Non-contact remote sensing techniques,such as terrestrial laser scanning(TLS)and unmanned aerial vehicle(UAV)photogrammetry,have been globally applied for landslide monitoring in high and steep mountainous areas.These...Non-contact remote sensing techniques,such as terrestrial laser scanning(TLS)and unmanned aerial vehicle(UAV)photogrammetry,have been globally applied for landslide monitoring in high and steep mountainous areas.These techniques acquire terrain data and enable ground deformation monitoring.However,practical application of these technologies still faces many difficulties due to complex terrain,limited access and dense vegetation.For instance,monitoring high and steep slopes can obstruct the TLS sightline,and the accuracy of the UAV model may be compromised by absence of ground control points(GCPs).This paper proposes a TLS-and UAV-based method for monitoring landslide deformation in high mountain valleys using traditional real-time kinematics(RTK)-based control points(RCPs),low-precision TLS-based control points(TCPs)and assumed control points(ACPs)to achieve high-precision surface deformation analysis under obstructed vision and impassable conditions.The effects of GCP accuracy,GCP quantity and automatic tie point(ATP)quantity on the accuracy of UAV modeling and surface deformation analysis were comprehensively analyzed.The results show that,the proposed method allows for the monitoring accuracy of landslides to exceed the accuracy of the GCPs themselves by adding additional low-accuracy GCPs.The proposed method was implemented for monitoring the Xinhua landslide in Baoxing County,China,and was validated against data from multiple sources.展开更多
Urban railways are vital means of public transportation in Korea.More than 30%of metropolitan residents use the railways,and this proportion is expected to increase.To enhance safety,the government has mandated the in...Urban railways are vital means of public transportation in Korea.More than 30%of metropolitan residents use the railways,and this proportion is expected to increase.To enhance safety,the government has mandated the installation of closed-circuit televisions in all carriages by 2024.However,cameras still monitored humans.To address this limitation,we developed a dataset of risk factors and a smart detection system that enables an immediate response to any abnormal behavior and intensive monitoring thereof.We created an innovative learning dataset that takes into account seven unique risk factors specific to Korean railway passengers.Detailed data collection was conducted across the Shinbundang Line of the Incheon Transportation Corporation,and the Ui-Shinseol Line.We observed several behavioral characteristics and assigned unique annotations to them.We also considered carriage congestion.Recognition performance was evaluated by camera placement and number.Then the camera installation plan was optimized.The dataset will find immediate applications in domestic railway operations.The artificial intelligence algorithms will be verified shortly.展开更多
The rapid proliferation of electric vehicle(EV)charging infrastructure introduces critical cybersecurity vulnerabilities to power grids system.This study presents an innovative anomaly detection framework for EV charg...The rapid proliferation of electric vehicle(EV)charging infrastructure introduces critical cybersecurity vulnerabilities to power grids system.This study presents an innovative anomaly detection framework for EV charging stations,addressing the unique challenges posed by third-party aggregation platforms.Our approach integrates node equations-based on the parameter identification with a novel deep learning model,xDeepCIN,to detect abnormal data reporting indicative of aggregation attacks.We employ a graph-theoretic approach to model EV charging networks and utilize Markov Chain Monte Carlo techniques for accurate parameter estimation.The xDeepCIN model,incorporating a Compressed Interaction Network,has the ability to capture complex feature interactions in sparse,high-dimensional charging data.Experimental results on both proprietary and public datasets demonstrate significant improvements in anomaly detection performance,with F1-scores increasing by up to 32.3%for specific anomaly types compared to traditional methods,such as wide&deep and DeepFM(Factorization-Machine).Our framework exhibits robust scalability,effectively handling networks ranging from 8 to 85 charging points.Furthermore,we achieve real-time monitoring capabilities,with parameter identification completing within seconds for networks up to 1000 nodes.This research contributes to enhancing the security and reliability of renewable energy systems against evolving cyber threats,offering a comprehensive solution for safeguarding the rapidly expanding EV charging infrastructure.展开更多
The high proportion of uncertain distributed power sources and the access to large-scale random electric vehicle(EV)charging resources further aggravate the voltage fluctuation of the distribution network,and the exis...The high proportion of uncertain distributed power sources and the access to large-scale random electric vehicle(EV)charging resources further aggravate the voltage fluctuation of the distribution network,and the existing research has not deeply explored the EV active-reactive synergistic regulating characteristics,and failed to realize themulti-timescale synergistic control with other regulatingmeans,For this reason,this paper proposes amultilevel linkage coordinated optimization strategy to reduce the voltage deviation of the distribution network.Firstly,a capacitor bank reactive power compensation voltage control model and a distributed photovoltaic(PV)activereactive power regulationmodel are established.Additionally,an external characteristicmodel of EVactive-reactive power regulation is developed considering the four-quadrant operational characteristics of the EVcharger.Amultiobjective optimization model of the distribution network is then constructed considering the time-series coupling constraints of multiple types of voltage regulators.A multi-timescale control strategy is proposed by considering the impact of voltage regulators on active-reactive EV energy consumption and PV energy consumption.Then,a four-stage voltage control optimization strategy is proposed for various types of voltage regulators with multiple time scales.Themulti-objective optimization is solved with the improvedDrosophila algorithmto realize the power fluctuation control of the distribution network and themulti-stage voltage control optimization.Simulation results validate that the proposed voltage control optimization strategy achieves the coordinated control of decentralized voltage control resources in the distribution network.It effectively reduces the voltage deviation of the distribution network while ensuring the energy demand of EV users and enhancing the stability and economic efficiency of the distribution network.展开更多
The usage of electric vehicles holds a crucial role in lowering the diminishing of the ozone layer because electric vehicles are not dependent on fossil fuels.With more research,evaluation,and its characteristics on e...The usage of electric vehicles holds a crucial role in lowering the diminishing of the ozone layer because electric vehicles are not dependent on fossil fuels.With more research,evaluation,and its characteristics on electric vehicles,the infrastructure of charging points,production of electric vehicles,and network modelling,this paper provides a comprehensive overview of electric vehicles,and hybrid vehicles,including an analysis of their market growth,as well as different types of optimization used in the current scenario.In developing countries like India,the biggest barrier is their unfulfilled facility over the charging.Without renewable energy sources,vehicle-to-grid technology facilitates the enhancement of additional power requirements.The mobility factor has been considered an important and special characteristic of electric vehicles.展开更多
Aerodynamic and dynamic interference from trains is a key issue of concern for the safety of road vehicles travelling on single-level rail-cum road bridges.Based on the wind-road vehicle-train-bridge(WRTB)coupled vibr...Aerodynamic and dynamic interference from trains is a key issue of concern for the safety of road vehicles travelling on single-level rail-cum road bridges.Based on the wind-road vehicle-train-bridge(WRTB)coupled vibration system developed herein,this study examines the dynamic characteristics when road vehicles meet trains in this situation.The influence of load combination,vehicle type and vehicle location is analyzed.A method to obtain the aerodynamic load of road vehicles encountering the train at an arbitrary wind speed is proposed.The results show that due to the windproof facilities and the large line distance between the railway and highway,the aerodynamic and dynamic influence of trains on road vehicles is slight,and the vibration of road vehicles depends on the road roughness.Among the road vehicles discussed,the bus is the easiest to rollover,and the truck-trailer is the easiest to sideslip.Compared with the aerodynamic impact of trains,the crosswind has a more significant influence on road vehicles.The first peak/valley value of aerodynamic loads determines the maximum dynamic response,and the quick method is optimized based on this conclusion.Test cases show that the optimized method can produce conservative results and can be used for relevant research or engineering applications.展开更多
The rapid evolution of unmanned aerial vehicle(UAV)technology and autonomous capabilities has positioned UAV as promising last-mile delivery means.Vehicle and onboard UAV collaborative delivery is introduced as a nove...The rapid evolution of unmanned aerial vehicle(UAV)technology and autonomous capabilities has positioned UAV as promising last-mile delivery means.Vehicle and onboard UAV collaborative delivery is introduced as a novel delivery mode.Spatiotemporal collaboration,along with energy consumption with payload and wind conditions play important roles in delivery route planning.This paper introduces the traveling salesman problem with time window and onboard UAV(TSPTWOUAV)and emphasizes the consideration of real-world scenarios,focusing on time collaboration and energy consumption with wind and payload.To address this,a mixed integer linear programming(MILP)model is formulated to minimize the energy consumption costs of vehicle and UAV.Furthermore,an adaptive large neighborhood search(ALNS)algorithm is applied to identify high-quality solutions efficiently.The effectiveness of the proposed model and algorithm is validated through numerical tests on real geographic instances and sensitivity analysis of key parameters is conducted.展开更多
The performance degradation of vehicle engine cylinder heads is a complex phenomenon,and the accurate prediction of their remaining useful life is essential for maintenance planning.To address the problem of low predi...The performance degradation of vehicle engine cylinder heads is a complex phenomenon,and the accurate prediction of their remaining useful life is essential for maintenance planning.To address the problem of low prediction accuracy caused by insufficient data mining depth in current prediction models for the remaining service life of engine cylinder heads,a prediction method of dualchannel model is proposed.Firstly,the driving status data of multiple vehicles is summarized and analyzed,and the on-board network common variables related to cylinder head life are screened.Secondly,driving segments are defined,the driving state features of each driving segment are extracted,and feature correlation analysis and principal component analysis are performed.All driving state profiles of the vehicle are divided using the clustering algorithm,and the cumulative degradation factors for driving state profiles are defined and calculated.Furthermore,the mileage of each driving segment is classified into intervals by applying fuzzy set theory,and the state transfer probability matrices of driving state profiles and driving segment mileage are calculated.A new engine head life prediction model based on dual channel Markov chain(DCMC)is established.Finally,the proposed method is applied to the residual life prediction of cylinder head of seven actual vehicles,and the comparison with actual life statistics results proved the validity of the proposed method.展开更多
Realistic urban scene generation has been extensively studied for the sake of the development of autonomous vehicles. However, the research has primarily focused on the synthesis of vehicles and pedestrians, while the...Realistic urban scene generation has been extensively studied for the sake of the development of autonomous vehicles. However, the research has primarily focused on the synthesis of vehicles and pedestrians, while the generation of cyclists is rarely presented due to its complexity. This paper proposes a perspective-aware and realistic cyclist generation method via object retrieval. Images, semantic maps, and depth labels of objects are first collected from existing datasets, categorized by class and perspective, and calculated by an algorithm newly designed according to imaging principles. During scene generation, objects with the desired class and perspective are retrieved from the collection and inserted into the background, which is then sent to the modified 2D synthesis model to generate images. This pipeline introduces a perspective computing method, utilizes object retrieval to control the perspective accurately, and modifies a diffusion model to achieve high fidelity. Experiments show that our proposal gets a 2.36 Fréchet Inception Distance, which is lower than the competitive methods, indicating a superior realistic expression ability. When these images are used for augmentation in the semantic segmentation task, the performance of ResNet-50 on the target class can be improved by 4.47%. These results demonstrate that the proposed method can be used to generate cyclists in corner cases to augment model training data, further enhancing the perception capability of autonomous vehicles and improving the safety performance of autonomous driving technology.展开更多
The maneuverability and stealth of aerial-aquatic vehicles(AAVs)is of significant importance for future integrated air-sea combat missions.To improve the maneuverability and stealth of AAVs near the water surface,this...The maneuverability and stealth of aerial-aquatic vehicles(AAVs)is of significant importance for future integrated air-sea combat missions.To improve the maneuverability and stealth of AAVs near the water surface,this paper proposed a high-maneuverability skipping motion strategy for the tandem twin-rotor AAV,inspired by the motion behavior of the flying fish to avoid aquatic and aerial predators near the water surface.The novel tandem twin-rotor AAV was employed as the research subject and a strategybased ADRC control method for validation,comparing it with a strategy-based PID control method.The results indicate that both control methods enable the designed AAV to achieve high stealth and maneuverability near the water surface with robust control stability.The strategy-based ADRC control method exhibits a certain advantage in controlling height,pitch angle,and reducing impact force.This motion strategy will offer an inspiring approach for the practical application of AAVs to some extent.展开更多
Pavement condition monitoring and its timely maintenance is necessary to ensure the safety and quality of the roadway infrastructure. The International Roughness Index (IRI) is a commonly used measure to quantify road...Pavement condition monitoring and its timely maintenance is necessary to ensure the safety and quality of the roadway infrastructure. The International Roughness Index (IRI) is a commonly used measure to quantify road surface roughness and is a critical input to asset management. In Indiana, the IRI statistic contributes to roughly half of the pavement quality index computation used for asset management. Most agencies inventory IRI once a year, however, pavement conditions vary much more frequently. The objective of this paper is to develop a framework using crowdsourced connected vehicle data to identify and detect temporal changes in IRI. Over 3 billion connected vehicle records in Indiana were analyzed across 30 months between 2022 and 2024 to understand the spatiotemporal variations in roughness. Annual comparisons across all major interstates in Indiana showed the miles of interstates classified as “Good” decreased from 1896 to 1661 miles between 2022 and 2024. The miles of interstate classified as “Needs Maintenance” increased from 82 to 120 miles. A detailed case study showing monthly and daily changes of estimated IRI on I-65 are presented along with supporting dashcam images. Although the crowdsourced IRI estimates are not as robust as traditional specialized pavement profilers, they can be obtained on a monthly, weekly, or even daily basis. The paper concludes by suggesting a combination of frequent crowdsourced IRI and commercially available dashcam imagery of roadway can provide an agile and responsive mechanism for agencies to implement pavement asset management programs that can complement existing annual programs.展开更多
Unsupervised vehicle re-identification(Re-ID)methods have garnered widespread attention due to their potential in real-world traffic monitoring.However,existing unsupervised domain adaptation techniques often rely on ...Unsupervised vehicle re-identification(Re-ID)methods have garnered widespread attention due to their potential in real-world traffic monitoring.However,existing unsupervised domain adaptation techniques often rely on pseudo-labels generated from the source domain,which struggle to effectively address the diversity and dynamic nature of real-world scenarios.Given the limited variety of common vehicle types,enhancing the model’s generalization capability across these types is crucial.To this end,an innovative approach called meta-type generalization(MTG)is proposed.By dividing the training data into meta-train and meta-test sets based on vehicle type information,a novel gradient interaction computation strategy is designed to enhance the model’s ability to learn typeinvariant features.Integrated into the ResNet50 backbone,the MTG model achieves improvements of 4.50%and 12.04%on the Veri-776 and VRAI datasets,respectively,compared with traditional unsupervised algorithms,and surpasses current state-of-the-art methods.This achievement holds promise for application in intelligent traffic systems,enabling more efficient urban traffic solutions.展开更多
Integrating autonomous vehicles (AVs) and autonomous parking spaces (APS) marks a transformative development in urban mobility and sustainability. This paper reflects on these technologies’ historical evolution, curr...Integrating autonomous vehicles (AVs) and autonomous parking spaces (APS) marks a transformative development in urban mobility and sustainability. This paper reflects on these technologies’ historical evolution, current interdependence, and future potential through the lens of environmental, social, and economic sustainability. Historically, parking systems evolved from manual designs to automated processes yet remained focused on convenience rather than sustainability. Presently, advancements in smart infrastructure and vehicle-to-infrastructure (V2I) communication have enabled AVs and APS to operate as a cohesive system, optimizing space, energy, and transportation efficiency. Looking ahead, the seamless integration of AVs and APS into broader smart city ecosystems promises to redefine urban landscapes by repurposing traditional parking infrastructure into multifunctional spaces and supporting renewable energy initiatives. These technologies align with global sustainability goals by mitigating emissions, reducing urban sprawl, and fostering adaptive land uses. This reflection highlights the need for collaborative efforts among stakeholders to address regulatory and technological challenges, ensuring the equitable and efficient deployment of AVs and APS for smarter, greener cities.展开更多
Small-drone technology has opened a range of new applications for aerial transportation. These drones leverage the Internet of Things (IoT) to offer cross-location services for navigation. However, they are susceptibl...Small-drone technology has opened a range of new applications for aerial transportation. These drones leverage the Internet of Things (IoT) to offer cross-location services for navigation. However, they are susceptible to security and privacy threats due to hardware and architectural issues. Although small drones hold promise for expansion in both civil and defense sectors, they have safety, security, and privacy threats. Addressing these challenges is crucial to maintaining the security and uninterrupted operations of these drones. In this regard, this study investigates security, and preservation concerning both the drones and Internet of Drones (IoD), emphasizing the significance of creating drone networks that are secure and can robustly withstand interceptions and intrusions. The proposed framework incorporates a weighted voting ensemble model comprising three convolutional neural network (CNN) models to enhance intrusion detection within the network. The employed CNNs are customized 1D models optimized to obtain better performance. The output from these CNNs is voted using a weighted criterion using a 0.4, 0.3, and 0.3 ratio for three CNNs, respectively. Experiments involve using multiple benchmark datasets, achieving an impressive accuracy of up to 99.89% on drone data. The proposed model shows promising results concerning precision, recall, and F1 as indicated by their obtained values of 99.92%, 99.98%, and 99.97%, respectively. Furthermore, cross-validation and performance comparison with existing works is also carried out. Findings indicate that the proposed approach offers a prospective solution for detecting security threats for aerial systems and satellite systems with high accuracy.展开更多
Intelligent vehicle applications provide convenience but raise privacy and security concerns.Misuse of sensitive data,including vehicle location,and facial recognition information,poses a threat to user privacy.Hence,...Intelligent vehicle applications provide convenience but raise privacy and security concerns.Misuse of sensitive data,including vehicle location,and facial recognition information,poses a threat to user privacy.Hence,traffic classification is vital for promptly overseeing and controlling applications with sensitive information.In this paper,we propose ETNet,a framework that combines multiple features and leverages self-attention mechanisms to learn deep relationships between packets.ET-Net employs a multisimilarity triplet network to extract features from raw bytes,and exploits self-attention to capture long-range dependencies within packets in a session and contextual information features.Additionally,we utilizing the loss function to more effectively integrate information acquired from both byte sequences and their corresponding lengths.Through simulated evaluations on datasets with similar attributes,ET-Net demonstrates the ability to finely distinguish between nine categories of applications,achieving superior results compared to existing methods.展开更多
Decision-making of connected and automated vehicles(CAV)includes a sequence of driving maneuvers that improve safety and efficiency,characterized by complex scenarios,strong uncertainty,and high real-time requirements...Decision-making of connected and automated vehicles(CAV)includes a sequence of driving maneuvers that improve safety and efficiency,characterized by complex scenarios,strong uncertainty,and high real-time requirements.Deep reinforcement learning(DRL)exhibits excellent capability of real-time decision-making and adaptability to complex scenarios,and generalization abilities.However,it is arduous to guarantee complete driving safety and efficiency under the constraints of training samples and costs.This paper proposes a Mixture of Expert method(MoE)based on Soft Actor-Critic(SAC),where the upper-level discriminator dynamically decides whether to activate the lower-level DRL expert or the heuristic expert based on the features of the input state.To further enhance the performance of the DRL expert,a buffer zone is introduced in the reward function,preemptively applying penalties before insecure situations occur.In order to minimize collision and off-road rates,the Intelligent Driver Model(IDM)and Minimizing Overall Braking Induced by Lane changes(MOBIL)strategy are designed by heuristic experts.Finally,tested in typical simulation scenarios,MOE shows a 13.75%improvement in driving efficiency compared with the traditional DRL method with continuous action space.It ensures high safety with zero collision and zero off-road rates while maintaining high adaptability.展开更多
Considering the uncertainty of grid connection of electric vehicle charging stations and the uncertainty of new energy and residential electricity load,a spatio-temporal decoupling strategy of dynamic reactive power o...Considering the uncertainty of grid connection of electric vehicle charging stations and the uncertainty of new energy and residential electricity load,a spatio-temporal decoupling strategy of dynamic reactive power optimization based on clustering-local relaxation-correction is proposed.Firstly,the k-medoids clustering algorithm is used to divide the reduced power scene into periods.Then,the discrete variables and continuous variables are optimized in the same period of time.Finally,the number of input groups of parallel capacitor banks(CB)in multiple periods is fixed,and then the secondary static reactive power optimization correction is carried out by using the continuous reactive power output device based on the static reactive power compensation device(SVC),the new energy grid-connected inverter,and the electric vehicle charging station.According to the characteristics of the model,a hybrid optimization algorithm with a cross-feedback mechanism is used to solve different types of variables,and an improved artificial hummingbird algorithm based on tent chaotic mapping and adaptive mutation is proposed to improve the solution efficiency.The simulation results show that the proposed decoupling strategy can obtain satisfactory optimization resultswhile strictly guaranteeing the dynamic constraints of discrete variables,and the hybrid algorithm can effectively solve the mixed integer nonlinear optimization problem.展开更多
The Internet of Everything(IoE)coupled with Proactive Artificial Intelligence(AI)-Based Learning Agents(PLAs)through a cloud processing system is an idea that connects all computing resources to the Internet,making it...The Internet of Everything(IoE)coupled with Proactive Artificial Intelligence(AI)-Based Learning Agents(PLAs)through a cloud processing system is an idea that connects all computing resources to the Internet,making it possible for these devices to communicate with one another.Technologies featured in the IoE include embedding,networking,and sensing devices.To achieve the intended results of the IoE and ease life for everyone involved,sensing devices and monitoring systems are linked together.The IoE is used in several contexts,including intelligent cars’protection,navigation,security,and fuel efficiency.The Smart Things Monitoring System(STMS)framework,which has been proposed for early occurrence identification and theft prevention,is discussed in this article.The STMS uses technologies based on the IoE and PLAs to continuously and remotely observe,control,and monitor vehicles.The STMS is familiar with the platform used by the global positioning system;as a result,the STMS can maintain a real-time record of current vehicle positions.This information is utilized to locate the vehicle in an accident or theft.The findings of the STMS system are promising for precisely identifying crashes,evaluating incident severity,and locating vehicles after collisions have occurred.Moreover,we formulate an ad hoc STMS network communication scenario to evaluate the efficacy of data communication by utilizing various network parameters,such as round-trip time(RTT),data packet transmission,data packet reception,and loss.From our experimentation,we obtained an improved communication efficiency for STMS across multiple PLAs compared to the standard greedy routing and traditional AODV approaches.Our framework facilitates adaptable solutions with communication competence by deploying Proactive PLAs in a cloud-connected smart vehicular environment.展开更多
In recent years, owing to the strong increase in demand for lubricants, China is ranked second in the global lubricant market. With the rapid development of China's automobile industry, there is an increasing demand ...In recent years, owing to the strong increase in demand for lubricants, China is ranked second in the global lubricant market. With the rapid development of China's automobile industry, there is an increasing demand for vehicle lubricants and an increasing requirement for higher quality lubricants. While the demands for vehicle lubricants are increasing year by year in China, the quality grade of vehicle lubricant will be improved by leaps and bounds, and the high standard lubricant for automobile will be directly brought in line with international practice. At present, the market share of most high-end vehicle lubricant has been occupied by foreign lubricant brands. So for China National Petroleum Corporation Lubricant Company (CNPCLC), the urgent issue is that strategies must be made to respond to the stern challenges and to occupy more market share. In this paper, by using the analytic hierarchy process (AHP) technique that has the advantage of combining quantitative with qualitative analysis, a SWOT-AHP model for CNPCLC vehicle lubricants is developed, presenting a good tool for studying the competitive factors domestic and overseas for vehicle lubricants. Finally a strategic plan for CNPCLC vehicle lubricants is suggested.展开更多
Background:Current automated forest investigation is facing a dilemma over how to achieve high tree-and plotlevel completeness while maintaining a high cost and labor efficiency.This study tackles the challenge by exp...Background:Current automated forest investigation is facing a dilemma over how to achieve high tree-and plotlevel completeness while maintaining a high cost and labor efficiency.This study tackles the challenge by exploring a new concept that enables an efficient fusion of aerial and terrestrial perspectives for digitizing and characterizing individual trees in forests through an Unmanned Aerial Vehicle(UAV)that flies above and under canopies in a single operation.The advantage of such concept is that the aerial perspective from the above-canopy UAV and the terrestrial perspective from the under-canopy UAV can be seamlessly integrated in one flight,thus grants the access to simultaneous high completeness,high efficiency,and low cost.Results:In the experiment,an approximately 0.5 ha forest was covered in ca.10 min from takeoff to landing.The GNSS-IMU based positioning supports a geometric accuracy of the produced point cloud that is equivalent to that of the mobile mapping systems,which leads to a 2–4 cm RMSE of the diameter at the breast height estimates,and a 4–7 cm RMSE of the stem curve estimates.Conclusions:Results of the experiment suggested that the integrated flight is capable of combining the high completeness of upper canopies from the above-canopy perspective and the high completeness of stems from the terrestrial perspective.Thus,it is a solution to combine the advantages of the terrestrial static,the mobile,and the above-canopy UAV observations,which is a promising step forward to achieve a fully autonomous in situ forest inventory.Future studies should be aimed to further improve the platform positioning,and to automatize the UAV operation.展开更多
基金support of the National Natural Science Foundation of China(Grant Nos.U2240221 and 41977229)the Sichuan Youth Science and Technology Innovation Research Team Project(Grant No.2020JDTD0006).
文摘Non-contact remote sensing techniques,such as terrestrial laser scanning(TLS)and unmanned aerial vehicle(UAV)photogrammetry,have been globally applied for landslide monitoring in high and steep mountainous areas.These techniques acquire terrain data and enable ground deformation monitoring.However,practical application of these technologies still faces many difficulties due to complex terrain,limited access and dense vegetation.For instance,monitoring high and steep slopes can obstruct the TLS sightline,and the accuracy of the UAV model may be compromised by absence of ground control points(GCPs).This paper proposes a TLS-and UAV-based method for monitoring landslide deformation in high mountain valleys using traditional real-time kinematics(RTK)-based control points(RCPs),low-precision TLS-based control points(TCPs)and assumed control points(ACPs)to achieve high-precision surface deformation analysis under obstructed vision and impassable conditions.The effects of GCP accuracy,GCP quantity and automatic tie point(ATP)quantity on the accuracy of UAV modeling and surface deformation analysis were comprehensively analyzed.The results show that,the proposed method allows for the monitoring accuracy of landslides to exceed the accuracy of the GCPs themselves by adding additional low-accuracy GCPs.The proposed method was implemented for monitoring the Xinhua landslide in Baoxing County,China,and was validated against data from multiple sources.
基金supported by a Korean Agency for Infrastructure Technology Advancement(KAIA)grant funded by the Ministry of Land,Infrastructure and Transport(grant no.RS-2023-00239464).
文摘Urban railways are vital means of public transportation in Korea.More than 30%of metropolitan residents use the railways,and this proportion is expected to increase.To enhance safety,the government has mandated the installation of closed-circuit televisions in all carriages by 2024.However,cameras still monitored humans.To address this limitation,we developed a dataset of risk factors and a smart detection system that enables an immediate response to any abnormal behavior and intensive monitoring thereof.We created an innovative learning dataset that takes into account seven unique risk factors specific to Korean railway passengers.Detailed data collection was conducted across the Shinbundang Line of the Incheon Transportation Corporation,and the Ui-Shinseol Line.We observed several behavioral characteristics and assigned unique annotations to them.We also considered carriage congestion.Recognition performance was evaluated by camera placement and number.Then the camera installation plan was optimized.The dataset will find immediate applications in domestic railway operations.The artificial intelligence algorithms will be verified shortly.
基金supported by Jiangsu Provincial Science and Technology Project,grant number J2023124.Jing Guo received this grant,the URLs of sponsors’website is https://kxjst.jiangsu.gov.cn/(accessed on 06 June 2024).
文摘The rapid proliferation of electric vehicle(EV)charging infrastructure introduces critical cybersecurity vulnerabilities to power grids system.This study presents an innovative anomaly detection framework for EV charging stations,addressing the unique challenges posed by third-party aggregation platforms.Our approach integrates node equations-based on the parameter identification with a novel deep learning model,xDeepCIN,to detect abnormal data reporting indicative of aggregation attacks.We employ a graph-theoretic approach to model EV charging networks and utilize Markov Chain Monte Carlo techniques for accurate parameter estimation.The xDeepCIN model,incorporating a Compressed Interaction Network,has the ability to capture complex feature interactions in sparse,high-dimensional charging data.Experimental results on both proprietary and public datasets demonstrate significant improvements in anomaly detection performance,with F1-scores increasing by up to 32.3%for specific anomaly types compared to traditional methods,such as wide&deep and DeepFM(Factorization-Machine).Our framework exhibits robust scalability,effectively handling networks ranging from 8 to 85 charging points.Furthermore,we achieve real-time monitoring capabilities,with parameter identification completing within seconds for networks up to 1000 nodes.This research contributes to enhancing the security and reliability of renewable energy systems against evolving cyber threats,offering a comprehensive solution for safeguarding the rapidly expanding EV charging infrastructure.
基金funded by the State Grid Corporation Science and Technology Project(5108-202218280A-2-391-XG).
文摘The high proportion of uncertain distributed power sources and the access to large-scale random electric vehicle(EV)charging resources further aggravate the voltage fluctuation of the distribution network,and the existing research has not deeply explored the EV active-reactive synergistic regulating characteristics,and failed to realize themulti-timescale synergistic control with other regulatingmeans,For this reason,this paper proposes amultilevel linkage coordinated optimization strategy to reduce the voltage deviation of the distribution network.Firstly,a capacitor bank reactive power compensation voltage control model and a distributed photovoltaic(PV)activereactive power regulationmodel are established.Additionally,an external characteristicmodel of EVactive-reactive power regulation is developed considering the four-quadrant operational characteristics of the EVcharger.Amultiobjective optimization model of the distribution network is then constructed considering the time-series coupling constraints of multiple types of voltage regulators.A multi-timescale control strategy is proposed by considering the impact of voltage regulators on active-reactive EV energy consumption and PV energy consumption.Then,a four-stage voltage control optimization strategy is proposed for various types of voltage regulators with multiple time scales.Themulti-objective optimization is solved with the improvedDrosophila algorithmto realize the power fluctuation control of the distribution network and themulti-stage voltage control optimization.Simulation results validate that the proposed voltage control optimization strategy achieves the coordinated control of decentralized voltage control resources in the distribution network.It effectively reduces the voltage deviation of the distribution network while ensuring the energy demand of EV users and enhancing the stability and economic efficiency of the distribution network.
文摘The usage of electric vehicles holds a crucial role in lowering the diminishing of the ozone layer because electric vehicles are not dependent on fossil fuels.With more research,evaluation,and its characteristics on electric vehicles,the infrastructure of charging points,production of electric vehicles,and network modelling,this paper provides a comprehensive overview of electric vehicles,and hybrid vehicles,including an analysis of their market growth,as well as different types of optimization used in the current scenario.In developing countries like India,the biggest barrier is their unfulfilled facility over the charging.Without renewable energy sources,vehicle-to-grid technology facilitates the enhancement of additional power requirements.The mobility factor has been considered an important and special characteristic of electric vehicles.
基金The Research Project of Southwest Municipal Design&Research Institute of China under Grant No.2023KY-KT-02-I。
文摘Aerodynamic and dynamic interference from trains is a key issue of concern for the safety of road vehicles travelling on single-level rail-cum road bridges.Based on the wind-road vehicle-train-bridge(WRTB)coupled vibration system developed herein,this study examines the dynamic characteristics when road vehicles meet trains in this situation.The influence of load combination,vehicle type and vehicle location is analyzed.A method to obtain the aerodynamic load of road vehicles encountering the train at an arbitrary wind speed is proposed.The results show that due to the windproof facilities and the large line distance between the railway and highway,the aerodynamic and dynamic influence of trains on road vehicles is slight,and the vibration of road vehicles depends on the road roughness.Among the road vehicles discussed,the bus is the easiest to rollover,and the truck-trailer is the easiest to sideslip.Compared with the aerodynamic impact of trains,the crosswind has a more significant influence on road vehicles.The first peak/valley value of aerodynamic loads determines the maximum dynamic response,and the quick method is optimized based on this conclusion.Test cases show that the optimized method can produce conservative results and can be used for relevant research or engineering applications.
基金Fundamental Research Funds for the Central Universities(2024JBZX038)National Natural Science F oundation of China(62076023)。
文摘The rapid evolution of unmanned aerial vehicle(UAV)technology and autonomous capabilities has positioned UAV as promising last-mile delivery means.Vehicle and onboard UAV collaborative delivery is introduced as a novel delivery mode.Spatiotemporal collaboration,along with energy consumption with payload and wind conditions play important roles in delivery route planning.This paper introduces the traveling salesman problem with time window and onboard UAV(TSPTWOUAV)and emphasizes the consideration of real-world scenarios,focusing on time collaboration and energy consumption with wind and payload.To address this,a mixed integer linear programming(MILP)model is formulated to minimize the energy consumption costs of vehicle and UAV.Furthermore,an adaptive large neighborhood search(ALNS)algorithm is applied to identify high-quality solutions efficiently.The effectiveness of the proposed model and algorithm is validated through numerical tests on real geographic instances and sensitivity analysis of key parameters is conducted.
基金Supported by the Open Project Fund of the National Key Laboratory of Internal Combustion Engine and Power System(No.skler-202102).
文摘The performance degradation of vehicle engine cylinder heads is a complex phenomenon,and the accurate prediction of their remaining useful life is essential for maintenance planning.To address the problem of low prediction accuracy caused by insufficient data mining depth in current prediction models for the remaining service life of engine cylinder heads,a prediction method of dualchannel model is proposed.Firstly,the driving status data of multiple vehicles is summarized and analyzed,and the on-board network common variables related to cylinder head life are screened.Secondly,driving segments are defined,the driving state features of each driving segment are extracted,and feature correlation analysis and principal component analysis are performed.All driving state profiles of the vehicle are divided using the clustering algorithm,and the cumulative degradation factors for driving state profiles are defined and calculated.Furthermore,the mileage of each driving segment is classified into intervals by applying fuzzy set theory,and the state transfer probability matrices of driving state profiles and driving segment mileage are calculated.A new engine head life prediction model based on dual channel Markov chain(DCMC)is established.Finally,the proposed method is applied to the residual life prediction of cylinder head of seven actual vehicles,and the comparison with actual life statistics results proved the validity of the proposed method.
基金supported by the Cultivation Program for Major Scientific Research Projects of Harbin Institute of Technology(ZDXMPY20180109).
文摘Realistic urban scene generation has been extensively studied for the sake of the development of autonomous vehicles. However, the research has primarily focused on the synthesis of vehicles and pedestrians, while the generation of cyclists is rarely presented due to its complexity. This paper proposes a perspective-aware and realistic cyclist generation method via object retrieval. Images, semantic maps, and depth labels of objects are first collected from existing datasets, categorized by class and perspective, and calculated by an algorithm newly designed according to imaging principles. During scene generation, objects with the desired class and perspective are retrieved from the collection and inserted into the background, which is then sent to the modified 2D synthesis model to generate images. This pipeline introduces a perspective computing method, utilizes object retrieval to control the perspective accurately, and modifies a diffusion model to achieve high fidelity. Experiments show that our proposal gets a 2.36 Fréchet Inception Distance, which is lower than the competitive methods, indicating a superior realistic expression ability. When these images are used for augmentation in the semantic segmentation task, the performance of ResNet-50 on the target class can be improved by 4.47%. These results demonstrate that the proposed method can be used to generate cyclists in corner cases to augment model training data, further enhancing the perception capability of autonomous vehicles and improving the safety performance of autonomous driving technology.
基金supported by Southern Marine Science and Guangdong Laboratory(Zhuhai)(Grant No.SML2023SP229)。
文摘The maneuverability and stealth of aerial-aquatic vehicles(AAVs)is of significant importance for future integrated air-sea combat missions.To improve the maneuverability and stealth of AAVs near the water surface,this paper proposed a high-maneuverability skipping motion strategy for the tandem twin-rotor AAV,inspired by the motion behavior of the flying fish to avoid aquatic and aerial predators near the water surface.The novel tandem twin-rotor AAV was employed as the research subject and a strategybased ADRC control method for validation,comparing it with a strategy-based PID control method.The results indicate that both control methods enable the designed AAV to achieve high stealth and maneuverability near the water surface with robust control stability.The strategy-based ADRC control method exhibits a certain advantage in controlling height,pitch angle,and reducing impact force.This motion strategy will offer an inspiring approach for the practical application of AAVs to some extent.
文摘Pavement condition monitoring and its timely maintenance is necessary to ensure the safety and quality of the roadway infrastructure. The International Roughness Index (IRI) is a commonly used measure to quantify road surface roughness and is a critical input to asset management. In Indiana, the IRI statistic contributes to roughly half of the pavement quality index computation used for asset management. Most agencies inventory IRI once a year, however, pavement conditions vary much more frequently. The objective of this paper is to develop a framework using crowdsourced connected vehicle data to identify and detect temporal changes in IRI. Over 3 billion connected vehicle records in Indiana were analyzed across 30 months between 2022 and 2024 to understand the spatiotemporal variations in roughness. Annual comparisons across all major interstates in Indiana showed the miles of interstates classified as “Good” decreased from 1896 to 1661 miles between 2022 and 2024. The miles of interstate classified as “Needs Maintenance” increased from 82 to 120 miles. A detailed case study showing monthly and daily changes of estimated IRI on I-65 are presented along with supporting dashcam images. Although the crowdsourced IRI estimates are not as robust as traditional specialized pavement profilers, they can be obtained on a monthly, weekly, or even daily basis. The paper concludes by suggesting a combination of frequent crowdsourced IRI and commercially available dashcam imagery of roadway can provide an agile and responsive mechanism for agencies to implement pavement asset management programs that can complement existing annual programs.
基金Supported by the National Natural Science Foundation of China(No.61976098)the Natural Science Foundation for Outstanding Young Scholars of Fujian Province(No.2022J06023).
文摘Unsupervised vehicle re-identification(Re-ID)methods have garnered widespread attention due to their potential in real-world traffic monitoring.However,existing unsupervised domain adaptation techniques often rely on pseudo-labels generated from the source domain,which struggle to effectively address the diversity and dynamic nature of real-world scenarios.Given the limited variety of common vehicle types,enhancing the model’s generalization capability across these types is crucial.To this end,an innovative approach called meta-type generalization(MTG)is proposed.By dividing the training data into meta-train and meta-test sets based on vehicle type information,a novel gradient interaction computation strategy is designed to enhance the model’s ability to learn typeinvariant features.Integrated into the ResNet50 backbone,the MTG model achieves improvements of 4.50%and 12.04%on the Veri-776 and VRAI datasets,respectively,compared with traditional unsupervised algorithms,and surpasses current state-of-the-art methods.This achievement holds promise for application in intelligent traffic systems,enabling more efficient urban traffic solutions.
文摘Integrating autonomous vehicles (AVs) and autonomous parking spaces (APS) marks a transformative development in urban mobility and sustainability. This paper reflects on these technologies’ historical evolution, current interdependence, and future potential through the lens of environmental, social, and economic sustainability. Historically, parking systems evolved from manual designs to automated processes yet remained focused on convenience rather than sustainability. Presently, advancements in smart infrastructure and vehicle-to-infrastructure (V2I) communication have enabled AVs and APS to operate as a cohesive system, optimizing space, energy, and transportation efficiency. Looking ahead, the seamless integration of AVs and APS into broader smart city ecosystems promises to redefine urban landscapes by repurposing traditional parking infrastructure into multifunctional spaces and supporting renewable energy initiatives. These technologies align with global sustainability goals by mitigating emissions, reducing urban sprawl, and fostering adaptive land uses. This reflection highlights the need for collaborative efforts among stakeholders to address regulatory and technological challenges, ensuring the equitable and efficient deployment of AVs and APS for smarter, greener cities.
文摘Small-drone technology has opened a range of new applications for aerial transportation. These drones leverage the Internet of Things (IoT) to offer cross-location services for navigation. However, they are susceptible to security and privacy threats due to hardware and architectural issues. Although small drones hold promise for expansion in both civil and defense sectors, they have safety, security, and privacy threats. Addressing these challenges is crucial to maintaining the security and uninterrupted operations of these drones. In this regard, this study investigates security, and preservation concerning both the drones and Internet of Drones (IoD), emphasizing the significance of creating drone networks that are secure and can robustly withstand interceptions and intrusions. The proposed framework incorporates a weighted voting ensemble model comprising three convolutional neural network (CNN) models to enhance intrusion detection within the network. The employed CNNs are customized 1D models optimized to obtain better performance. The output from these CNNs is voted using a weighted criterion using a 0.4, 0.3, and 0.3 ratio for three CNNs, respectively. Experiments involve using multiple benchmark datasets, achieving an impressive accuracy of up to 99.89% on drone data. The proposed model shows promising results concerning precision, recall, and F1 as indicated by their obtained values of 99.92%, 99.98%, and 99.97%, respectively. Furthermore, cross-validation and performance comparison with existing works is also carried out. Findings indicate that the proposed approach offers a prospective solution for detecting security threats for aerial systems and satellite systems with high accuracy.
基金supported by National Key Research and Development Program of China(2022YFB3104903)S&T Program of Hebei(No.SZX2020034).
文摘Intelligent vehicle applications provide convenience but raise privacy and security concerns.Misuse of sensitive data,including vehicle location,and facial recognition information,poses a threat to user privacy.Hence,traffic classification is vital for promptly overseeing and controlling applications with sensitive information.In this paper,we propose ETNet,a framework that combines multiple features and leverages self-attention mechanisms to learn deep relationships between packets.ET-Net employs a multisimilarity triplet network to extract features from raw bytes,and exploits self-attention to capture long-range dependencies within packets in a session and contextual information features.Additionally,we utilizing the loss function to more effectively integrate information acquired from both byte sequences and their corresponding lengths.Through simulated evaluations on datasets with similar attributes,ET-Net demonstrates the ability to finely distinguish between nine categories of applications,achieving superior results compared to existing methods.
基金Supported by National Key R&D Program of China(Grant No.2022YFB2503203)National Natural Science Foundation of China(Grant No.U1964206).
文摘Decision-making of connected and automated vehicles(CAV)includes a sequence of driving maneuvers that improve safety and efficiency,characterized by complex scenarios,strong uncertainty,and high real-time requirements.Deep reinforcement learning(DRL)exhibits excellent capability of real-time decision-making and adaptability to complex scenarios,and generalization abilities.However,it is arduous to guarantee complete driving safety and efficiency under the constraints of training samples and costs.This paper proposes a Mixture of Expert method(MoE)based on Soft Actor-Critic(SAC),where the upper-level discriminator dynamically decides whether to activate the lower-level DRL expert or the heuristic expert based on the features of the input state.To further enhance the performance of the DRL expert,a buffer zone is introduced in the reward function,preemptively applying penalties before insecure situations occur.In order to minimize collision and off-road rates,the Intelligent Driver Model(IDM)and Minimizing Overall Braking Induced by Lane changes(MOBIL)strategy are designed by heuristic experts.Finally,tested in typical simulation scenarios,MOE shows a 13.75%improvement in driving efficiency compared with the traditional DRL method with continuous action space.It ensures high safety with zero collision and zero off-road rates while maintaining high adaptability.
基金funded by the“Research and Application Project of Collaborative Optimization Control Technology for Distribution Station Area for High Proportion Distributed PV Consumption(4000-202318079A-1-1-ZN)”of the Headquarters of the State Grid Corporation.
文摘Considering the uncertainty of grid connection of electric vehicle charging stations and the uncertainty of new energy and residential electricity load,a spatio-temporal decoupling strategy of dynamic reactive power optimization based on clustering-local relaxation-correction is proposed.Firstly,the k-medoids clustering algorithm is used to divide the reduced power scene into periods.Then,the discrete variables and continuous variables are optimized in the same period of time.Finally,the number of input groups of parallel capacitor banks(CB)in multiple periods is fixed,and then the secondary static reactive power optimization correction is carried out by using the continuous reactive power output device based on the static reactive power compensation device(SVC),the new energy grid-connected inverter,and the electric vehicle charging station.According to the characteristics of the model,a hybrid optimization algorithm with a cross-feedback mechanism is used to solve different types of variables,and an improved artificial hummingbird algorithm based on tent chaotic mapping and adaptive mutation is proposed to improve the solution efficiency.The simulation results show that the proposed decoupling strategy can obtain satisfactory optimization resultswhile strictly guaranteeing the dynamic constraints of discrete variables,and the hybrid algorithm can effectively solve the mixed integer nonlinear optimization problem.
基金funded by the Ministry of Science and Technology,Taiwan,grant number(MOST 111-2221-E167-025-MY2).
文摘The Internet of Everything(IoE)coupled with Proactive Artificial Intelligence(AI)-Based Learning Agents(PLAs)through a cloud processing system is an idea that connects all computing resources to the Internet,making it possible for these devices to communicate with one another.Technologies featured in the IoE include embedding,networking,and sensing devices.To achieve the intended results of the IoE and ease life for everyone involved,sensing devices and monitoring systems are linked together.The IoE is used in several contexts,including intelligent cars’protection,navigation,security,and fuel efficiency.The Smart Things Monitoring System(STMS)framework,which has been proposed for early occurrence identification and theft prevention,is discussed in this article.The STMS uses technologies based on the IoE and PLAs to continuously and remotely observe,control,and monitor vehicles.The STMS is familiar with the platform used by the global positioning system;as a result,the STMS can maintain a real-time record of current vehicle positions.This information is utilized to locate the vehicle in an accident or theft.The findings of the STMS system are promising for precisely identifying crashes,evaluating incident severity,and locating vehicles after collisions have occurred.Moreover,we formulate an ad hoc STMS network communication scenario to evaluate the efficacy of data communication by utilizing various network parameters,such as round-trip time(RTT),data packet transmission,data packet reception,and loss.From our experimentation,we obtained an improved communication efficiency for STMS across multiple PLAs compared to the standard greedy routing and traditional AODV approaches.Our framework facilitates adaptable solutions with communication competence by deploying Proactive PLAs in a cloud-connected smart vehicular environment.
基金the Policy Research Centre of CNPC for its financial support
文摘In recent years, owing to the strong increase in demand for lubricants, China is ranked second in the global lubricant market. With the rapid development of China's automobile industry, there is an increasing demand for vehicle lubricants and an increasing requirement for higher quality lubricants. While the demands for vehicle lubricants are increasing year by year in China, the quality grade of vehicle lubricant will be improved by leaps and bounds, and the high standard lubricant for automobile will be directly brought in line with international practice. At present, the market share of most high-end vehicle lubricant has been occupied by foreign lubricant brands. So for China National Petroleum Corporation Lubricant Company (CNPCLC), the urgent issue is that strategies must be made to respond to the stern challenges and to occupy more market share. In this paper, by using the analytic hierarchy process (AHP) technique that has the advantage of combining quantitative with qualitative analysis, a SWOT-AHP model for CNPCLC vehicle lubricants is developed, presenting a good tool for studying the competitive factors domestic and overseas for vehicle lubricants. Finally a strategic plan for CNPCLC vehicle lubricants is suggested.
基金supported in part by the Strategic Research Council at the Academy of Finland project“Competence Based Growth Through Integrated Disruptive Technologies of 3D Digitalization,Robotics,Geospatial Information and Image Processing/Computing-Point Cloud Ecosystem(293389,314312),Academy of Finland projects“Estimating Forest Resources and Quality-related Attributes Using Automated Methods and Technologies”(334830,334829)”,“Monitoring and understanding forest ecosystem cycles”(334060)。
文摘Background:Current automated forest investigation is facing a dilemma over how to achieve high tree-and plotlevel completeness while maintaining a high cost and labor efficiency.This study tackles the challenge by exploring a new concept that enables an efficient fusion of aerial and terrestrial perspectives for digitizing and characterizing individual trees in forests through an Unmanned Aerial Vehicle(UAV)that flies above and under canopies in a single operation.The advantage of such concept is that the aerial perspective from the above-canopy UAV and the terrestrial perspective from the under-canopy UAV can be seamlessly integrated in one flight,thus grants the access to simultaneous high completeness,high efficiency,and low cost.Results:In the experiment,an approximately 0.5 ha forest was covered in ca.10 min from takeoff to landing.The GNSS-IMU based positioning supports a geometric accuracy of the produced point cloud that is equivalent to that of the mobile mapping systems,which leads to a 2–4 cm RMSE of the diameter at the breast height estimates,and a 4–7 cm RMSE of the stem curve estimates.Conclusions:Results of the experiment suggested that the integrated flight is capable of combining the high completeness of upper canopies from the above-canopy perspective and the high completeness of stems from the terrestrial perspective.Thus,it is a solution to combine the advantages of the terrestrial static,the mobile,and the above-canopy UAV observations,which is a promising step forward to achieve a fully autonomous in situ forest inventory.Future studies should be aimed to further improve the platform positioning,and to automatize the UAV operation.