The rapid proliferation of electric vehicle(EV)charging infrastructure introduces critical cybersecurity vulnerabilities to power grids system.This study presents an innovative anomaly detection framework for EV charg...The rapid proliferation of electric vehicle(EV)charging infrastructure introduces critical cybersecurity vulnerabilities to power grids system.This study presents an innovative anomaly detection framework for EV charging stations,addressing the unique challenges posed by third-party aggregation platforms.Our approach integrates node equations-based on the parameter identification with a novel deep learning model,xDeepCIN,to detect abnormal data reporting indicative of aggregation attacks.We employ a graph-theoretic approach to model EV charging networks and utilize Markov Chain Monte Carlo techniques for accurate parameter estimation.The xDeepCIN model,incorporating a Compressed Interaction Network,has the ability to capture complex feature interactions in sparse,high-dimensional charging data.Experimental results on both proprietary and public datasets demonstrate significant improvements in anomaly detection performance,with F1-scores increasing by up to 32.3%for specific anomaly types compared to traditional methods,such as wide&deep and DeepFM(Factorization-Machine).Our framework exhibits robust scalability,effectively handling networks ranging from 8 to 85 charging points.Furthermore,we achieve real-time monitoring capabilities,with parameter identification completing within seconds for networks up to 1000 nodes.This research contributes to enhancing the security and reliability of renewable energy systems against evolving cyber threats,offering a comprehensive solution for safeguarding the rapidly expanding EV charging infrastructure.展开更多
Urban railways are vital means of public transportation in Korea.More than 30%of metropolitan residents use the railways,and this proportion is expected to increase.To enhance safety,the government has mandated the in...Urban railways are vital means of public transportation in Korea.More than 30%of metropolitan residents use the railways,and this proportion is expected to increase.To enhance safety,the government has mandated the installation of closed-circuit televisions in all carriages by 2024.However,cameras still monitored humans.To address this limitation,we developed a dataset of risk factors and a smart detection system that enables an immediate response to any abnormal behavior and intensive monitoring thereof.We created an innovative learning dataset that takes into account seven unique risk factors specific to Korean railway passengers.Detailed data collection was conducted across the Shinbundang Line of the Incheon Transportation Corporation,and the Ui-Shinseol Line.We observed several behavioral characteristics and assigned unique annotations to them.We also considered carriage congestion.Recognition performance was evaluated by camera placement and number.Then the camera installation plan was optimized.The dataset will find immediate applications in domestic railway operations.The artificial intelligence algorithms will be verified shortly.展开更多
Stereoscopic agriculture,as an advanced method of agricultural production,poses new challenges for multi-task trajectory planning of unmanned aerial vehicles(UAVs).To address the need for UAVs to perform multi-task tr...Stereoscopic agriculture,as an advanced method of agricultural production,poses new challenges for multi-task trajectory planning of unmanned aerial vehicles(UAVs).To address the need for UAVs to perform multi-task trajectory planning in stereoscopic agriculture,a multi-task trajectory planning model and algorithm(IEP-AO)that synthesizes flight safety and flight efficiency is proposed.Based on the requirements of stereoscopic agricultural geomorphological features and operational characteristics,the multi-task trajectory planning model is ensured by constructing targeted constraints at five aspects,including the path,slope,altitude,corner,energy and obstacle threat,to improve the effectiveness of the trajectory planning model.And combined with the path optimization algorithm,an Aquila optimizer(IEP-AO)based on the interference-enhanced combination model is proposed,which can help UAVs to improve the trajectory search capability in complex operation space and large-scale operation tasks,and jump out of the locally optimal trajectory path region timely,to generate the optimal trajectory planning plan that can adapt to the diversity of the tasks and the flight efficiency.Meanwhile,four simulated flights with different operation scales and different scene constraints were conducted under the constructed real 3Dimension scene,and the experimental results can show that the proposedmulti-task trajectory planning method canmeet themulti-task requirements in stereoscopic agriculture and improve the mission execution efficiency and agricultural production effect of UAV.展开更多
The high proportion of uncertain distributed power sources and the access to large-scale random electric vehicle(EV)charging resources further aggravate the voltage fluctuation of the distribution network,and the exis...The high proportion of uncertain distributed power sources and the access to large-scale random electric vehicle(EV)charging resources further aggravate the voltage fluctuation of the distribution network,and the existing research has not deeply explored the EV active-reactive synergistic regulating characteristics,and failed to realize themulti-timescale synergistic control with other regulatingmeans,For this reason,this paper proposes amultilevel linkage coordinated optimization strategy to reduce the voltage deviation of the distribution network.Firstly,a capacitor bank reactive power compensation voltage control model and a distributed photovoltaic(PV)activereactive power regulationmodel are established.Additionally,an external characteristicmodel of EVactive-reactive power regulation is developed considering the four-quadrant operational characteristics of the EVcharger.Amultiobjective optimization model of the distribution network is then constructed considering the time-series coupling constraints of multiple types of voltage regulators.A multi-timescale control strategy is proposed by considering the impact of voltage regulators on active-reactive EV energy consumption and PV energy consumption.Then,a four-stage voltage control optimization strategy is proposed for various types of voltage regulators with multiple time scales.Themulti-objective optimization is solved with the improvedDrosophila algorithmto realize the power fluctuation control of the distribution network and themulti-stage voltage control optimization.Simulation results validate that the proposed voltage control optimization strategy achieves the coordinated control of decentralized voltage control resources in the distribution network.It effectively reduces the voltage deviation of the distribution network while ensuring the energy demand of EV users and enhancing the stability and economic efficiency of the distribution network.展开更多
Integrating autonomous vehicles (AVs) and autonomous parking spaces (APS) marks a transformative development in urban mobility and sustainability. This paper reflects on these technologies’ historical evolution, curr...Integrating autonomous vehicles (AVs) and autonomous parking spaces (APS) marks a transformative development in urban mobility and sustainability. This paper reflects on these technologies’ historical evolution, current interdependence, and future potential through the lens of environmental, social, and economic sustainability. Historically, parking systems evolved from manual designs to automated processes yet remained focused on convenience rather than sustainability. Presently, advancements in smart infrastructure and vehicle-to-infrastructure (V2I) communication have enabled AVs and APS to operate as a cohesive system, optimizing space, energy, and transportation efficiency. Looking ahead, the seamless integration of AVs and APS into broader smart city ecosystems promises to redefine urban landscapes by repurposing traditional parking infrastructure into multifunctional spaces and supporting renewable energy initiatives. These technologies align with global sustainability goals by mitigating emissions, reducing urban sprawl, and fostering adaptive land uses. This reflection highlights the need for collaborative efforts among stakeholders to address regulatory and technological challenges, ensuring the equitable and efficient deployment of AVs and APS for smarter, greener cities.展开更多
The usage of electric vehicles holds a crucial role in lowering the diminishing of the ozone layer because electric vehicles are not dependent on fossil fuels.With more research,evaluation,and its characteristics on e...The usage of electric vehicles holds a crucial role in lowering the diminishing of the ozone layer because electric vehicles are not dependent on fossil fuels.With more research,evaluation,and its characteristics on electric vehicles,the infrastructure of charging points,production of electric vehicles,and network modelling,this paper provides a comprehensive overview of electric vehicles,and hybrid vehicles,including an analysis of their market growth,as well as different types of optimization used in the current scenario.In developing countries like India,the biggest barrier is their unfulfilled facility over the charging.Without renewable energy sources,vehicle-to-grid technology facilitates the enhancement of additional power requirements.The mobility factor has been considered an important and special characteristic of electric vehicles.展开更多
Small-drone technology has opened a range of new applications for aerial transportation. These drones leverage the Internet of Things (IoT) to offer cross-location services for navigation. However, they are susceptibl...Small-drone technology has opened a range of new applications for aerial transportation. These drones leverage the Internet of Things (IoT) to offer cross-location services for navigation. However, they are susceptible to security and privacy threats due to hardware and architectural issues. Although small drones hold promise for expansion in both civil and defense sectors, they have safety, security, and privacy threats. Addressing these challenges is crucial to maintaining the security and uninterrupted operations of these drones. In this regard, this study investigates security, and preservation concerning both the drones and Internet of Drones (IoD), emphasizing the significance of creating drone networks that are secure and can robustly withstand interceptions and intrusions. The proposed framework incorporates a weighted voting ensemble model comprising three convolutional neural network (CNN) models to enhance intrusion detection within the network. The employed CNNs are customized 1D models optimized to obtain better performance. The output from these CNNs is voted using a weighted criterion using a 0.4, 0.3, and 0.3 ratio for three CNNs, respectively. Experiments involve using multiple benchmark datasets, achieving an impressive accuracy of up to 99.89% on drone data. The proposed model shows promising results concerning precision, recall, and F1 as indicated by their obtained values of 99.92%, 99.98%, and 99.97%, respectively. Furthermore, cross-validation and performance comparison with existing works is also carried out. Findings indicate that the proposed approach offers a prospective solution for detecting security threats for aerial systems and satellite systems with high accuracy.展开更多
The Small Baseline Subset InSAR(SBAS-InSAR)and unmanned aerial vehicles(UAVs)as common ocean-land technologies,have been extensively applied in subsidence,glacial movement,surface deformation,and maritime positioning ...The Small Baseline Subset InSAR(SBAS-InSAR)and unmanned aerial vehicles(UAVs)as common ocean-land technologies,have been extensively applied in subsidence,glacial movement,surface deformation,and maritime positioning and navigation.A novel method integrating SBAS-InSAR and UAV photogrammetry is used to analyze ground subsidence deformation in the Gesar gold mine located in Maqu,Northwest China.This approach uses SBAS-InSAR to calculate two-dimensional deformation data for capturing ascending and descending measurements.This method can provide precise information on small-sized deformations within mining regions.The deformation data obtained from UAVs and the vertical deformation data derived from InSAR are integrated to generate comprehensive and accurate ground subsidence data from the mining district.Results demonstrate that using a combined InSAR(vertical)and UAV technique to analyze surface subsidence in mining districts resolves inconsistency between the line-of-sight and deformation orientations.Furthermore,the incoherence issue of InSAR in regions with large deformation gradients is addressed,while the inherent errors of UAV monitoring of mining surface subsidence are mitigated.The genetic algorithm(GA)-backpropagation(BP)neural network algorithm is combined with InSAR data to predict subsidence in collapsed areas.As observed,the GA-BP algorithm has the smallest residual under the same training samples.Therefore,the GA-BP neural network model can effectively predict surface subsidence in mining areas and can be used for subsequent subsidence prediction.展开更多
In recent years,with the increasing frequency of global Marine activities,the occurrence probability of Marine accidents and emergencies has also increased.As a new technical means,small unmanned aerial vehicles(UAVs)...In recent years,with the increasing frequency of global Marine activities,the occurrence probability of Marine accidents and emergencies has also increased.As a new technical means,small unmanned aerial vehicles(UAVs)have shown great application potential in Marine search and rescue activities.In Marine search and rescue activities,small UAVs can quickly arrive at the scene of the accident and carry out efficient information collection and monitoring under its simple and flexible operation.Compared with traditional search and rescue methods,small UAVs can cover a wider area,provide more detailed and accurate on-site information,provide strong support for search and rescue decision-making,and thus improve the quality and efficiency of maritime rescue.In this regard,this paper first describes the application advantages of small UAVs in Marine search and rescue activities and then puts forward effective application paths,to provide some references for relevant researchers.展开更多
The maneuverability and stealth of aerial-aquatic vehicles(AAVs)is of significant importance for future integrated air-sea combat missions.To improve the maneuverability and stealth of AAVs near the water surface,this...The maneuverability and stealth of aerial-aquatic vehicles(AAVs)is of significant importance for future integrated air-sea combat missions.To improve the maneuverability and stealth of AAVs near the water surface,this paper proposed a high-maneuverability skipping motion strategy for the tandem twin-rotor AAV,inspired by the motion behavior of the flying fish to avoid aquatic and aerial predators near the water surface.The novel tandem twin-rotor AAV was employed as the research subject and a strategybased ADRC control method for validation,comparing it with a strategy-based PID control method.The results indicate that both control methods enable the designed AAV to achieve high stealth and maneuverability near the water surface with robust control stability.The strategy-based ADRC control method exhibits a certain advantage in controlling height,pitch angle,and reducing impact force.This motion strategy will offer an inspiring approach for the practical application of AAVs to some extent.展开更多
Yardangs are wind-eroded ridges usually observed in arid regions on Earth and other planets. Previous geomorphology studies of terrestrial yardang fields depended on satellite data and limited fieldwork. The geometry ...Yardangs are wind-eroded ridges usually observed in arid regions on Earth and other planets. Previous geomorphology studies of terrestrial yardang fields depended on satellite data and limited fieldwork. The geometry measurements of those yardangs based on satellite data are limited to the length, the width, and the spacing between the yardangs; elevations could not be studied due to the relatively low resolution of the satellite acquired elevation data, e.g. digital elevation models(DEMs). However, the elevation information(e.g. heights of the yardang surfaces) and related information(e.g. slope) of the yardangs are critical to understanding the characteristics and evolution of these aeolian features. Here we report a novel approach, using unmanned aerial vehicles(UAVs) to generate centimeterresolution orthomosaics and DEMs for the study of whaleback yardangs in Qaidam Basin, NW China. The ultra-high-resolution data provide new insights into the geomorphology characteristics and evolution of the whaleback yardangs in Qaidam Basin. These centimeter-resolution datasets also have important potential in:(1) high accuracy estimation of erosion volume;(2) modeling in very fine scale of wind dynamics related to yardang formation;(3) detailed comparative planetary geomorphology study for Mars, Venus, and Titan.展开更多
This paper presents a machine-learning method for detecting jamming UAVs and classifying nodes during jamming attacks onWireless Sensor Networks(WSNs).Jamming is a type of Denial of Service(DoS)attack and intentional ...This paper presents a machine-learning method for detecting jamming UAVs and classifying nodes during jamming attacks onWireless Sensor Networks(WSNs).Jamming is a type of Denial of Service(DoS)attack and intentional interference where a malicious node transmits a high-power signal to increase noise on the receiver side to disrupt the communication channel and reduce performance significantly.To defend and prevent such attacks,the first step is to detect them.The current detection approaches use centralized techniques to detect jamming,where each node collects information and forwards it to the base station.As a result,overhead and communication costs increased.In this work,we present a jamming attack and classify nodes into different categories based on their location to the jammer by employing a single node observer.As a result,we introduced a machine learning model that uses distance ratios and power received as features to detect such attacks.Furthermore,we considered several types of jammers transmitting at different power levels to evaluate the proposed metrics using MATLAB.With a detection accuracy of 99.7%for the k-nearest neighbors(KNN)algorithm and average testing accuracy of 99.9%,the presented solution is capable of efficiently and accurately detecting jamming attacks in wireless sensor networks.展开更多
This research focuses on trajectory generation algorithms that take into account the stealthiness of autonomous UAVs;generating stealthy paths through a region laden with enemy radars. The algorithm is employed to est...This research focuses on trajectory generation algorithms that take into account the stealthiness of autonomous UAVs;generating stealthy paths through a region laden with enemy radars. The algorithm is employed to estimate the risk cost of the navigational space and generate an optimized path based on the user-specified threshold altitude value. Thus the generated path is represented with a set of low-radar risk waypoints being the coordinates of its control points. The radar-aware path planner is then approximated using cubic B-splines by considering the least radar risk to the destination. Simulated results are presented, illustrating the potential benefits of such algorithms.展开更多
The application of artificial intelligence technology in Internet of Vehicles(lov)has attracted great research interests with the goal of enabling smart transportation and traffic management.Meanwhile,concerns have be...The application of artificial intelligence technology in Internet of Vehicles(lov)has attracted great research interests with the goal of enabling smart transportation and traffic management.Meanwhile,concerns have been raised over the security and privacy of the tons of traffic and vehicle data.In this regard,Federated Learning(FL)with privacy protection features is considered a highly promising solution.However,in the FL process,the server side may take advantage of its dominant role in model aggregation to steal sensitive information of users,while the client side may also upload malicious data to compromise the training of the global model.Most existing privacy-preserving FL schemes in IoV fail to deal with threats from both of these two sides at the same time.In this paper,we propose a Blockchain based Privacy-preserving Federated Learning scheme named BPFL,which uses blockchain as the underlying distributed framework of FL.We improve the Multi-Krum technology and combine it with the homomorphic encryption to achieve ciphertext-level model aggregation and model filtering,which can enable the verifiability of the local models while achieving privacy-preservation.Additionally,we develop a reputation-based incentive mechanism to encourage users in IoV to actively participate in the federated learning and to practice honesty.The security analysis and performance evaluations are conducted to show that the proposed scheme can meet the security requirements and improve the performance of the FL model.展开更多
Due to its flexibility and complementarity, the multiUAVs system is well adapted to complex and cramped workspaces, with great application potential in the search and rescue(SAR) and indoor goods delivery fields. Howe...Due to its flexibility and complementarity, the multiUAVs system is well adapted to complex and cramped workspaces, with great application potential in the search and rescue(SAR) and indoor goods delivery fields. However, safe and effective path planning of multiple unmanned aerial vehicles(UAVs)in the cramped environment is always challenging: conflicts with each other are frequent because of high-density flight paths, collision probability increases because of space constraints, and the search space increases significantly, including time scale, 3D scale and model scale. Thus, this paper proposes a hierarchical collaborative planning framework with a conflict avoidance module at the high level and a path generation module at the low level. The enhanced conflict-base search(ECBS) in our framework is improved to handle the conflicts in the global path planning and avoid the occurrence of local deadlock. And both the collision and kinematic models of UAVs are considered to improve path smoothness and flight safety. Moreover, we specifically designed and published the cramped environment test set containing various unique obstacles to evaluating our framework performance thoroughly. Experiments are carried out relying on Rviz, with multiple flight missions: random, opposite, and staggered, which showed that the proposed method can generate smooth cooperative paths without conflict for at least 60 UAVs in a few minutes.The benchmark and source code are released in https://github.com/inin-xingtian/multi-UAVs-path-planner.展开更多
Unmanned Aerial Vehicles(UAVs)are gaining increasing attention in many fields,such as military,logistics,and hazardous site mapping.Utilizing UAVs to assist communications is one of the promising applications and rese...Unmanned Aerial Vehicles(UAVs)are gaining increasing attention in many fields,such as military,logistics,and hazardous site mapping.Utilizing UAVs to assist communications is one of the promising applications and research directions.The future Industrial Internet places higher demands on communication quality.The easy deployment,dynamic mobility,and low cost of UAVs make them a viable tool for wireless communication in the Industrial Internet.Therefore,UAVs are considered as an integral part of Industry 4.0.In this article,three typical use cases of UAVs-assisted communications in Industrial Internet are first summarized.Then,the state-of-the-art technologies for drone-assisted communication in support of the Industrial Internet are presented.According to the current research,it can be assumed that UAV-assisted communication can support the future Industrial Internet to a certain extent.Finally,the potential research directions and open challenges in UAV-assisted communications in the upcoming future Industrial Internet are discussed.展开更多
As the complexity of autonomous vehicles(AVs)continues to increase and artificial intelligence algorithms are becoming increasingly ubiquitous,a novel safety concern known as the safety of the intended functionality(S...As the complexity of autonomous vehicles(AVs)continues to increase and artificial intelligence algorithms are becoming increasingly ubiquitous,a novel safety concern known as the safety of the intended functionality(SOTIF)has emerged,presenting significant challenges to the widespread deployment of AVs.SOTIF focuses on issues arising from the functional insufficiencies of the AVs’intended functionality or its implementation,apart from conventional safety considerations.From the systems engineering standpoint,this study offers a comprehensive exploration of the SOTIF landscape by reviewing academic research,practical activities,challenges,and perspectives across the development,verification,validation,and operation phases.Academic research encompasses system-level SOTIF studies and algorithm-related SOTIF issues and solutions.Moreover,it encapsulates practical SOTIF activities undertaken by corporations,government entities,and academic institutions spanning international and Chinese contexts,focusing on the overarching methodologies and practices in different phases.Finally,the paper presents future challenges and outlook pertaining to the development,verification,validation,and operation phases,motivating stakeholders to address the remaining obstacles and challenges.展开更多
Secure platooning control plays an important role in enhancing the cooperative driving safety of automated vehicles subject to various security vulnerabilities.This paper focuses on the distributed secure control issu...Secure platooning control plays an important role in enhancing the cooperative driving safety of automated vehicles subject to various security vulnerabilities.This paper focuses on the distributed secure control issue of automated vehicles affected by replay attacks.A proportional-integral-observer(PIO)with predetermined forgetting parameters is first constructed to acquire the dynamical information of vehicles.Then,a time-varying parameter and two positive scalars are employed to describe the temporal behavior of replay attacks.In light of such a scheme and the common properties of Laplace matrices,the closed-loop system with PIO-based controllers is transformed into a switched and time-delayed one.Furthermore,some sufficient conditions are derived to achieve the desired platooning performance by the view of the Lyapunov stability theory.The controller gains are analytically determined by resorting to the solution of certain matrix inequalities only dependent on maximum and minimum eigenvalues of communication topologies.Finally,a simulation example is provided to illustrate the effectiveness of the proposed control strategy.展开更多
Although Federated Deep Learning(FDL)enables distributed machine learning in the Internet of Vehicles(IoV),it requires multiple clients to upload model parameters,thus still existing unavoidable communication overhead...Although Federated Deep Learning(FDL)enables distributed machine learning in the Internet of Vehicles(IoV),it requires multiple clients to upload model parameters,thus still existing unavoidable communication overhead and data privacy risks.The recently proposed Swarm Learning(SL)provides a decentralized machine learning approach for unit edge computing and blockchain-based coordination.A Swarm-Federated Deep Learning framework in the IoV system(IoV-SFDL)that integrates SL into the FDL framework is proposed in this paper.The IoV-SFDL organizes vehicles to generate local SL models with adjacent vehicles based on the blockchain empowered SL,then aggregates the global FDL model among different SL groups with a credibility weights prediction algorithm.Extensive experimental results show that compared with the baseline frameworks,the proposed IoV-SFDL framework reduces the overhead of client-to-server communication by 16.72%,while the model performance improves by about 5.02%for the same training iterations.展开更多
This study investigates resilient platoon control for constrained intelligent and connected vehicles(ICVs)against F-local Byzantine attacks.We introduce a resilient distributed model-predictive platooning control fram...This study investigates resilient platoon control for constrained intelligent and connected vehicles(ICVs)against F-local Byzantine attacks.We introduce a resilient distributed model-predictive platooning control framework for such ICVs.This framework seamlessly integrates the predesigned optimal control with distributed model predictive control(DMPC)optimization and introduces a unique distributed attack detector to ensure the reliability of the transmitted information among vehicles.Notably,our strategy uses previously broadcasted information and a specialized convex set,termed the“resilience set”,to identify unreliable data.This approach significantly eases graph robustness prerequisites,requiring only an(F+1)-robust graph,in contrast to the established mean sequence reduced algorithms,which require a minimum(2F+1)-robust graph.Additionally,we introduce a verification algorithm to restore trust in vehicles under minor attacks,further reducing communication network robustness.Our analysis demonstrates the recursive feasibility of the DMPC optimization.Furthermore,the proposed method achieves exceptional control performance by minimizing the discrepancies between the DMPC control inputs and predesigned platoon control inputs,while ensuring constraint compliance and cybersecurity.Simulation results verify the effectiveness of our theoretical findings.展开更多
基金supported by Jiangsu Provincial Science and Technology Project,grant number J2023124.Jing Guo received this grant,the URLs of sponsors’website is https://kxjst.jiangsu.gov.cn/(accessed on 06 June 2024).
文摘The rapid proliferation of electric vehicle(EV)charging infrastructure introduces critical cybersecurity vulnerabilities to power grids system.This study presents an innovative anomaly detection framework for EV charging stations,addressing the unique challenges posed by third-party aggregation platforms.Our approach integrates node equations-based on the parameter identification with a novel deep learning model,xDeepCIN,to detect abnormal data reporting indicative of aggregation attacks.We employ a graph-theoretic approach to model EV charging networks and utilize Markov Chain Monte Carlo techniques for accurate parameter estimation.The xDeepCIN model,incorporating a Compressed Interaction Network,has the ability to capture complex feature interactions in sparse,high-dimensional charging data.Experimental results on both proprietary and public datasets demonstrate significant improvements in anomaly detection performance,with F1-scores increasing by up to 32.3%for specific anomaly types compared to traditional methods,such as wide&deep and DeepFM(Factorization-Machine).Our framework exhibits robust scalability,effectively handling networks ranging from 8 to 85 charging points.Furthermore,we achieve real-time monitoring capabilities,with parameter identification completing within seconds for networks up to 1000 nodes.This research contributes to enhancing the security and reliability of renewable energy systems against evolving cyber threats,offering a comprehensive solution for safeguarding the rapidly expanding EV charging infrastructure.
基金supported by a Korean Agency for Infrastructure Technology Advancement(KAIA)grant funded by the Ministry of Land,Infrastructure and Transport(grant no.RS-2023-00239464).
文摘Urban railways are vital means of public transportation in Korea.More than 30%of metropolitan residents use the railways,and this proportion is expected to increase.To enhance safety,the government has mandated the installation of closed-circuit televisions in all carriages by 2024.However,cameras still monitored humans.To address this limitation,we developed a dataset of risk factors and a smart detection system that enables an immediate response to any abnormal behavior and intensive monitoring thereof.We created an innovative learning dataset that takes into account seven unique risk factors specific to Korean railway passengers.Detailed data collection was conducted across the Shinbundang Line of the Incheon Transportation Corporation,and the Ui-Shinseol Line.We observed several behavioral characteristics and assigned unique annotations to them.We also considered carriage congestion.Recognition performance was evaluated by camera placement and number.Then the camera installation plan was optimized.The dataset will find immediate applications in domestic railway operations.The artificial intelligence algorithms will be verified shortly.
基金funded by the Jiangxi Provincial Social Science Planning Project(21GL12)Jiangxi Provincial Higher Education Humanities and Social Sciences Planning Project(GL22232)Jiangxi Province College Students’Innovation and Entrepreneurship Training Program Project(S20241041027).
文摘Stereoscopic agriculture,as an advanced method of agricultural production,poses new challenges for multi-task trajectory planning of unmanned aerial vehicles(UAVs).To address the need for UAVs to perform multi-task trajectory planning in stereoscopic agriculture,a multi-task trajectory planning model and algorithm(IEP-AO)that synthesizes flight safety and flight efficiency is proposed.Based on the requirements of stereoscopic agricultural geomorphological features and operational characteristics,the multi-task trajectory planning model is ensured by constructing targeted constraints at five aspects,including the path,slope,altitude,corner,energy and obstacle threat,to improve the effectiveness of the trajectory planning model.And combined with the path optimization algorithm,an Aquila optimizer(IEP-AO)based on the interference-enhanced combination model is proposed,which can help UAVs to improve the trajectory search capability in complex operation space and large-scale operation tasks,and jump out of the locally optimal trajectory path region timely,to generate the optimal trajectory planning plan that can adapt to the diversity of the tasks and the flight efficiency.Meanwhile,four simulated flights with different operation scales and different scene constraints were conducted under the constructed real 3Dimension scene,and the experimental results can show that the proposedmulti-task trajectory planning method canmeet themulti-task requirements in stereoscopic agriculture and improve the mission execution efficiency and agricultural production effect of UAV.
基金funded by the State Grid Corporation Science and Technology Project(5108-202218280A-2-391-XG).
文摘The high proportion of uncertain distributed power sources and the access to large-scale random electric vehicle(EV)charging resources further aggravate the voltage fluctuation of the distribution network,and the existing research has not deeply explored the EV active-reactive synergistic regulating characteristics,and failed to realize themulti-timescale synergistic control with other regulatingmeans,For this reason,this paper proposes amultilevel linkage coordinated optimization strategy to reduce the voltage deviation of the distribution network.Firstly,a capacitor bank reactive power compensation voltage control model and a distributed photovoltaic(PV)activereactive power regulationmodel are established.Additionally,an external characteristicmodel of EVactive-reactive power regulation is developed considering the four-quadrant operational characteristics of the EVcharger.Amultiobjective optimization model of the distribution network is then constructed considering the time-series coupling constraints of multiple types of voltage regulators.A multi-timescale control strategy is proposed by considering the impact of voltage regulators on active-reactive EV energy consumption and PV energy consumption.Then,a four-stage voltage control optimization strategy is proposed for various types of voltage regulators with multiple time scales.Themulti-objective optimization is solved with the improvedDrosophila algorithmto realize the power fluctuation control of the distribution network and themulti-stage voltage control optimization.Simulation results validate that the proposed voltage control optimization strategy achieves the coordinated control of decentralized voltage control resources in the distribution network.It effectively reduces the voltage deviation of the distribution network while ensuring the energy demand of EV users and enhancing the stability and economic efficiency of the distribution network.
文摘Integrating autonomous vehicles (AVs) and autonomous parking spaces (APS) marks a transformative development in urban mobility and sustainability. This paper reflects on these technologies’ historical evolution, current interdependence, and future potential through the lens of environmental, social, and economic sustainability. Historically, parking systems evolved from manual designs to automated processes yet remained focused on convenience rather than sustainability. Presently, advancements in smart infrastructure and vehicle-to-infrastructure (V2I) communication have enabled AVs and APS to operate as a cohesive system, optimizing space, energy, and transportation efficiency. Looking ahead, the seamless integration of AVs and APS into broader smart city ecosystems promises to redefine urban landscapes by repurposing traditional parking infrastructure into multifunctional spaces and supporting renewable energy initiatives. These technologies align with global sustainability goals by mitigating emissions, reducing urban sprawl, and fostering adaptive land uses. This reflection highlights the need for collaborative efforts among stakeholders to address regulatory and technological challenges, ensuring the equitable and efficient deployment of AVs and APS for smarter, greener cities.
文摘The usage of electric vehicles holds a crucial role in lowering the diminishing of the ozone layer because electric vehicles are not dependent on fossil fuels.With more research,evaluation,and its characteristics on electric vehicles,the infrastructure of charging points,production of electric vehicles,and network modelling,this paper provides a comprehensive overview of electric vehicles,and hybrid vehicles,including an analysis of their market growth,as well as different types of optimization used in the current scenario.In developing countries like India,the biggest barrier is their unfulfilled facility over the charging.Without renewable energy sources,vehicle-to-grid technology facilitates the enhancement of additional power requirements.The mobility factor has been considered an important and special characteristic of electric vehicles.
文摘Small-drone technology has opened a range of new applications for aerial transportation. These drones leverage the Internet of Things (IoT) to offer cross-location services for navigation. However, they are susceptible to security and privacy threats due to hardware and architectural issues. Although small drones hold promise for expansion in both civil and defense sectors, they have safety, security, and privacy threats. Addressing these challenges is crucial to maintaining the security and uninterrupted operations of these drones. In this regard, this study investigates security, and preservation concerning both the drones and Internet of Drones (IoD), emphasizing the significance of creating drone networks that are secure and can robustly withstand interceptions and intrusions. The proposed framework incorporates a weighted voting ensemble model comprising three convolutional neural network (CNN) models to enhance intrusion detection within the network. The employed CNNs are customized 1D models optimized to obtain better performance. The output from these CNNs is voted using a weighted criterion using a 0.4, 0.3, and 0.3 ratio for three CNNs, respectively. Experiments involve using multiple benchmark datasets, achieving an impressive accuracy of up to 99.89% on drone data. The proposed model shows promising results concerning precision, recall, and F1 as indicated by their obtained values of 99.92%, 99.98%, and 99.97%, respectively. Furthermore, cross-validation and performance comparison with existing works is also carried out. Findings indicate that the proposed approach offers a prospective solution for detecting security threats for aerial systems and satellite systems with high accuracy.
基金funded by the Project from the Maqu Branch of Gannan Tibetan Autonomous Prefecture Ecological Environment Bureau,China(No.33412021021)。
文摘The Small Baseline Subset InSAR(SBAS-InSAR)and unmanned aerial vehicles(UAVs)as common ocean-land technologies,have been extensively applied in subsidence,glacial movement,surface deformation,and maritime positioning and navigation.A novel method integrating SBAS-InSAR and UAV photogrammetry is used to analyze ground subsidence deformation in the Gesar gold mine located in Maqu,Northwest China.This approach uses SBAS-InSAR to calculate two-dimensional deformation data for capturing ascending and descending measurements.This method can provide precise information on small-sized deformations within mining regions.The deformation data obtained from UAVs and the vertical deformation data derived from InSAR are integrated to generate comprehensive and accurate ground subsidence data from the mining district.Results demonstrate that using a combined InSAR(vertical)and UAV technique to analyze surface subsidence in mining districts resolves inconsistency between the line-of-sight and deformation orientations.Furthermore,the incoherence issue of InSAR in regions with large deformation gradients is addressed,while the inherent errors of UAV monitoring of mining surface subsidence are mitigated.The genetic algorithm(GA)-backpropagation(BP)neural network algorithm is combined with InSAR data to predict subsidence in collapsed areas.As observed,the GA-BP algorithm has the smallest residual under the same training samples.Therefore,the GA-BP neural network model can effectively predict surface subsidence in mining areas and can be used for subsequent subsidence prediction.
文摘In recent years,with the increasing frequency of global Marine activities,the occurrence probability of Marine accidents and emergencies has also increased.As a new technical means,small unmanned aerial vehicles(UAVs)have shown great application potential in Marine search and rescue activities.In Marine search and rescue activities,small UAVs can quickly arrive at the scene of the accident and carry out efficient information collection and monitoring under its simple and flexible operation.Compared with traditional search and rescue methods,small UAVs can cover a wider area,provide more detailed and accurate on-site information,provide strong support for search and rescue decision-making,and thus improve the quality and efficiency of maritime rescue.In this regard,this paper first describes the application advantages of small UAVs in Marine search and rescue activities and then puts forward effective application paths,to provide some references for relevant researchers.
基金supported by Southern Marine Science and Guangdong Laboratory(Zhuhai)(Grant No.SML2023SP229)。
文摘The maneuverability and stealth of aerial-aquatic vehicles(AAVs)is of significant importance for future integrated air-sea combat missions.To improve the maneuverability and stealth of AAVs near the water surface,this paper proposed a high-maneuverability skipping motion strategy for the tandem twin-rotor AAV,inspired by the motion behavior of the flying fish to avoid aquatic and aerial predators near the water surface.The novel tandem twin-rotor AAV was employed as the research subject and a strategybased ADRC control method for validation,comparing it with a strategy-based PID control method.The results indicate that both control methods enable the designed AAV to achieve high stealth and maneuverability near the water surface with robust control stability.The strategy-based ADRC control method exhibits a certain advantage in controlling height,pitch angle,and reducing impact force.This motion strategy will offer an inspiring approach for the practical application of AAVs to some extent.
基金supported by the National Scientific Foundation of China (No. 41773061)the Fundamental Research Funds for the Central Universities,China University of Geosciences (Wuhan) (Nos. CUGL160402, CUG2017G02 and CUGYCJH18-01)
文摘Yardangs are wind-eroded ridges usually observed in arid regions on Earth and other planets. Previous geomorphology studies of terrestrial yardang fields depended on satellite data and limited fieldwork. The geometry measurements of those yardangs based on satellite data are limited to the length, the width, and the spacing between the yardangs; elevations could not be studied due to the relatively low resolution of the satellite acquired elevation data, e.g. digital elevation models(DEMs). However, the elevation information(e.g. heights of the yardang surfaces) and related information(e.g. slope) of the yardangs are critical to understanding the characteristics and evolution of these aeolian features. Here we report a novel approach, using unmanned aerial vehicles(UAVs) to generate centimeterresolution orthomosaics and DEMs for the study of whaleback yardangs in Qaidam Basin, NW China. The ultra-high-resolution data provide new insights into the geomorphology characteristics and evolution of the whaleback yardangs in Qaidam Basin. These centimeter-resolution datasets also have important potential in:(1) high accuracy estimation of erosion volume;(2) modeling in very fine scale of wind dynamics related to yardang formation;(3) detailed comparative planetary geomorphology study for Mars, Venus, and Titan.
基金funded by the Deputyship for Research&Innovation,Ministry of Education in Saudi Arabia through the Project Number (IF-PSAU-2021/01/18707).
文摘This paper presents a machine-learning method for detecting jamming UAVs and classifying nodes during jamming attacks onWireless Sensor Networks(WSNs).Jamming is a type of Denial of Service(DoS)attack and intentional interference where a malicious node transmits a high-power signal to increase noise on the receiver side to disrupt the communication channel and reduce performance significantly.To defend and prevent such attacks,the first step is to detect them.The current detection approaches use centralized techniques to detect jamming,where each node collects information and forwards it to the base station.As a result,overhead and communication costs increased.In this work,we present a jamming attack and classify nodes into different categories based on their location to the jammer by employing a single node observer.As a result,we introduced a machine learning model that uses distance ratios and power received as features to detect such attacks.Furthermore,we considered several types of jammers transmitting at different power levels to evaluate the proposed metrics using MATLAB.With a detection accuracy of 99.7%for the k-nearest neighbors(KNN)algorithm and average testing accuracy of 99.9%,the presented solution is capable of efficiently and accurately detecting jamming attacks in wireless sensor networks.
文摘This research focuses on trajectory generation algorithms that take into account the stealthiness of autonomous UAVs;generating stealthy paths through a region laden with enemy radars. The algorithm is employed to estimate the risk cost of the navigational space and generate an optimized path based on the user-specified threshold altitude value. Thus the generated path is represented with a set of low-radar risk waypoints being the coordinates of its control points. The radar-aware path planner is then approximated using cubic B-splines by considering the least radar risk to the destination. Simulated results are presented, illustrating the potential benefits of such algorithms.
基金supported by the National Natural Science Foundation of China under Grant 61972148.
文摘The application of artificial intelligence technology in Internet of Vehicles(lov)has attracted great research interests with the goal of enabling smart transportation and traffic management.Meanwhile,concerns have been raised over the security and privacy of the tons of traffic and vehicle data.In this regard,Federated Learning(FL)with privacy protection features is considered a highly promising solution.However,in the FL process,the server side may take advantage of its dominant role in model aggregation to steal sensitive information of users,while the client side may also upload malicious data to compromise the training of the global model.Most existing privacy-preserving FL schemes in IoV fail to deal with threats from both of these two sides at the same time.In this paper,we propose a Blockchain based Privacy-preserving Federated Learning scheme named BPFL,which uses blockchain as the underlying distributed framework of FL.We improve the Multi-Krum technology and combine it with the homomorphic encryption to achieve ciphertext-level model aggregation and model filtering,which can enable the verifiability of the local models while achieving privacy-preservation.Additionally,we develop a reputation-based incentive mechanism to encourage users in IoV to actively participate in the federated learning and to practice honesty.The security analysis and performance evaluations are conducted to show that the proposed scheme can meet the security requirements and improve the performance of the FL model.
基金partly supported by Program for the National Natural Science Foundation of China (62373052, U1913203, 61903034)Youth Talent Promotion Project of China Association for Science and TechnologyBeijing Institute of Technology Research Fund Program for Young Scholars。
文摘Due to its flexibility and complementarity, the multiUAVs system is well adapted to complex and cramped workspaces, with great application potential in the search and rescue(SAR) and indoor goods delivery fields. However, safe and effective path planning of multiple unmanned aerial vehicles(UAVs)in the cramped environment is always challenging: conflicts with each other are frequent because of high-density flight paths, collision probability increases because of space constraints, and the search space increases significantly, including time scale, 3D scale and model scale. Thus, this paper proposes a hierarchical collaborative planning framework with a conflict avoidance module at the high level and a path generation module at the low level. The enhanced conflict-base search(ECBS) in our framework is improved to handle the conflicts in the global path planning and avoid the occurrence of local deadlock. And both the collision and kinematic models of UAVs are considered to improve path smoothness and flight safety. Moreover, we specifically designed and published the cramped environment test set containing various unique obstacles to evaluating our framework performance thoroughly. Experiments are carried out relying on Rviz, with multiple flight missions: random, opposite, and staggered, which showed that the proposed method can generate smooth cooperative paths without conflict for at least 60 UAVs in a few minutes.The benchmark and source code are released in https://github.com/inin-xingtian/multi-UAVs-path-planner.
基金supported in part by National Key Research&Devel-opment Program of China(2021YFB2900801)in part by Guangdong Basic and Applied Basic Research Foundation(2022A1515110335)in party by Fundamental Research Funds for the Central Universities(FRF-TP-22-094A1).
文摘Unmanned Aerial Vehicles(UAVs)are gaining increasing attention in many fields,such as military,logistics,and hazardous site mapping.Utilizing UAVs to assist communications is one of the promising applications and research directions.The future Industrial Internet places higher demands on communication quality.The easy deployment,dynamic mobility,and low cost of UAVs make them a viable tool for wireless communication in the Industrial Internet.Therefore,UAVs are considered as an integral part of Industry 4.0.In this article,three typical use cases of UAVs-assisted communications in Industrial Internet are first summarized.Then,the state-of-the-art technologies for drone-assisted communication in support of the Industrial Internet are presented.According to the current research,it can be assumed that UAV-assisted communication can support the future Industrial Internet to a certain extent.Finally,the potential research directions and open challenges in UAV-assisted communications in the upcoming future Industrial Internet are discussed.
基金supported by the National Science Foundation of China Project(52072215,U1964203,52242213,and 52221005)National Key Research and Development(R&D)Program of China(2022YFB2503003)State Key Laboratory of Intelligent Green Vehicle and Mobility。
文摘As the complexity of autonomous vehicles(AVs)continues to increase and artificial intelligence algorithms are becoming increasingly ubiquitous,a novel safety concern known as the safety of the intended functionality(SOTIF)has emerged,presenting significant challenges to the widespread deployment of AVs.SOTIF focuses on issues arising from the functional insufficiencies of the AVs’intended functionality or its implementation,apart from conventional safety considerations.From the systems engineering standpoint,this study offers a comprehensive exploration of the SOTIF landscape by reviewing academic research,practical activities,challenges,and perspectives across the development,verification,validation,and operation phases.Academic research encompasses system-level SOTIF studies and algorithm-related SOTIF issues and solutions.Moreover,it encapsulates practical SOTIF activities undertaken by corporations,government entities,and academic institutions spanning international and Chinese contexts,focusing on the overarching methodologies and practices in different phases.Finally,the paper presents future challenges and outlook pertaining to the development,verification,validation,and operation phases,motivating stakeholders to address the remaining obstacles and challenges.
基金supported in part by the National Natural Science Foundation of China (61973219,U21A2019,61873058)the Hainan Province Science and Technology Special Fund (ZDYF2022SHFZ105)。
文摘Secure platooning control plays an important role in enhancing the cooperative driving safety of automated vehicles subject to various security vulnerabilities.This paper focuses on the distributed secure control issue of automated vehicles affected by replay attacks.A proportional-integral-observer(PIO)with predetermined forgetting parameters is first constructed to acquire the dynamical information of vehicles.Then,a time-varying parameter and two positive scalars are employed to describe the temporal behavior of replay attacks.In light of such a scheme and the common properties of Laplace matrices,the closed-loop system with PIO-based controllers is transformed into a switched and time-delayed one.Furthermore,some sufficient conditions are derived to achieve the desired platooning performance by the view of the Lyapunov stability theory.The controller gains are analytically determined by resorting to the solution of certain matrix inequalities only dependent on maximum and minimum eigenvalues of communication topologies.Finally,a simulation example is provided to illustrate the effectiveness of the proposed control strategy.
基金supported by the National Natural Science Foundation of China(NSFC)under Grant 62071179.
文摘Although Federated Deep Learning(FDL)enables distributed machine learning in the Internet of Vehicles(IoV),it requires multiple clients to upload model parameters,thus still existing unavoidable communication overhead and data privacy risks.The recently proposed Swarm Learning(SL)provides a decentralized machine learning approach for unit edge computing and blockchain-based coordination.A Swarm-Federated Deep Learning framework in the IoV system(IoV-SFDL)that integrates SL into the FDL framework is proposed in this paper.The IoV-SFDL organizes vehicles to generate local SL models with adjacent vehicles based on the blockchain empowered SL,then aggregates the global FDL model among different SL groups with a credibility weights prediction algorithm.Extensive experimental results show that compared with the baseline frameworks,the proposed IoV-SFDL framework reduces the overhead of client-to-server communication by 16.72%,while the model performance improves by about 5.02%for the same training iterations.
基金the financial support from the Natural Sciences and Engineering Research Council of Canada(NSERC)。
文摘This study investigates resilient platoon control for constrained intelligent and connected vehicles(ICVs)against F-local Byzantine attacks.We introduce a resilient distributed model-predictive platooning control framework for such ICVs.This framework seamlessly integrates the predesigned optimal control with distributed model predictive control(DMPC)optimization and introduces a unique distributed attack detector to ensure the reliability of the transmitted information among vehicles.Notably,our strategy uses previously broadcasted information and a specialized convex set,termed the“resilience set”,to identify unreliable data.This approach significantly eases graph robustness prerequisites,requiring only an(F+1)-robust graph,in contrast to the established mean sequence reduced algorithms,which require a minimum(2F+1)-robust graph.Additionally,we introduce a verification algorithm to restore trust in vehicles under minor attacks,further reducing communication network robustness.Our analysis demonstrates the recursive feasibility of the DMPC optimization.Furthermore,the proposed method achieves exceptional control performance by minimizing the discrepancies between the DMPC control inputs and predesigned platoon control inputs,while ensuring constraint compliance and cybersecurity.Simulation results verify the effectiveness of our theoretical findings.