamic weightings of the virtual and physical distances between users and the target to determine the resultant force vector.Results The efficacy of the proposed method was evaluated using a series of simulations and live-user experiments.The experimental results demonstrate that our novel dynamic alignment method for multi-user collaborative redirected walking can reduce the distance error in both VE and PE to improve alignment with fewer collisions.展开更多
This paper presents a novel approach to dynamic pricing and distributed energy management in virtual power plant(VPP)networks using multi-agent reinforcement learning(MARL).As the energy landscape evolves towards grea...This paper presents a novel approach to dynamic pricing and distributed energy management in virtual power plant(VPP)networks using multi-agent reinforcement learning(MARL).As the energy landscape evolves towards greater decentralization and renewable integration,traditional optimization methods struggle to address the inherent complexities and uncertainties.Our proposed MARL framework enables adaptive,decentralized decision-making for both the distribution system operator and individual VPPs,optimizing economic efficiency while maintaining grid stability.We formulate the problem as a Markov decision process and develop a custom MARL algorithm that leverages actor-critic architectures and experience replay.Extensive simulations across diverse scenarios demonstrate that our approach consistently outperforms baseline methods,including Stackelberg game models and model predictive control,achieving an 18.73%reduction in costs and a 22.46%increase in VPP profits.The MARL framework shows particular strength in scenarios with high renewable energy penetration,where it improves system performance by 11.95%compared with traditional methods.Furthermore,our approach demonstrates superior adaptability to unexpected events and mis-predictions,highlighting its potential for real-world implementation.展开更多
This manuscript critically evaluates the randomized controlled trial(RCT)conducted by Phiri et al,which assessed the effectiveness of virtual reality(VR)training for psychiatric staff in reducing restrictive practices...This manuscript critically evaluates the randomized controlled trial(RCT)conducted by Phiri et al,which assessed the effectiveness of virtual reality(VR)training for psychiatric staff in reducing restrictive practices(RPs).Specifically,this RCT investigated the impact of VR on the handling of aggressive patients by psychiatric staff compared to traditional training methods.Despite significant reductions in perceived discrimination in the VR group,there were no major improvements in self-efficacy or anxiety levels.The system usability scale rated the VR platform highly,but it did not consistently outperform traditional training methods.Indeed,the study shows the potential for VR to reduce RPs,although fluctuations in RP rates suggest that external factors,such as staff turnover,influenced the outcomes.This manuscript evaluates the study’s methodology,results,and broader implications for mental health training.Additionally,it highlights the need for more comprehensive research to establish VR as a standard tool for psychiatric staff education,focusing on patient care outcomes and real-world applicability.Finally,this study explores future research di-rections,technological improvements,and the potential impact of policies that could enhance the integration of VR in clinical training.展开更多
Network Functions Virtualization(NFV) is an attempt to help operators more effectively manage their networks by implementing traditional network functions embedded in specialized hardware platforms in term of virtuali...Network Functions Virtualization(NFV) is an attempt to help operators more effectively manage their networks by implementing traditional network functions embedded in specialized hardware platforms in term of virtualized software instances. But, existing novel network appliances designed for NFV infrastructure are always architected on a general-purpose x86 server, which makes the performance of network functions limited by the hosted single server. To address this challenge, we propose ApplianceB ricks, a novel NFV-enable network appliance architecture that is used to explore the way of consolidating multiple physical network functions into a clustered network appliance, which is able to improve the processing capability of NFV-enabled network appliances.展开更多
As a key technology to realize smart services of Internet of Things(IoT), network virtualization technology can support the network diversification and ubiquity, and improve the utilization rate of network resources...As a key technology to realize smart services of Internet of Things(IoT), network virtualization technology can support the network diversification and ubiquity, and improve the utilization rate of network resources. This paper studies the service-ori- ented network virtualization architecture for loT services. Firstly the semantic description method for loT services is proposed, then the resource representation model and resource management model in the environment of network virtualization are presented. Based on the above models, the service-oriented virtual network architecture for loT is established. Finally, a smart campus system is designed and deployed based on the service-oriented virtual network architecture. Moreover, the proposed architecture and models are verified in experiments.展开更多
Numerous Internet of Things (IoT) devices are being connected to the net-works to offer services. To cope with a large diversity and number of IoT ser-vices, operators must meet those needs with a more flexible and ef...Numerous Internet of Things (IoT) devices are being connected to the net-works to offer services. To cope with a large diversity and number of IoT ser-vices, operators must meet those needs with a more flexible and efficient net-work architecture. Network slicing in 5G promises a feasible solution for this issue with network virtualization and programmability enabled by NFV (Net-work Functions Virtualization). In this research, we use virtualized IoT plat-forms as the Virtual Network Functions (VNFs) and customize network slices enabled by NFV with different QoS to support various kinds of IoT services for their best performance. We construct three different slicing systems including: 1) a single slice system, 2) a multiple customized slices system and 3) a single but scalable network slice system to support IoT services. Our objective is to compare and evaluate these three systems in terms of their throughput, aver-age response time and CPU utilization in order to identify the best system de-sign. Validated with our experiments, the performance of the multiple slicing system is better than those of the single slice systems whether it is equipped with scalability or not.展开更多
Since virtualization technology enables the abstraction and sharing of resources in a flexible management way, the overall expenses of network deployment can be significantly reduced. Therefore, the technology has bee...Since virtualization technology enables the abstraction and sharing of resources in a flexible management way, the overall expenses of network deployment can be significantly reduced. Therefore, the technology has been widely applied in the core network. With the tremendous growth in mobile traffic and services, it is natural to extend virtualization technology to the cloud computing based radio access networks(CCRANs) for achieving high spectral efficiency with low cost.In this paper, the virtualization technologies in CC-RANs are surveyed, including the system architecture, key enabling techniques, challenges, and open issues. The enabling key technologies for virtualization in CC-RANs mainly including virtual resource allocation, radio access network(RAN) slicing, mobility management, and social-awareness have been comprehensively surveyed to satisfy the isolation, customization and high-efficiency utilization of radio resources. The challenges and open issues mainly focus on virtualization levels for CC-RANs, signaling design for CC-RAN virtualization, performance analysis for CC-RAN virtualization, and network security for virtualized CC-RANs.展开更多
The concept of virtualization machines is not new, but it is increasing vastly and gaining popularity in the IT world. Hypervisors are also popular for security as a means of isolation. The virtualization of informati...The concept of virtualization machines is not new, but it is increasing vastly and gaining popularity in the IT world. Hypervisors are also popular for security as a means of isolation. The virtualization of information technology infrastructure creates the enablement of IT resources to be shared and used on several other devices and applications;this increases the growth of business needs. The environment created by virtualization is not restricted to any configuration physically or execution. The resources of a computer are shared logically. Hypervisors help in virtualization of hardware that is a software interact with the physical system, enabling or providing virtualized hardware environment to support multiple running operating system simultaneously utilizing one physical server. This paper explores the benefits, types and security issues of Virtualization Hypervisor in virtualized hardware environment.展开更多
This paper proposes a content addres sable storage optimization method, VDeskCAS, for desktop virtualization storage based disaster backup storage system. The method implements a blocklevel storage optimization, by em...This paper proposes a content addres sable storage optimization method, VDeskCAS, for desktop virtualization storage based disaster backup storage system. The method implements a blocklevel storage optimization, by employing the algorithms of chunking image file into blocks, the blockffmger calculation and the block dedup li cation. A File system in Use Space (FUSE) based storage process for VDeskCAS is also introduced which optimizes current direct storage to suit our content addressable storage. An interface level modification makes our system easy to extend. Experiments on virtual desktop image files and normal files verify the effectiveness of our method and above 60% storage volume decrease is a chieved for Red Hat Enterprise Linux image files. Key words: disaster backup; desktop virtualization; storage optimization; content addressable storage展开更多
The evolution of airborne tactical networks(ATNs)is impeded by the network ossification problem.As a solution,network virtualization(NV)can provide a flexible and scalable architecture where virtual network embedding(...The evolution of airborne tactical networks(ATNs)is impeded by the network ossification problem.As a solution,network virtualization(NV)can provide a flexible and scalable architecture where virtual network embedding(VNE)is a key part.However,existing VNE algorithms cannot be optimally adopted in the virtualization of ATN due to the complex interference in aircombat field.In this context,a highly reliable VNE algorithm based on the transmission rate for ATN virtualization(TR-ATVNE)is proposed to adapt well to the specific electromagnetic environment of ATN.Our algorithm coordinates node and link mapping.In the node mapping,transmission-rate resource is firstly defined to effectively evaluate the ranking value of substrate nodes under the interference of both environmental noises and enemy attacks.Meanwhile,a feasible splitting rule is proposed for path splitting in the link mapping,considering the interference between wireless links.Simulation results reveal that our algorithm is able to improve the acceptance ratio of virtual network requests while maintaining a high revenue-to-cost ratio under the complex electromagnetic interference.展开更多
基金the Fundamental Research Program of Guangdong,China,under Grants 2020B1515310023 and 2023A1515011281in part by the National Natural Science Foundation of China under Grant 61571005.
文摘With the rapid development of Network Function Virtualization(NFV),the problem of low resource utilizationin traditional data centers is gradually being addressed.However,existing research does not optimize both localand global allocation of resources in data centers.Hence,we propose an adaptive hybrid optimization strategy thatcombines dynamic programming and neural networks to improve resource utilization and service quality in datacenters.Our approach encompasses a service function chain simulation generator,a parallel architecture servicesystem,a dynamic programming strategy formaximizing the utilization of local server resources,a neural networkfor predicting the global utilization rate of resources and a global resource optimization strategy for bottleneck andredundant resources.With the implementation of our local and global resource allocation strategies,the systemperformance is significantly optimized through simulation.
文摘Medical procedures are inherently invasive and carry the risk of inducing pain to the mind and body.Recently,efforts have been made to alleviate the discomfort associated with invasive medical procedures through the use of virtual reality(VR)technology.VR has been demonstrated to be an effective treatment for pain associated with medical procedures,as well as for chronic pain conditions for which no effective treatment has been established.The precise mechanism by which the diversion from reality facilitated by VR contributes to the diminution of pain and anxiety has yet to be elucidated.However,the provision of positive images through VR-based visual stimulation may enhance the functionality of brain networks.The salience network is diminished,while the default mode network is enhanced.Additionally,the medial prefrontal cortex may establish a stronger connection with the default mode network,which could result in a reduction of pain and anxiety.Further research into the potential of VR technology to alleviate pain could lead to a reduction in the number of individuals who overdose on painkillers and contribute to positive change in the medical field.
文摘The use of virtual reality to educate preoperative patients has a positive impact on nurses as well as patients undergoing treatment.It can help improve patient satisfaction and improve favorable outcomes by reducing patient anxiety and proving adequate knowledge about the procedure and possible outcomes to the patient.It also reduces burden on nursing staff and counsellors.Larger and more diverse cohort studies will help us understand the wider application of this tool on the patient population.It may be difficult to apply this tool on elderly patients with failing eyesight,multiple physical comorbidities.Also,there may be reduced acceptance of this modality by older nursing staff and practitioners who may prefer the traditional verbal version for counselling.We will benefit from a combined approach of using virtual reality apps with tradition one-on-one counselling to help alleviate patient concerns and improve patient and healthcare professional satisfaction.
基金supported by Future University Researchers Supporting Project Number FUESP-2020/48 at Future University in Egypt,New Cairo 11845,Egypt.
文摘The development of the Next-Generation Wireless Network(NGWN)is becoming a reality.To conduct specialized processes more,rapid network deployment has become essential.Methodologies like Network Function Virtualization(NFV),Software-Defined Networks(SDN),and cloud computing will be crucial in addressing various challenges that 5G networks will face,particularly adaptability,scalability,and reliability.The motivation behind this work is to confirm the function of virtualization and the capabilities offered by various virtualization platforms,including hypervisors,clouds,and containers,which will serve as a guide to dealing with the stimulating environment of 5G.This is particularly crucial when implementing network operations at the edge of 5G networks,where limited resources and prompt user responses are mandatory.Experimental results prove that containers outperform hypervisor-based virtualized infrastructure and cloud platforms’latency and network throughput at the expense of higher virtualized processor use.In contrast to public clouds,where a set of rules is created to allow only the appropriate traffic,security is still a problem with containers.
文摘Purpose: This study aimed to investigate the immediate effects of optokinetic stimulation (OKS) using virtual reality (VR) on visual dependency and sensory reweighting in postural control during static standing. Specifically, it examined whether VR-based OKS could reduce visual dependency more effectively than visual deprivation through eye closure. Methods: Ten healthy adults participated in this study. A balance function meter was used to measure postural stability, including Romberg ratios before and after two conditions: VR-based OKS (VR + OKS) and eye closure (EC). Participants performed a two-minute standing task under each condition in random order, with adequate rest between tasks. In the VR + OKS condition, a smartphone-based VR headset presented a rotational OKS, while in the EC condition, participants stood with their eyes closed. Statistical analyses were conducted using paired t-tests to compare pre- and post-task Romberg ratios. Results: No significant differences were observed in the pre-task Romberg ratios between conditions. After the VR + OKS condition, significant reductions in Romberg A and Romberg V were observed. In contrast, no significant changes were noted in Romberg ratios after the EC condition. Conclusion: VR-based OKS significantly reduced visual dependency, as indicated by decreased Romberg ratios, suggesting its potential to facilitate sensory reweighting during postural control. These findings highlight the utility of low-cost VR devices in balance rehabilitation for conditions involving high visual dependency. Future studies should expand on this preliminary research by including larger sample sizes and diverse populations to confirm its clinical applicability.
基金Sponsored by the National Natural Science Foundation of China(Grant No.52005003)the Science and Technology Planning Project of Wuhu City(Grant No.2022jc41)。
文摘To address the challenges of insufficient visualization in the industrial robot assembly operation system and the limitation of visualizing only geometric attributes of physical properties,a method is proposed for constructing an industrial robot assembly system based on virtual reality technology.Focusing on the shaft hole assembly,the mechanical characteristics of the industrial robot shaft hole assembly process are analyzed and a dynamic model is established for shaft hole assembly operations.The key elements of virtual assembly operations for industrial robots are summarized and a five-dimensional model is proposed for industrial robot virtual operations.Utilizing the Unity3D engine based on the 5-D model for industrial robot virtual operations,an industrial robot shaft hole assembly system is developed.This system enables virtual assembly operations,displays physical attributes,and provides valuable references for the research of virtual systems.
基金Supported by the Natienal Natural Science Foundation of China(U23A20287).
文摘Background Haptic feedback plays a crucial role in virtual reality(VR)interaction,helping to improve the precision of user operation and enhancing the immersion of the user experience.Instrumental haptic feedback in virtual environments is primarily realized using grounded force or vibration feedback devices.However,improvements are required in terms of the active space and feedback realism.Methods We propose a lightweight and flexible haptic feedback glove that can haptically render objects in VR environments via kinesthetic and vibration feedback,thereby enabling users to enjoy a rich virtual piano-playing experience.The kinesthetic feedback of the glove relies on a cable-pulling mechanism that rotates the mechanism and pulls the two cables connected to it,thereby changing the amount of force generated to simulate the hardness or softness of the object.Vibration feedback is provided by small vibration motors embedded in the bottom of the fingertips of the glove.We designed a piano-playing scenario in the virtual environment and conducted user tests.The evaluation metrics were clarity,realism,enjoyment,and satisfaction.Results A total of 14 subjects participated in the test,and the results showed that our proposed glove scored significantly higher on the four evaluation metrics than the nofeedback and vibration feedback methods.Conclusions Our proposed glove significantly enhances the user experience when interacting with virtual objects.
基金supported by theMajor Science and Technology Projects of China Southern Power Grid(Grant number CGYKJXM20210328).
文摘As the penetration rate of distributed energy increases,the transient power angle stability problem of the virtual synchronous generator(VSG)has gradually become prominent.In view of the situation that the grid impedance ratio(R/X)is high and affects the transient power angle stability of VSG,this paper proposes a VSG transient power angle stability control strategy based on the combination of frequency difference feedback and virtual impedance.To improve the transient power angle stability of the VSG,a virtual impedance is adopted in the voltage loop to adjust the impedance ratio R/X;and the PI control feedback of the VSG frequency difference is introduced in the reactive powervoltage link of theVSGto enhance the damping effect.Thesecond-orderVSGdynamic nonlinearmodel considering the reactive power-voltage loop is established and the influence of different proportional integral(PI)control parameters on the system balance stability is analyzed.Moreover,the impact of the impedance ratio R/X on the transient power angle stability is presented using the equal area criterion.In the simulations,during the voltage dips with the reduction of R/X from 1.6 to 0.8,Δδ_(1)is reduced from 0.194 rad to 0.072 rad,Δf_(1)is reduced from 0.170 to 0.093 Hz,which shows better transient power angle stability.Simulation results verify that compared with traditional VSG,the proposedmethod can effectively improve the transient power angle stability of the system.
基金Supported by STI 2030 Major Projects of China(2021ZD0200400).
文摘Background The redirected walking(RDW)method for multi-user collaboration requires maintaining the relative position between users in a virtual environment(VE)and physical environment(PE).A chasing game in a VE is a typical virtual reality game that entails multi-user collaboration.When a user approaches and interacts with a target user in the VE,the user is expected to approach and interact with the target user in the corresponding PE as well.Existing methods of multi-user RDW mainly focus on obstacle avoidance,which does not account for the relative positional relationship between the users in both VE and PE.Methods To enhance the user experience and facilitate potential interaction,this paper presents a novel dynamic alignment algorithm for multi-user collaborative redirected walking(DA-RDW)in a shared PE where the target user and other users are moving.This algorithm adopts improved artificial potential fields,where the repulsive force is a function of the relative position and velocity of the user with respect to dynamic obstacles.For the best alignment,this algorithm sets the alignment-guidance force in several cases and then converts it into a constrained optimization problem to obtain the optimal direction.Moreover,this algorithm introduces a potential interaction object selection strategy for a dynamically uncertain environment to speed up the subsequent alignment.To balance obstacle avoidance and alignment,this algorithm uses the dynamic weightings of the virtual and physical distances between users and the target to determine the resultant force vector.Results The efficacy of the proposed method was evaluated using a series of simulations and live-user experiments.The experimental results demonstrate that our novel dynamic alignment method for multi-user collaborative redirected walking can reduce the distance error in both VE and PE to improve alignment with fewer collisions.
基金supported by the Science and Technology Project of State Grid Sichuan Electric Power Company Chengdu Power Supply Company under Grant No.521904240005.
文摘This paper presents a novel approach to dynamic pricing and distributed energy management in virtual power plant(VPP)networks using multi-agent reinforcement learning(MARL).As the energy landscape evolves towards greater decentralization and renewable integration,traditional optimization methods struggle to address the inherent complexities and uncertainties.Our proposed MARL framework enables adaptive,decentralized decision-making for both the distribution system operator and individual VPPs,optimizing economic efficiency while maintaining grid stability.We formulate the problem as a Markov decision process and develop a custom MARL algorithm that leverages actor-critic architectures and experience replay.Extensive simulations across diverse scenarios demonstrate that our approach consistently outperforms baseline methods,including Stackelberg game models and model predictive control,achieving an 18.73%reduction in costs and a 22.46%increase in VPP profits.The MARL framework shows particular strength in scenarios with high renewable energy penetration,where it improves system performance by 11.95%compared with traditional methods.Furthermore,our approach demonstrates superior adaptability to unexpected events and mis-predictions,highlighting its potential for real-world implementation.
基金Supported by Basic Science Research Program Through the National Research Foundation of Korea(NRF)Funded by the Ministry of Education,No.NRF-RS-2023-00237287 and No.NRF-2021S1A5A8062526Local Government-University Cooperation-Based Regional Innovation Projects,No.2021RIS-003.
文摘This manuscript critically evaluates the randomized controlled trial(RCT)conducted by Phiri et al,which assessed the effectiveness of virtual reality(VR)training for psychiatric staff in reducing restrictive practices(RPs).Specifically,this RCT investigated the impact of VR on the handling of aggressive patients by psychiatric staff compared to traditional training methods.Despite significant reductions in perceived discrimination in the VR group,there were no major improvements in self-efficacy or anxiety levels.The system usability scale rated the VR platform highly,but it did not consistently outperform traditional training methods.Indeed,the study shows the potential for VR to reduce RPs,although fluctuations in RP rates suggest that external factors,such as staff turnover,influenced the outcomes.This manuscript evaluates the study’s methodology,results,and broader implications for mental health training.Additionally,it highlights the need for more comprehensive research to establish VR as a standard tool for psychiatric staff education,focusing on patient care outcomes and real-world applicability.Finally,this study explores future research di-rections,technological improvements,and the potential impact of policies that could enhance the integration of VR in clinical training.
基金supported by Program for National Basic Research Program of China (973 Program) "Reconfigurable Network Emulation Testbed for Basic Network Communication"
文摘Network Functions Virtualization(NFV) is an attempt to help operators more effectively manage their networks by implementing traditional network functions embedded in specialized hardware platforms in term of virtualized software instances. But, existing novel network appliances designed for NFV infrastructure are always architected on a general-purpose x86 server, which makes the performance of network functions limited by the hosted single server. To address this challenge, we propose ApplianceB ricks, a novel NFV-enable network appliance architecture that is used to explore the way of consolidating multiple physical network functions into a clustered network appliance, which is able to improve the processing capability of NFV-enabled network appliances.
基金supported by the national 973 project of China under Grants 2013CB329104the Natural Science Foundation of China under Grants 61372124,61427801,61271237,61271236Jiangsu Collaborative Innovation Center for Technology and Application of Internet of Things under Grants SJ213003
文摘As a key technology to realize smart services of Internet of Things(IoT), network virtualization technology can support the network diversification and ubiquity, and improve the utilization rate of network resources. This paper studies the service-ori- ented network virtualization architecture for loT services. Firstly the semantic description method for loT services is proposed, then the resource representation model and resource management model in the environment of network virtualization are presented. Based on the above models, the service-oriented virtual network architecture for loT is established. Finally, a smart campus system is designed and deployed based on the service-oriented virtual network architecture. Moreover, the proposed architecture and models are verified in experiments.
文摘Numerous Internet of Things (IoT) devices are being connected to the net-works to offer services. To cope with a large diversity and number of IoT ser-vices, operators must meet those needs with a more flexible and efficient net-work architecture. Network slicing in 5G promises a feasible solution for this issue with network virtualization and programmability enabled by NFV (Net-work Functions Virtualization). In this research, we use virtualized IoT plat-forms as the Virtual Network Functions (VNFs) and customize network slices enabled by NFV with different QoS to support various kinds of IoT services for their best performance. We construct three different slicing systems including: 1) a single slice system, 2) a multiple customized slices system and 3) a single but scalable network slice system to support IoT services. Our objective is to compare and evaluate these three systems in terms of their throughput, aver-age response time and CPU utilization in order to identify the best system de-sign. Validated with our experiments, the performance of the multiple slicing system is better than those of the single slice systems whether it is equipped with scalability or not.
文摘Since virtualization technology enables the abstraction and sharing of resources in a flexible management way, the overall expenses of network deployment can be significantly reduced. Therefore, the technology has been widely applied in the core network. With the tremendous growth in mobile traffic and services, it is natural to extend virtualization technology to the cloud computing based radio access networks(CCRANs) for achieving high spectral efficiency with low cost.In this paper, the virtualization technologies in CC-RANs are surveyed, including the system architecture, key enabling techniques, challenges, and open issues. The enabling key technologies for virtualization in CC-RANs mainly including virtual resource allocation, radio access network(RAN) slicing, mobility management, and social-awareness have been comprehensively surveyed to satisfy the isolation, customization and high-efficiency utilization of radio resources. The challenges and open issues mainly focus on virtualization levels for CC-RANs, signaling design for CC-RAN virtualization, performance analysis for CC-RAN virtualization, and network security for virtualized CC-RANs.
文摘The concept of virtualization machines is not new, but it is increasing vastly and gaining popularity in the IT world. Hypervisors are also popular for security as a means of isolation. The virtualization of information technology infrastructure creates the enablement of IT resources to be shared and used on several other devices and applications;this increases the growth of business needs. The environment created by virtualization is not restricted to any configuration physically or execution. The resources of a computer are shared logically. Hypervisors help in virtualization of hardware that is a software interact with the physical system, enabling or providing virtualized hardware environment to support multiple running operating system simultaneously utilizing one physical server. This paper explores the benefits, types and security issues of Virtualization Hypervisor in virtualized hardware environment.
基金the Hi-tech Research and Development Program of China,the National Natural Science Foundation of China,the Beijing Natural Science Foundation,the Fundamental Research Funds for the Central Universities,the Fund of the State Key Laboratory of Software Development Environment
文摘This paper proposes a content addres sable storage optimization method, VDeskCAS, for desktop virtualization storage based disaster backup storage system. The method implements a blocklevel storage optimization, by employing the algorithms of chunking image file into blocks, the blockffmger calculation and the block dedup li cation. A File system in Use Space (FUSE) based storage process for VDeskCAS is also introduced which optimizes current direct storage to suit our content addressable storage. An interface level modification makes our system easy to extend. Experiments on virtual desktop image files and normal files verify the effectiveness of our method and above 60% storage volume decrease is a chieved for Red Hat Enterprise Linux image files. Key words: disaster backup; desktop virtualization; storage optimization; content addressable storage
基金supported by the National Natural Science Foundation of China(61701521)the Shaanxi Provincial Natural Science Foundation(2018JQ6074)。
文摘The evolution of airborne tactical networks(ATNs)is impeded by the network ossification problem.As a solution,network virtualization(NV)can provide a flexible and scalable architecture where virtual network embedding(VNE)is a key part.However,existing VNE algorithms cannot be optimally adopted in the virtualization of ATN due to the complex interference in aircombat field.In this context,a highly reliable VNE algorithm based on the transmission rate for ATN virtualization(TR-ATVNE)is proposed to adapt well to the specific electromagnetic environment of ATN.Our algorithm coordinates node and link mapping.In the node mapping,transmission-rate resource is firstly defined to effectively evaluate the ranking value of substrate nodes under the interference of both environmental noises and enemy attacks.Meanwhile,a feasible splitting rule is proposed for path splitting in the link mapping,considering the interference between wireless links.Simulation results reveal that our algorithm is able to improve the acceptance ratio of virtual network requests while maintaining a high revenue-to-cost ratio under the complex electromagnetic interference.